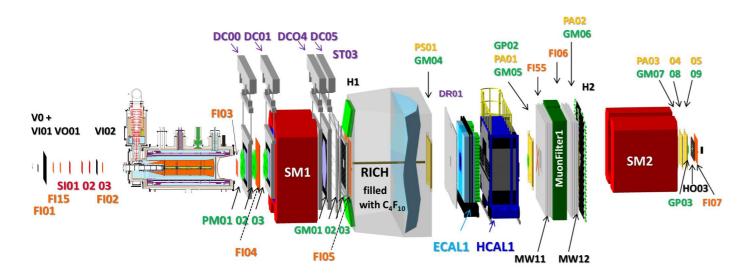
Measurements of transverse momentum dependent effects in SIDIS at COMPASS

European nuclear physics conference 2025 21-26 Sept 2025, Moho, Caen, France

CHARLES UNIVERSITY

Faculty of mathematics and physics

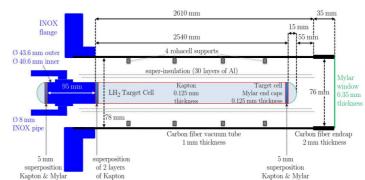

Patrizio Pucci on behalf of the COMPASS Collaboration Faculty of mathematics and physics Charles university, Prague, Czechia

COMPASS collaboration

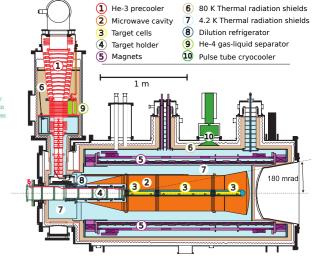
COmmon Muon Proton Apparatus for Structure and Spectroscopy

- About 200 members from 15 different countries
- Located in CERN North Area (SPS, M2 beam line)
- Measurements from 2002 to 2022
- Currently in analysis phase

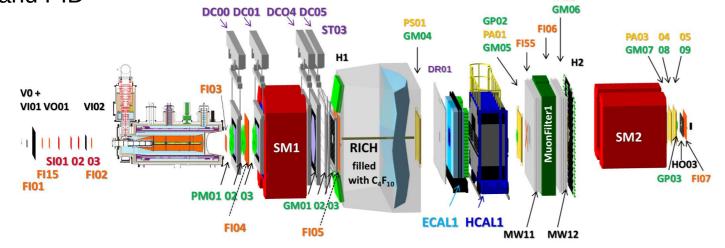
COMPASS collaboration

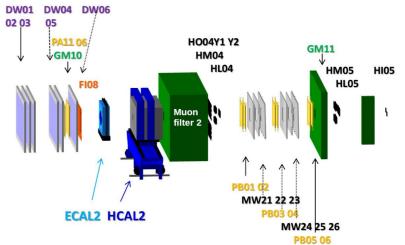


- Primary beam: 400 GeV/c p from CERN SPS
- Secondary beam: 190 GeV/c negative hadrons $\pi^{-}(97\%)$, $K^{-}(2.5)$, \overline{p} (0.5%)
- Tertiary beam: 160(200) GeV/c μ⁺(μ⁻)
- Fixed target


Apparatus:

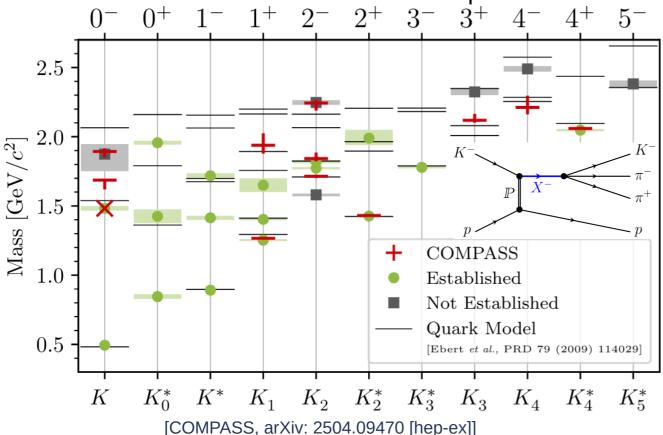
- Large angle spectrometer and small angle spectrometer
- Two dipole analyzing magnets: SM1 and SM2

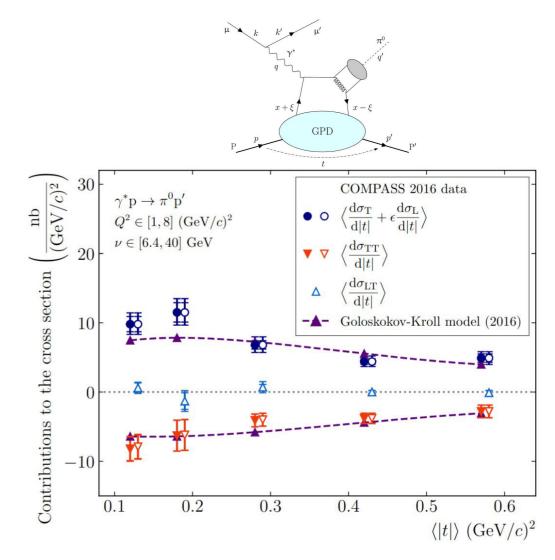

 Detector systems for precise tracking, calorimetry and PID



2016: unpolarized liquid H target

2022: ⁶LiD target in 3 transversely polarized cells with periodic polarization reversal

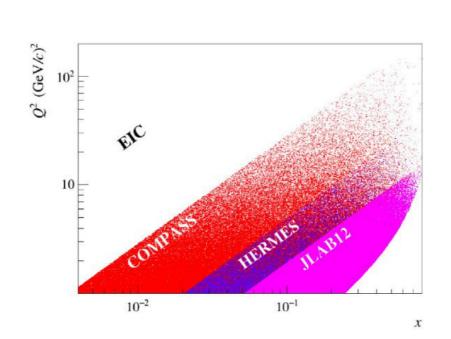


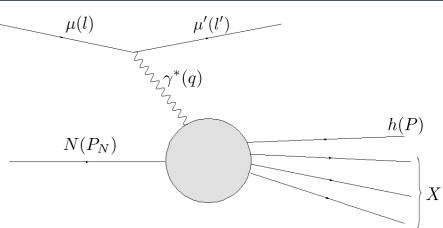

COMPASS experiment

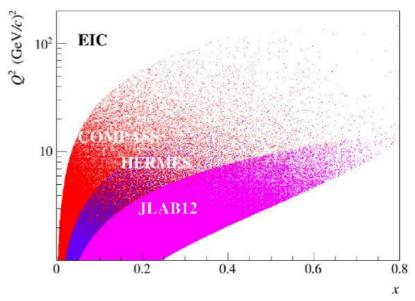
Wide physics programme:

- Hadron spectroscopy
- Chiral dynamics
- Generalized parton distribution functions (GPDs)
- Nuclear structure: SIDIS and Drell-Yan processes

[Compass, arXiv: 2412.19923 [hep-ex], accepted by Phys. Lett. B]


SIDIS



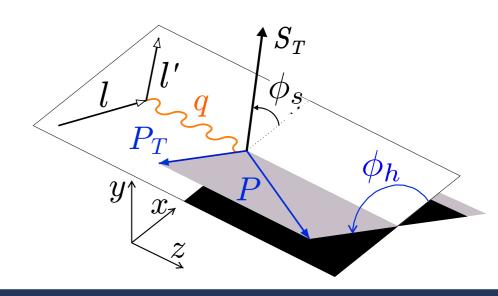

Semi-Inclusive Deep Inelastic Scattering (SIDIS):

$$\mu(l) + N(P_N) \longrightarrow \mu'(l') + h(P) + X$$

- Photon virtuality $Q^2 = -q^2 = -(l-l^\prime)^2$
- Bjorken variable $x = \frac{Q^2}{2P_N \cdot q}$
- $z = \frac{P_N \cdot P}{P_N \cdot q}$
- Inelasticity $y = \frac{q \cdot P_N}{l \cdot P_N}$

SIDIS

Single hadron production cross section for beam with longitudinal polarization λ and target polarization S_L , S_T :


$$\begin{split} \frac{d\sigma}{dxdydzdP_T^2d\phi_hd\phi_s} &= \left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\epsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\epsilon F_{UU,L}\right) \\ &\left\{1+\sqrt{2\epsilon(1+\epsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \epsilon A_{UU}^{\cos(2\phi_h)}\cos(2\phi_h) + \lambda\sqrt{2\epsilon(1-\epsilon)}A_{LU}^{\sin\phi_h}\sin\phi_h \right. \qquad \qquad \gamma = 2\frac{M_X}{Q} \quad \epsilon = \frac{1-y-\frac{1}{4}\gamma^2y^2}{1-y+\frac{1}{2}y^2+\frac{1}{4}\gamma^2y^2} \\ &+ S_L\left[\sqrt{2\epsilon(1+\epsilon)}A_{UL}^{\sin\phi_h}\sin\phi_h + \epsilon A_{UL}^{\sin2\phi_h}\sin2\phi_h\right] \\ &+ S_L\lambda\left[\sqrt{1-\epsilon^2}A_{LL} + \sqrt{2\epsilon(1-\epsilon)}A_{LL}^{\cos(\phi_h)}\cos(\phi_h)\right] \\ &+ S_T\left[A_{UT}^{\sin(\phi_h-\phi_s)}\sin(\phi_h-\phi_s) + \epsilon A_{UT}^{\sin(\phi_h+\phi_s)}\sin(\phi_h+\phi_s) + \epsilon A_{UT}^{\sin(3\phi_h-\phi_s)}\sin(3\phi_h-\phi_s) + \sqrt{2\epsilon(1+\epsilon)}A_{UT}^{\sin(\phi_s)}\sin(\phi_s) + \sqrt{2\epsilon(1+\epsilon)}A_{UT}^{\sin(2\phi_h-\phi_s)}\sin(2\phi_h-\phi_s)\right] \\ &+ S_T\lambda\left[\sqrt{1-\epsilon^2}A_{LT}^{\cos(\phi_h-\phi_s)}\cos(\phi_h-\phi_s) + \sqrt{2\epsilon(1-\epsilon)}A_{LT}^{\cos\phi_s}\cos\phi_s + \sqrt{2\epsilon(1-\epsilon)}A_{LT}^{\cos(2\phi_h-\phi_s)}\cos(2\phi_h-\phi_s)\right]\right\} \end{split}$$

Amplitudes A_{XY}, *azimuthal asymmetries*

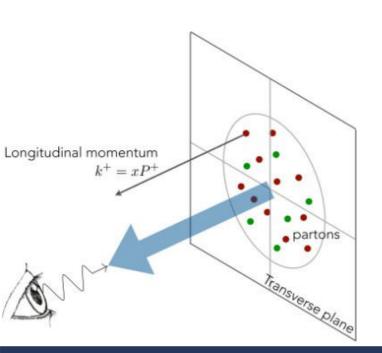
- Beam polarization X
- Target polarization Y
- Azimuthal modulation on angles ϕ_s , ϕ_h

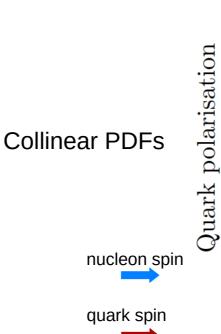
Ratios of **structure functions** to Fulu

$$A_{XY}^{f(\phi_h,\phi_s)}(x,z,P_T^2,Q^2) \equiv \frac{F_{XY}^{f(\phi_h,\phi_s)}}{F_{IIII}}$$

Structure functions: collinear formalism

DIS regime:


Integrating over hadron transverse momentum

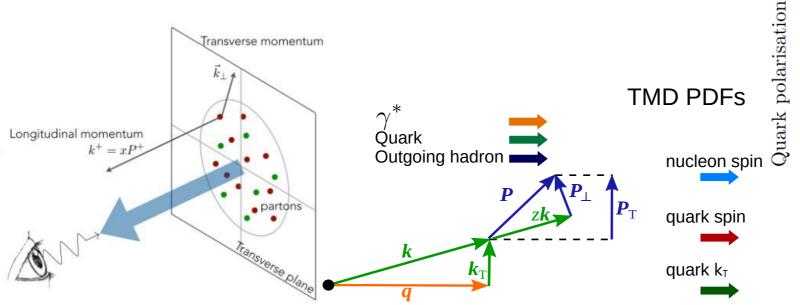

$$F_{UU,T} = x \sum_{q} e_q^2 f_1^q(x) D_1^q(z)$$

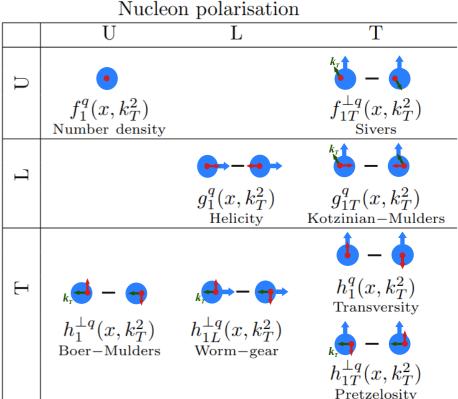

$$F_{UU,L} = 0$$

$$F_{LL} = x \sum_{q} e_q^2 g_1^q(x) D_1^q(z)$$

- Parton distribution functions (PDFs)
- Fragmentation functions (FFs)

Structure functions: TMD formalism


DIS regime:


$$q_T \ll Q$$

Transverse momentum dependent (TMD) factorisation

$$F = \mathcal{C}[\omega f D] = x \sum_{q} e_q^2 \int d^2 k_T d^2 P_{\perp} \delta^{(2)}(z k_T + P_{\perp} - P_T) w(k_T, P_{\perp}) f^q(x, k_T, Q^2) D^{q \to h}(z, P_{\perp}, Q^2)$$

Transverse momentum dependent (TMD) PDFs and FFs

Unpolarized asymmetries

Three asymmetries related to the unpolarized target

$$\begin{split} \frac{d\sigma}{dxdydzdP_T^2d\phi_h d\phi_s} &= \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] (F_{UU,T} + \epsilon F_{UU,L}) \\ &\left\{1 + \sqrt{2\epsilon(1+\epsilon)} A_{UU}^{\cos\phi_h} \cos\phi_h + (\epsilon A_{UU}^{\cos(2\phi_h)}) \cos(2\phi_h) + \lambda \sqrt{2\epsilon(1-\epsilon)} A_{LU}^{\sin\phi_h} \sin\phi_h \\ &+ S_L \left[\sqrt{2\epsilon(1+\epsilon)} A_{UL}^{\sin\phi_h} \sin\phi_h + \epsilon A_{UL}^{\sin(2\phi_h)} \sin2\phi_h\right] \\ &+ S_L \lambda \left[\sqrt{1-\epsilon^2} A_{LL} + \sqrt{2\epsilon(1-\epsilon)} A_{LL}^{\cos(\phi_h)} \cos(\phi_h)\right] \\ &+ S_T \left[A_{UT}^{\sin(\phi_h-\phi_s)} \sin(\phi_h-\phi_s) + \epsilon A_{UT}^{\sin(\phi_h+\phi_s)} \sin(\phi_h+\phi_s) + \epsilon A_{UT}^{\sin(3\phi_h-\phi_s)} \sin(3\phi_h-\phi_s) + \sqrt{2\epsilon(1+\epsilon)} A_{UT}^{\sin(\phi_s)} \sin(\phi_s) + \sqrt{2\epsilon(1+\epsilon)} A_{UT}^{\sin(2\phi_h-\phi_s)} \sin(2\phi_h-\phi_s)\right] \\ &+ S_T \lambda \left[\sqrt{1-\epsilon^2} A_{LT}^{\cos(\phi_h-\phi_s)} \cos(\phi_h-\phi_s) + \sqrt{2\epsilon(1-\epsilon)} A_{LT}^{\cos\phi_s} \cos\phi_s + \sqrt{2\epsilon(1-\epsilon)} A_{LT}^{\cos(2\phi_h-\phi_s)} \cos(2\phi_h-\phi_s)\right] \right\} \end{split}$$

At order 1/Q using Wandzura-Wilczek type approximation the structure functions at twist 3 are simplified to:

$$F_{UU,T} = \mathcal{C}\left[f_1 D_1\right]$$

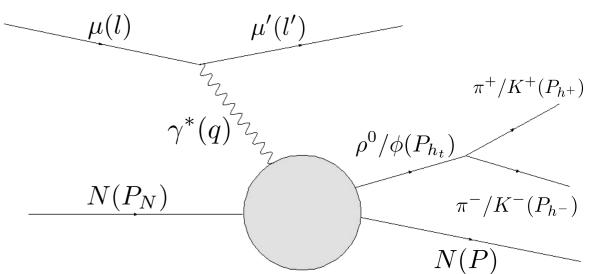
$$F_{UU,L} = 0$$

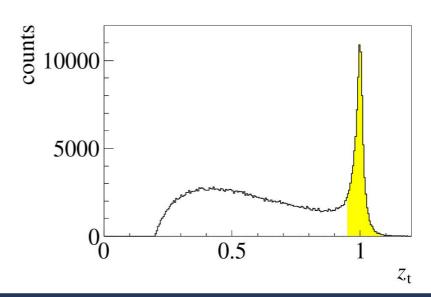
$$F_{UU}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{h} \cdot k_T}{M} f_1 D_1 - \frac{\hat{(\hat{h} \cdot P_\perp)} k_T^2}{M^2 M_h} h_1^\perp H_1^\perp + \dots \right] \qquad F_{UU}^{\cos 2\phi_h} = \mathcal{C} \left[-\frac{2(\hat{h} \cdot k_T)(\hat{h} \cdot P_\perp) - k_T \cdot P_\perp}{M M_h} h_1^\perp H_1^\perp \right] \qquad F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[\dots \right]$$

DVM background

Background from *Diffractive Vector Mesons*

$$\rho \to \pi^+ \ \pi^- \qquad \phi \to k^+ \ k^-$$


• Both hadrons of the pair reconstructed: rejected imposing


$$z_t = z_{h^+} + z_{h^-} < 0.95$$

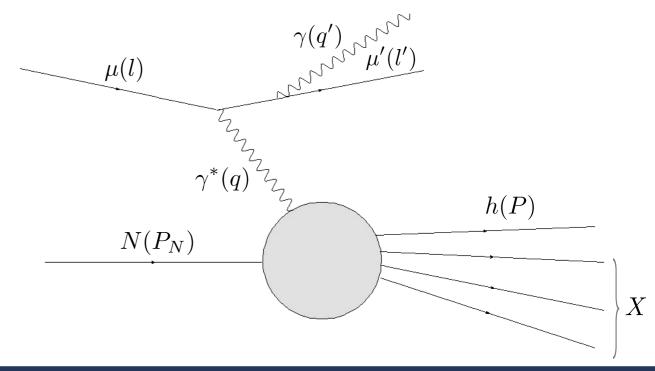
[Nucl. Phys. B 956 (2020) 115039]

 Only one hadron of the pair reconstructed: subtracted using a HEPGEN MC

[A. Sandacz, P. Sznajder, arXiv:1207.0333]

Radiative corrections

Real photon emission causes a shift in kinematics

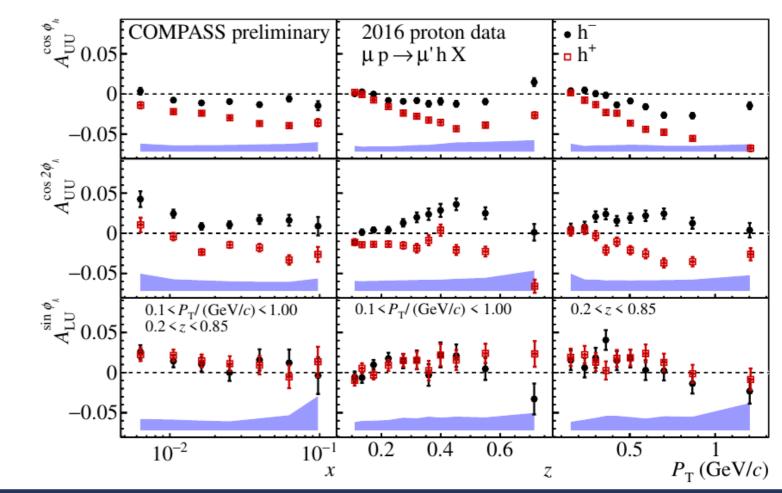

Radiative corrections

 Till 2024: Inclusive correction based on TERAD.

[A.A. Akhundov et al., Fortschr. Phys. 44 (1996) 373]

• New approach: Based on DJANGOH MC, corrects ϕ_h and P_T distributions.

[COMPASS, Phys. Rev. D 112 (2025) 1, 012002]


Unpolarized asymmetries

- Previously studied on isoscalar target [COMPASS, Nucl. Phys. B 886 (2014)]
- Ongoing work on 2016 data [V. Benesová, PoS DIS2024 (2025), 223]

 $A_{UU}^{\cos\phi_h}$ and $A_{UU}^{\cos2\phi_h}$ significantly different from 0 with difference between h⁺ h⁻

Suggests presence of Boer-Mulders effect

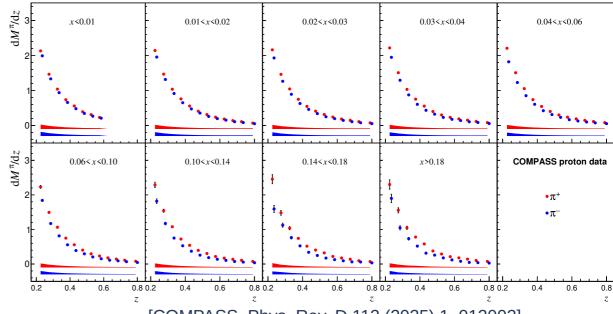
Collinear hadron multiplicities

At Leading Order:

$$\frac{dM^h(x,y,z)}{dz} = \frac{F_{UU}(x,y,z)}{F_2(x,y)} \propto \sum_q e_q^2 f_1^q(x,Q^2) D_1^{q \to h}(z,Q^2)$$

Previously extracted by COMPASS for h^{\pm} , π^{\pm} and K^{\pm} with isoscalar target

[COMPASS, Phys. Lett. B 764 (2017) 001]


[COMPASS, Phys. Lett. B 767 (2017) 133]

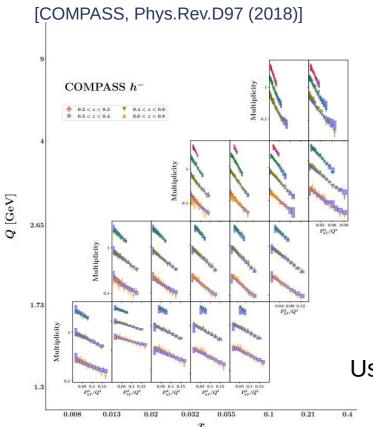
Useful statistics for phenomenology studies

		$h = \pi$			h = K		
Experiment	Ref.	$N_{ m dat}$	$\chi^2/N_{ m dat}$ NLO	$\chi^2/N_{\rm dat}$ NNLO	$N_{ m dat}$	$\chi^2/N_{ m dat}$ NLO	$\chi^2/N_{\rm dat}$ NNLO
HERMES $h^ d$	[38]	2	0.41	0.32	2	0.18	0.13
HERMES h^+ p	[38]	2	0.01	0.02	2	0.05	0.04
HERMES $h^ d$	[38]	2	0.17	0.11	2	0.58	0.48
HERMES h^+ p	[38]	2	0.35	0.32	2	0.56	0.43
COMPASS h^-	[25, 37]	157	0.48	0.55	156	0.74	0.59
COMPASS h^+	[25, 37]	157	0.62	0.72	156	0.76	0.67
Total SIDIS		322	0.47	0.52	320	0.64	0.54
Global data set		699	0.68	0.76	659	0.62	0.55

[MAP, Phys.Lett.B 834 (2022) 137456]

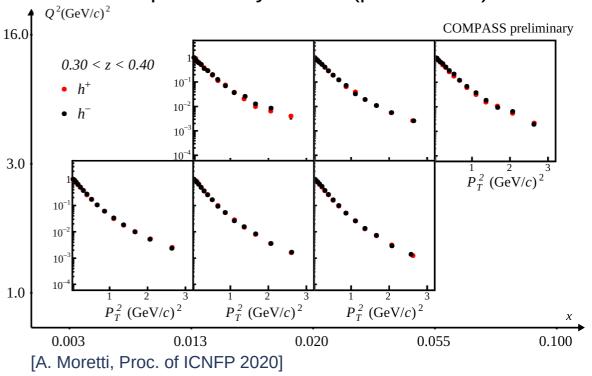
New COMPASS results from 2016 proton target data

[COMPASS, Phys. Rev. D 112 (2025) 1, 012002]


TMD hadron multiplicities

With TMD dependence

$$\frac{dM^h(x,z,P_T,Q^2)}{dz} = \frac{F_{UU}(x,z,P_T,Q^2)}{F_2(x,y)} \propto \mathcal{C}[f_1(x,k_T^2,Q^2)D_1(z,P_\perp^2,Q^2)]$$


Previously on isoscalar target

Used for global fits on TMDs

[MAP, JHEP 08 (2024) 232]

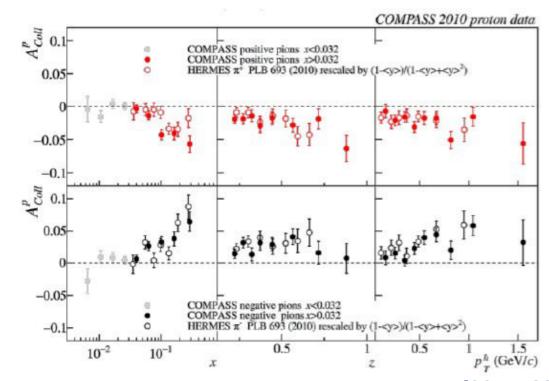
New preliminary results (proton data)

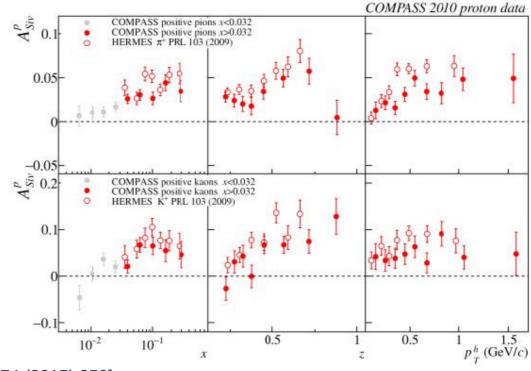
Collins and Sivers asymmetries

$$\begin{split} \frac{d\sigma}{dxdydzdP_T^2d\phi_h d\phi_s} &= \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \epsilon F_{UU,L}\right) \\ &\left\{1 + \sqrt{2\epsilon(1+\epsilon)} A_{UU}^{\cos\phi_h} \cos\phi_h + \epsilon A_{UU}^{\cos(2\phi_h)} \cos(2\phi_h) + \lambda \sqrt{2\epsilon(1-\epsilon)} A_{LU}^{\sin\phi_h} \sin\phi_h \\ &+ S_L \left[\sqrt{2\epsilon(1+\epsilon)} A_{UL}^{\sin\phi_h} \sin\phi_h + \epsilon A_{UL}^{\sin(2\phi_h)} \sin2\phi_h\right] \\ &+ S_L \lambda \left[\sqrt{1-\epsilon^2} A_{LL} + \sqrt{2\epsilon(1-\epsilon)} A_{LL}^{\cos(\phi_h)} \cos(\phi_h)\right] \\ &+ S_T \left[A_{UT}^{\sin(\phi_h-\phi_s)} \sin(\phi_h - \phi_s) + \epsilon A_{UT}^{\sin(\phi_h+\phi_s)} \sin(\phi_h + \phi_s) + \epsilon A_{UT}^{\sin(3\phi_h-\phi_s)} \sin(3\phi_h - \phi_s) + \sqrt{2\epsilon(1+\epsilon)} A_{UT}^{\sin(\phi_s)} \sin(\phi_s) + \sqrt{2\epsilon(1+\epsilon)} A_{UT}^{\sin(2\phi_h-\phi_s)} \sin(2\phi_h - \phi_s)\right] \\ &+ S_T \lambda \left[\sqrt{1-\epsilon^2} A_{LT}^{\cos(\phi_h-\phi_s)} \cos(\phi_h - \phi_s) + \sqrt{2\epsilon(1-\epsilon)} A_{LT}^{\cos\phi_s} \cos\phi_s + \sqrt{2\epsilon(1-\epsilon)} A_{LT}^{\cos(2\phi_h-\phi_s)} \cos(2\phi_h - \phi_s)\right] \right\} \end{split}$$

Collins and Sivers asymmetries dependent on transversity and Sivers TMD PDFs, correspondingly

$$A_{UT}^{\sin(\phi_h + \phi_s)} = \frac{\mathcal{C}\left[-\frac{\tilde{h} \cdot k_T}{M_h} h_1 H_1^{\perp}\right]}{\mathcal{C}\left[f_1 D_1\right]} \qquad A_{UT}^{\sin(\phi_h - \phi_s)} = \frac{\mathcal{C}\left[-\frac{\tilde{h} \cdot P_{\perp}}{M} f_{1T}^{\perp} D_1\right]}{\mathcal{C}\left[f_1 D_1\right]}$$

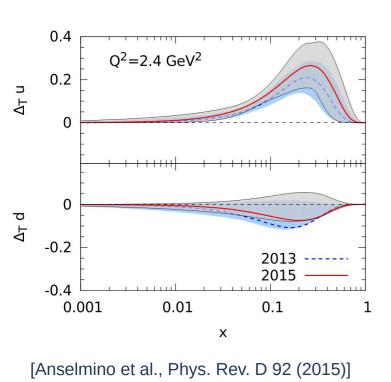

Transverse spin asymmetries on proton

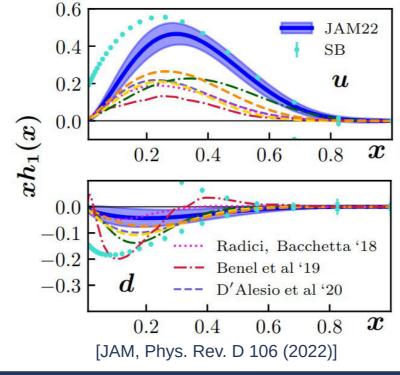

- SIDIS on NH₃ target in 2007,2010
- First measurements by HERMES, lower beam energy and Q²
- Non zero effect for Collins and Sivers asymmetries on p↑
- First evidences confirming TMD approach in QCD

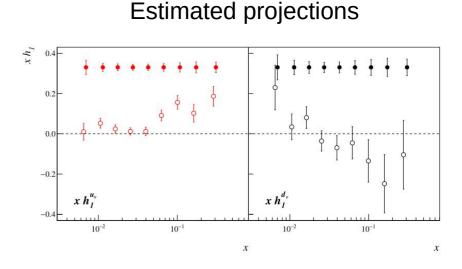
hermes

Compatible results for Collins asymmetry

Smaller Sivers asymmetry at COMPASS

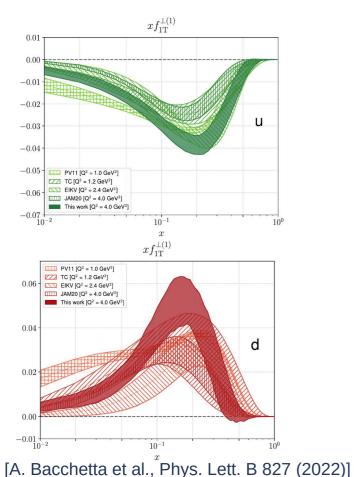

[COMPASS, Phys. Lett. B 774 (2015) 250]


TMD PDF global fits

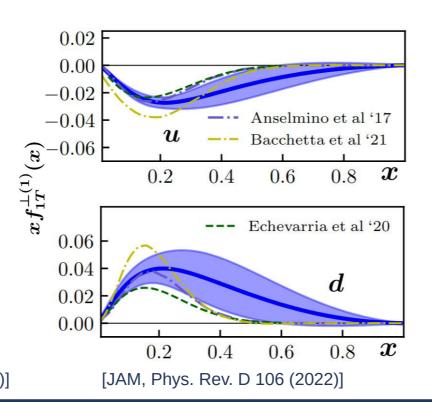


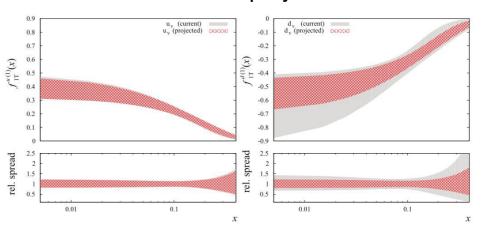
- Fits on data from HERMES, JLab and COMPASS (NH₃ target in 2007,2010 and ⁶LiD target from 2002-2004, unique deuteron data)

Transversity TMD PDF



[CERN-SPSC-2017-034]

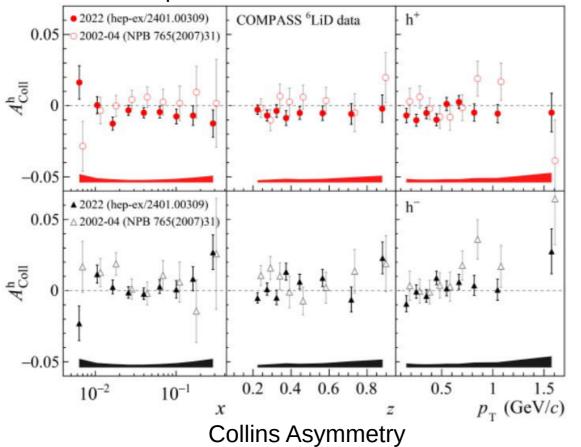

TMD PDF fits

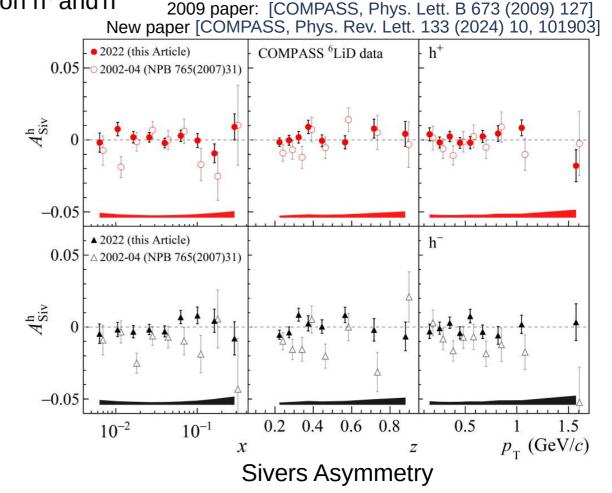

- Global fits on data from HERMES, JLab, Belle and COMPASS (NH₃ target in 2007,2010 and ⁶LiD target from 2002-2004, unique deuteron data)

First moment of Sivers PDF

Estimated projections

[CERN-SPSC-2017-034]

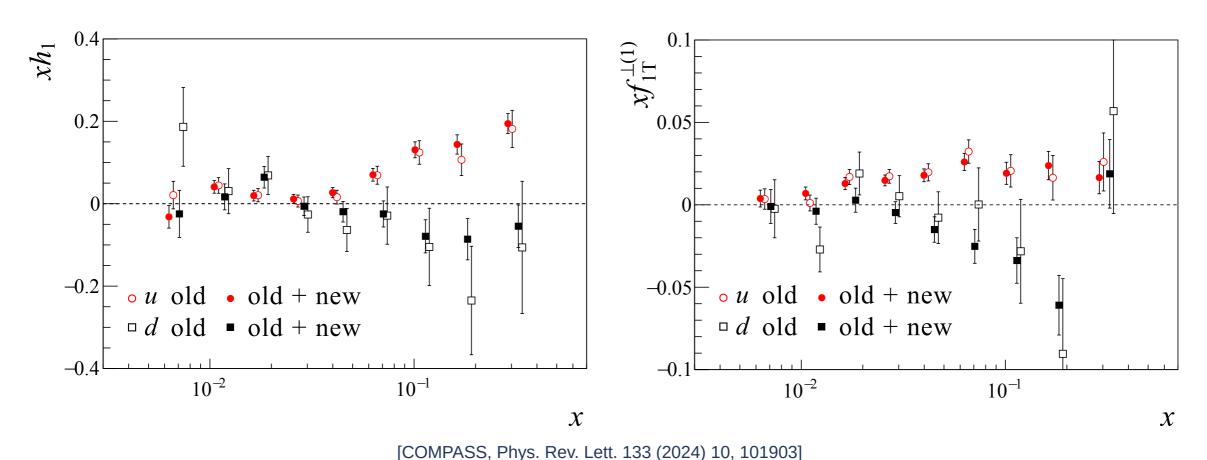

Transverse deuteron spin asymmetries



SIDIS scattering on ⁶LiD target in 2002-2004 and 2022 — deuteron asymmetries

- Consistent results, smaller uncertainties in 2022
- Collins: hint of signal at large x with opposite dependence on h⁺ and h⁻

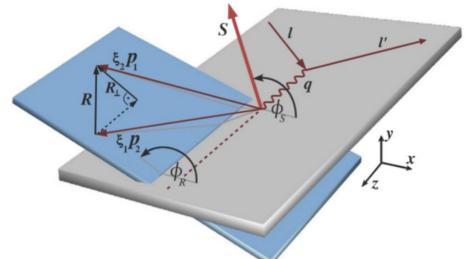
Sivers: compatible with zero



Transverse spin asymmetries: u and d quarks

Extraction of transversity and Sivers TMDs for up and down quarks through p and d asymmetries, at leading twist

Dihadron transverse spin asymmetry



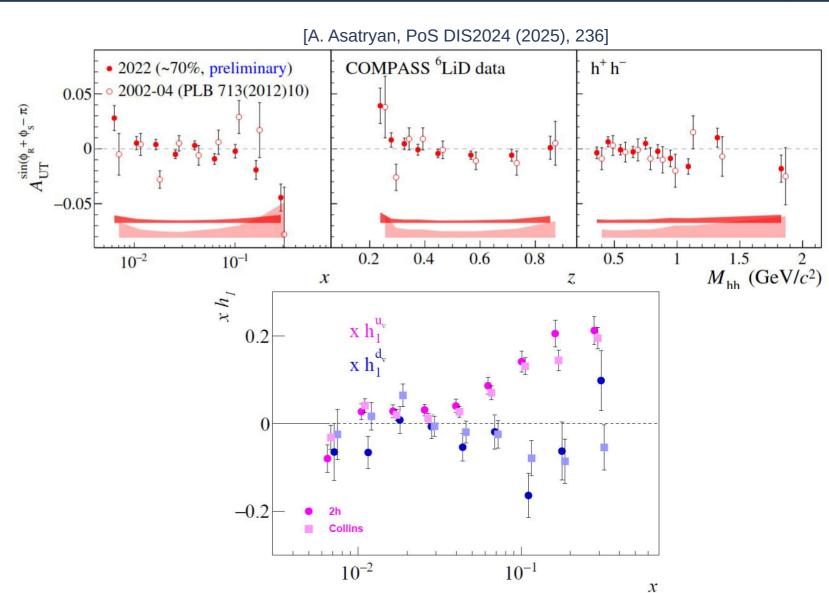
Through dihadron production transversity PDF can be extracted in a collinear way [M. Radici et al., Phys. Rev. D 65 (2002)]

$$\mu(l) + N(P) \longrightarrow \mu'(l') + h_1(P_{h1}) + h_2(P_{h2}) + X$$

Cross section dependent on transversity PDF and a dihadron FF:

$$\frac{d^{7}\sigma}{d\cos\theta dM_{hh}d\phi_{R}dzdxdyd\phi_{s}} = \frac{\alpha^{2}}{2\phi Q^{2}y} \left((1 - y + \frac{y^{2}}{2}) \sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1q}(z, M_{hh}^{2}, \cos\theta) + S_{\perp}(1 - y) \underbrace{\sum_{q} e_{q}^{2} \frac{|P_{h1} - P_{h2}|}{2M_{hh}} \sin\left(\frac{q}{h_{1}}(x)H_{1q}^{2}(z, M_{hh}^{2}, \cos\theta) \sin(\phi_{R} + \phi_{S} - \pi)}_{A_{UT}^{\sin(\phi_{R} + \phi_{S} - \pi)}} \right) \right)$$

Dihadron transverse spin asymmetry

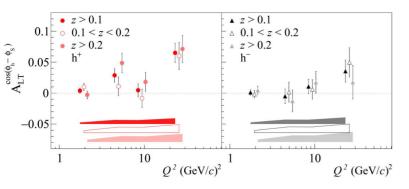

New 2022 extraction on deuteron

Comparison with previous measurement of 2002-2004

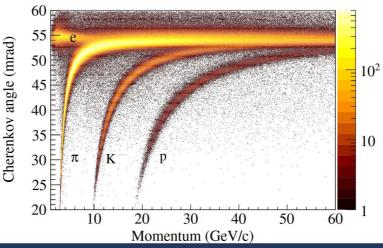
[COMPASS, Phys. Lett. B 713(2012)10]

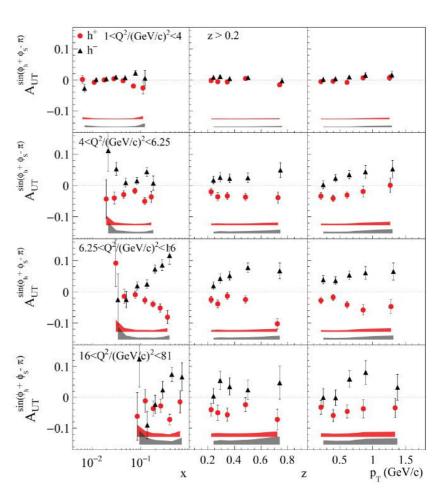
Comparison of transversity PDF from COLLINS extractions

[A. Martin, IWHSS and QCD-N (2025)]



Further potential of 2022 data




Many other studies planned:

- Inclusion of hadron identification using RICH
- Other unpolarized and transverse spin asymmetry measurements
- Multi dimensional dependence of asymmetries and multiplicities
- J/ ψ asymmetries and high P_T hadrons (sensistive to gluon TMDs)
- A polarisation and polarisation transfer
- P_T weighted transverse spin asymmetries
- Many other measurements ongoing/planned

Kotzinian–Mulders asymmetry from proton↑ [COMPASS, Phys. Lett. B 770 (2017) 138]

 Q^2 dependence of Collins asymmetry:

[COMPASS, Phys. Lett. B 770 (2017) 138]

Conclusion

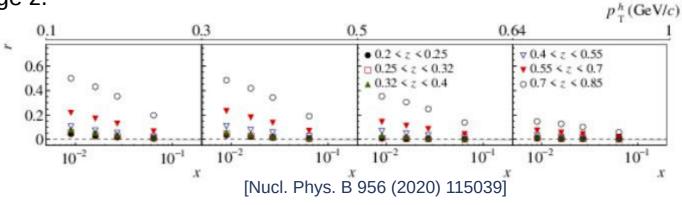
Many new results:

From 2016, unpolarized target

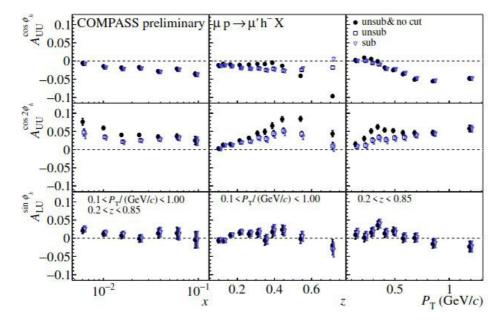
- Collinear multiplicitites [Nucl. Phys. B 956 (2020) 115039]
- TMD multiplicities
- Azimuthal asymmetries
- P_T distributions

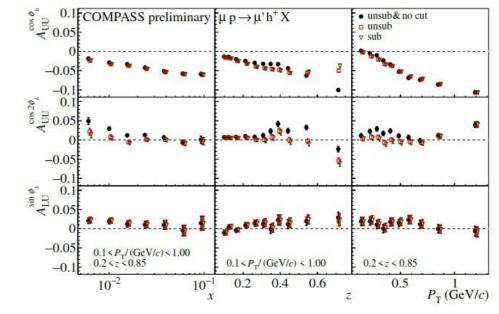
From 2022, transversely polarized deuteron target

- Collins and Sivers asymmetries for charged hadrons [COMPASS, Phys. Rev. Lett. 133 (2024) 10, 101903]
- Dihadron transverse spin asymmetries
- Many other ongoing measurements


Backup

DVM background




Significant effect of DVM at small x and P_T and at large z.

• Ratio of vector mesons in relation to x, in bins of z at a set P_{T}

 Difference in asymmetry extraction before and after DVM correction for h⁺ and h⁻

[V. Benesová, PoS DIS2024 (2025), 223]

Transversity extraction

From the proton and the deuteron Collins asymmetries the u and d quark transversity functions are extracted as

$$xh_1^u = \frac{1}{5} \frac{1}{\tilde{\alpha}_P^h (1 - \tilde{\alpha})} \left[(xf_p^+ A_p^+ - xf_p^- A_p^-) + \frac{1}{3} (xf_d^+ A_d^+ - xf_d^- A_d^-) \right]$$

$$xh_1^d = \frac{1}{5} \frac{1}{\tilde{\alpha}_P^h (1 - \tilde{\alpha})} \left[\frac{4}{3} (xf_d^+ A_d^+ - xf_d^- A_d^-) - (xf_p^+ A_p^+ - xf_p^- A_p^-) \right]$$

$$xh_1^{\bar{u}} = \frac{1}{15} \frac{1}{\tilde{\alpha}_P^h (1 - \tilde{\alpha}^2)} \left[(1 - 4\tilde{\alpha})xf_p^+ A_p^+ + (4 - \tilde{\alpha})xf_p^- A_p^- - xf_d^+ A_d^+ + \tilde{\alpha}xf_d^- A_d^-) \right]$$

$$xh_1^{\bar{d}} = \frac{1}{15} \frac{1}{\tilde{\alpha}_P^h (1 - \tilde{\alpha}^2)} \left[(4\tilde{\alpha} - 1)xf_p^+ A_p^+ - (4 - \tilde{\alpha})xf_p^- A_p^- - 4\tilde{\alpha}xf_d^+ A_d^+ + 4xf_d^- A_d^-) \right]$$

where the two alpha terms are constants and f are functions of PDFs.

[Phys. Rev. D 91, 014034 (2015)]

Sivers extraction

From the proton and the deuteron Sivers asymmetries the u and d quark sivers functions are extracted as

$$xf_{1T}^{\perp(1)u} = \frac{1}{5G\rho(1-\beta^{(1)})} \left[(xf_p^+ A_p^+ - xf_p^- A_p^-) + \frac{1}{3} (xf_d^+ A_d^+ - xf_d^- A_d^-) \right]$$

$$xf_{1T}^{\perp(1)d} = \frac{1}{5G\rho(1-\beta^{(1)})} \left[\frac{4}{3} (xf_d^+ A_d^+ - xf_d^- A_d^-) - (xf_p^+ A_p^+ - xf_p^- A_p^-) \right]$$

$$xf_{1T}^{\perp(1)\bar{u}} - xf_{1T}^{\perp(1)\bar{d}} = \frac{1}{15G\rho(1-\beta^{(1)}2)} \left[2(1-4\beta^{(1)})xf_p^+ A_p^+ + 2(4-\beta^{(1)})xf_p^- A_p^- - (1-4\beta^{(1)})xf_d^+ A_d^+ - (4-\beta^{(1)})xf_d^- A_d^- \right]$$

where G, ρ and β are constants and f are functions of PDFs.

[Phys. Rev. D 95, 094024 (2017)]