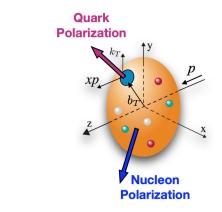


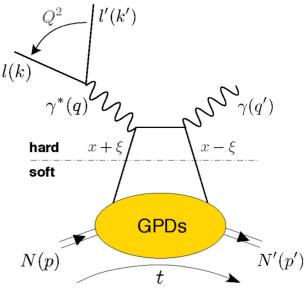
Neutron DVCS Cross-Section Extraction at the CLAS12 Experiment

Li XU

EuNPC2025

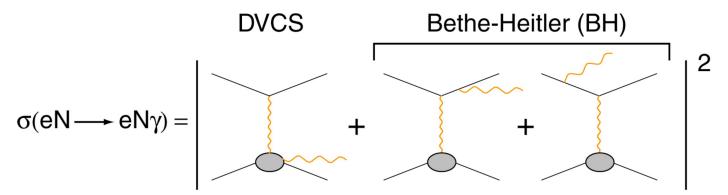
Sep 22, 2025



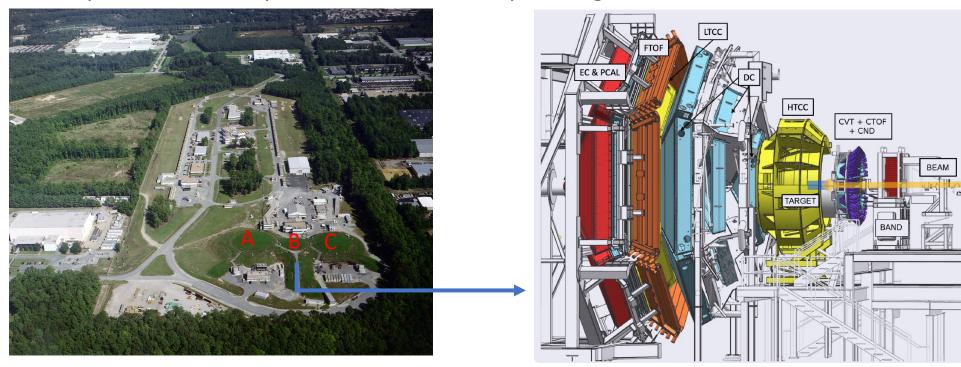

Outline

- Motivation
- CLAS12 experiment
- Event selection
- Backgournd subtraction
- Cross-section extraction
- Preliminary results
- Summary

Motivation

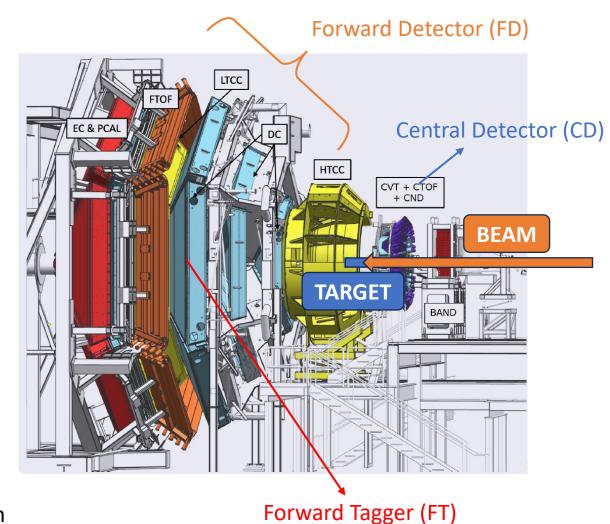

- Understanding the internal structure of nucleons remains one of the important challenges in hadronic physics
- The formalism of Generalized Parton Distributions (GPDs) provides a universal description of the partonic structure of the nucleon
 - Relate transverse position of partons to their longitudinal momentum
 - Give access to the angular momentum of quarks and gluons, the missing ingredient for understanding the nucleon spin composition
- The Deeply Virtual Compton Scattering (DVCS) is one of the cleanest channels to access GPDs
- For quark-helicity-conserving processes, the soft structure of the nucleon is parametrized by 4 GPDs for each quark flavor
 - Unpolarized GPDs H, E and polarized GPDs \widetilde{H} , \widetilde{E}
 - H and \widetilde{H} conserve the spin of the nucleon
 - E and \tilde{E} correspond to a nucleon-spin flip

DVCS process


Motivation

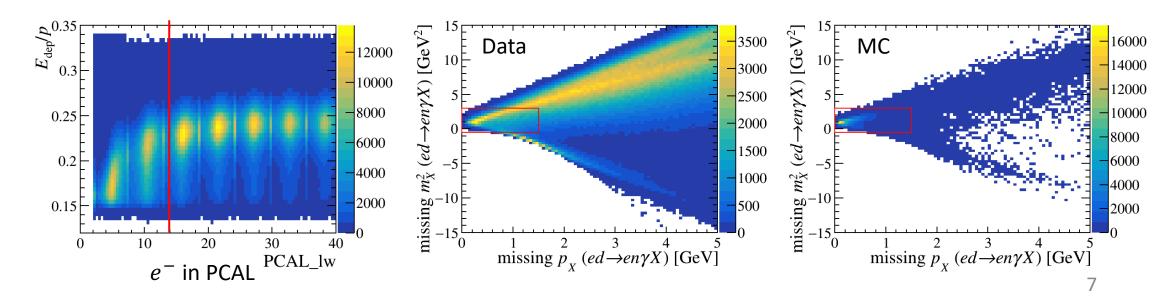
- DVCS shares the same final state with the Bethe-Heitler (BH) process
 - BH process: a real photon is emitted by either the incoming or the scattered electron
- DVCS information can be extracted from the DVCS/BH interference term
- DVCS observables are linked to GPDs via the complex-valued functions: Compton Form Factors (CFFs)
 - CFFs $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$ correspond to GPDs $H, E, \widetilde{H}, \widetilde{E}$
- The measurement of DVCS cross section from the neutron (nDVCS) can provide unique information on GPDs
 - GPD E is largely unknown so far
 - The unpolarized cross section of nDVCS is sensitive mainly to the real CFF of E
 - The polarized cross-section difference of nDVCS is sensitive to the imaginary CFF of E

CEBAF and CLAS12 at Jefferson Laboratory

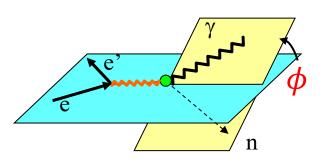

- Continuous Electron Beam Accelerator Facility (CEBAF)
 - Up to 12 GeV electrons
 - Hall B: CLAS12 detector
 - Ideal platform to study GPDs in the valence quark region

Hall B: CLAS12 detector

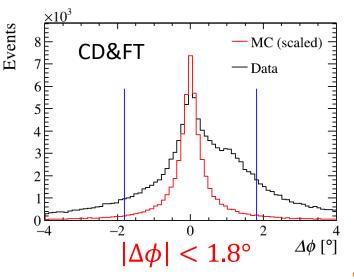
CLAS12 detector and Data sample


- CLAS12 detector
 - Forward Detector (FD)
 - Full coverage in polar angle $5^{\circ} < \theta < 35^{\circ}$
 - Forward Tagger (FT)
 - Detect electrons and photons at $2^{\circ} < \theta < 5^{\circ}$
 - Central Detector (CD)
 - Central Vertex Tracker (CVT)
 - Central Time-of-Flight (CTOF) Detector
 - Central Neutron Detector (CND)
- Run Group B (RGB) Data
 - Collected in 2019 spring and 2020 spring (inbending)
 - 10.6/10.4/10.2 GeV electron beam
 - With an average polarization of 86%
 - Scattering off an unpolarized liquid deuterium target of 5 cm length

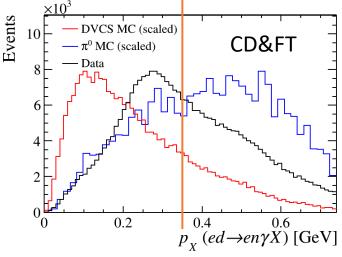
Select nDVCS data


- Select eny final states
 - $p_e > 1 \text{ GeV}$, $p_n > 0.35 \text{ GeV}$, $p_{\nu} > 2 \text{ GeV}$
 - Fiducial cuts: exclude particles at the detector's edge where MC doesn't accurately reproduce data
- Reaction kinematics: $Q^2 > 1 \text{ GeV}^2$, W > 2 GeV
- Pre-selection on missing m_X^2 and p_X of $ed \rightarrow en\gamma X$
 - Reduce events from other channels

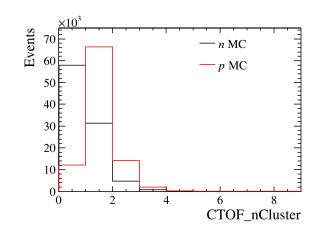
Electron	Photon	Neutron
In FD: PCAL: lv(lw) > 14 DC: edge > 6	In FD: PCAL: $lv(lw) > 14$	In CD: $40^{\circ} < \theta_n < 140^{\circ}$
	In FT: $x^2 + y^2 > 72$	
Pre-selection	$-0.5 < m_X^2 < 3 \text{ GeV}^2$ $0 < p_X < 1.5 \text{ GeV}$	

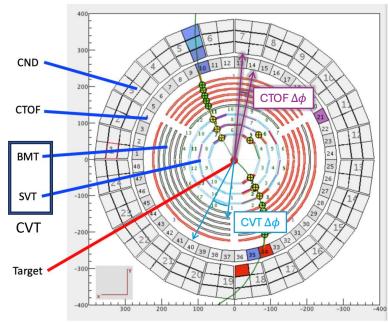


Exclusivity selection


- Exclusivity variables
 - $\Delta \phi$, missing m_X^2 of $en \to en\gamma X$, m_X^2 and p_X of $ed \to en\gamma X$, etc.
- Selection criteria determined from MC
 - Separately for CD&FT (n in CD & γ in FT) and CD&FD (n in CD & γ in FD)

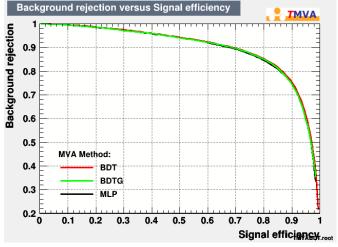
 ϕ : angle between leptonic plane and hadronic plane

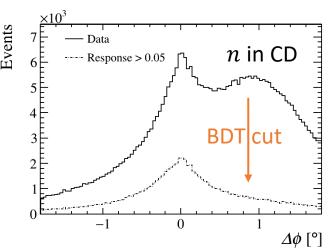

- $\Delta \phi$: difference in ϕ between
 - hadronic plane formed by the neutron and the virtual photon
 - hadronic plane formed by the neutron and the outgoing photon

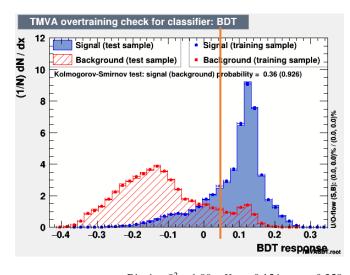


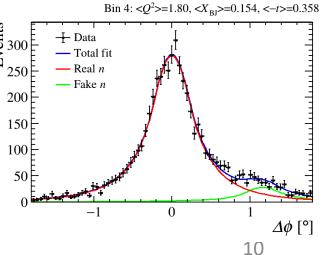
- $p_X < 0.35 \text{ GeV for } ed \rightarrow en\gamma X$
 - The π^0 background $ed \to en\pi^0 (\to \gamma \gamma)$ contributes to larger $p_{\scriptscriptstyle X}$
- > The data and MC distributions are different at this stage
 - \triangleright Mainly due to backgrounds in data: fake neutrons and π^0 contamination

TMVA training to reduce fake neutrons

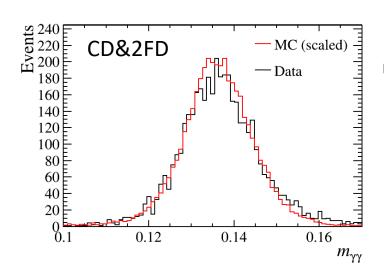

- The selection of neutron is a challenge in this analysis
 - The tracking system (CVT) in CD has dead or low-efficiency regions
 - Protons having no tracks in the tracking system but hits in CND will be misidentified as neutrons
- The TMVA training is used to reduce these fake neutrons
 - Training sample
 - MC with neutron target and proton target
 - Training variables (only info at CTOF, CVT and CND)
 - Number of clusters at CTOF (most distinguishable)
 - Smallest $\Delta heta_{ ext{CTOF}}$ and $\Delta \phi_{ ext{CTOF}}$ between CTOF clusters and reconstructed neutron or proton n(p)
 - Number of tracks at CVT
 - Smallest $\Delta \theta_{
 m CVT}$ and $\Delta \phi_{
 m CVT}$ between CVT tracks and n(p)
 - Number of hits for the n(p) cluster at CTOF and three layers of CND
 - Deposit energy at CTOF and three layers of CND

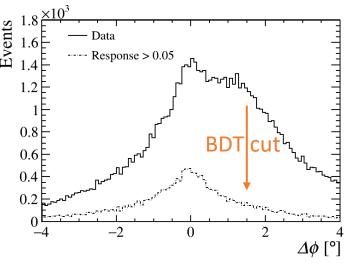





Boosted Decision Tree (BDT) classifier

- Multilayer perceptron (MLP), adaptive and gradient BDT have been trained
- The adaptive BDT is chosen because its performance is slightly better
- Selection:
 - BDT response > 0.05
- $N = 3.61 \times 10^5$ for *n* in CD
- $N = 0.77 \times 10^5$ after the BDT response selection
- The remaining fake neutrons after the BDT cut are subtracted by the $\Delta \phi$ fit in kinematic bins


Study of π^0 production contamination


- $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$ background subtraction:
 - $N_{\text{DVCS}} = N_{\text{en}\gamma} N_{en\pi^0} \times f^{\text{MC}} = N_{\text{en}\gamma} N_{en\pi^0} \times \frac{N_{en\pi^0(1\gamma)}^{\text{MC}}}{N_{en\pi^0(2\gamma)}^{\text{MC}}}$
- Select π^0 production data
 - Select enyy final states
 - $p_e > 1$ GeV, $p_n > 0.35$ GeV, $p_{\gamma} > 0.6$ GeV
 - $0.10 < m_{\gamma\gamma} < 0.17 \text{ GeV}$
 - Apply fiducial cuts and exclusivity cuts
 - Use BDT to reduce fake neutrons
- \triangleright Using events for n in CD to perform the subtraction
 - $\succ \pi^0$ contamination: 4.4%

Partially reconstructed $en\pi^0(1\gamma)$ passing DVCS selection

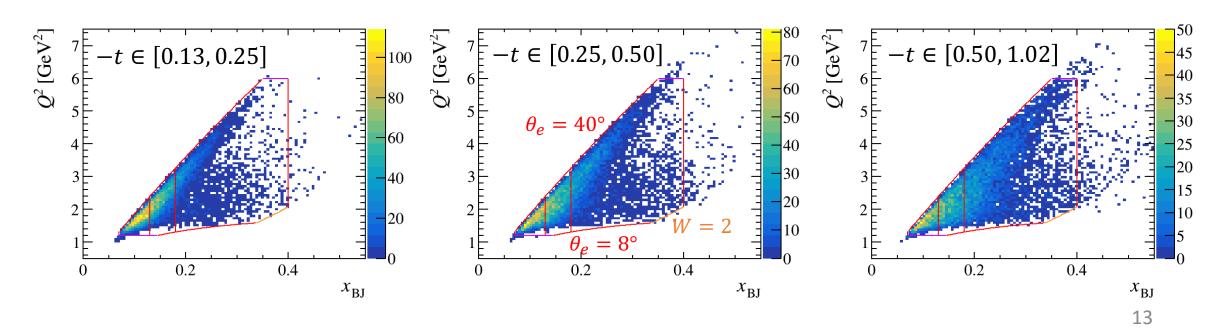
Fully reconstructed $en\pi^0(2\gamma)$ passing π^0 production selection

Extraction of nDVCS cross section

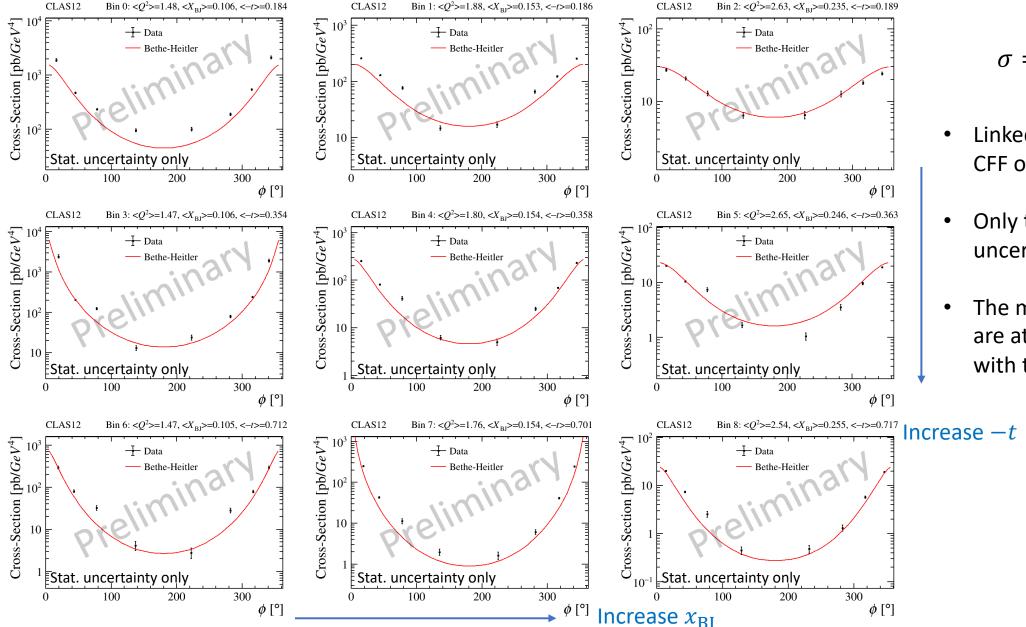
Unpolarized cross section

$$\frac{d^4\sigma_{en\to en\gamma}}{dQ^2dx_{\rm BJ}dtd\phi} = \frac{N_{en\to en\gamma}}{L\cdot\varepsilon_{acc}\cdot V}$$

- $N_{en \to en\gamma}$ is the yield obtained after the background subtraction in each $(Q^2, x_{\rm BI}, -t, \phi)$ bin
- Luminosity $L = 134.1 \times 10^3 \text{ pb}^{-1}$
- Acceptance ε_{acc} determined from MC
 - Neutron detection efficiency is corrected using the RGB $ep \rightarrow en\pi^+$ data
 - BDT cut efficiency is corrected by data (performing the $\Delta\phi$ fit)
- *V* is the bin volume


Polarized cross-section difference

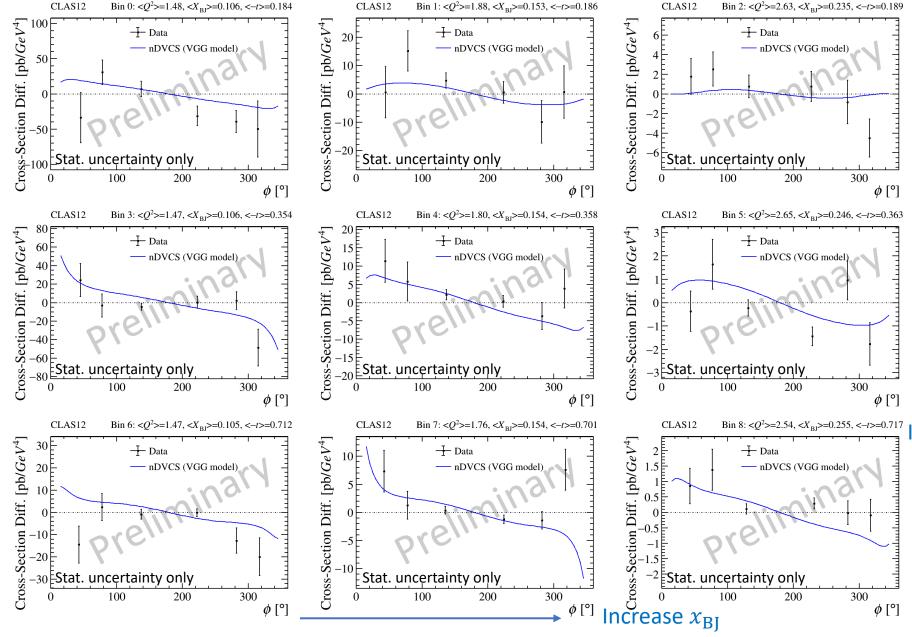
$$\begin{split} \frac{d^4 \vec{\sigma}_{en \to en\gamma}}{dQ^2 dx_{\rm BJ} dt d\phi} - \frac{d^4 \vec{\sigma}_{en \to en\gamma}}{dQ^2 dx_{\rm BJ} dt d\phi} \\ = \frac{N_+ - N_-}{L_{+(-)} \cdot P \cdot \varepsilon_{acc} \cdot V} \end{split}$$


- N_{+} is the yield for positive beam helicity
- N_{_} is the yield for negative beam helicity
- Luminosity $L_{+(-)} = 64.5 \times 10^3 \text{ pb}^{-1}$
- Beam polarization P=86%

Binning scheme

- nDVCS cross section is extracted as a function of ϕ in $(Q^2, x_{\rm BJ}, -t)$ bins
- 3 bins for -t: [0.13, 0.25], [0.25, 0.50], [0.50, 1.02] GeV²
- 3 bins for (Q^2, x_{BJ})
 - $1.2 < Q^2 < 6.0 \; {\rm GeV^2}$, $8^{\circ} < \theta_e < 40^{\circ}$, $W > 2 \; {\rm GeV}$
 - x_{BI} bins: [0.07, 0.13], [0.13, 0.18], [0.18, 0.40]

Unpolarized cross section



$$\sigma = \frac{N_{en \to en\gamma}}{L \cdot \varepsilon_{acc} \cdot V}$$

- Linked mainly to the real CFF of E
- Only the statistical uncertainty is presented
- The measured results are at the same level with the BH calculations

14

Polarized cross-section difference

$$\Delta \sigma = \frac{N_{+} - N_{-}}{L_{+(-)} \cdot P \cdot \varepsilon_{\rm acc} \cdot V}$$

- Linked to the imaginary CFF of E
- Only the statistical uncertainty is presented
- nDVCS predictions: VGG model with particular parameters $J_u = 0.3$ and $J_d = 0.1$

Increase -t

 The measured results are consistent with the predictions given the large statistical uncertainties

Summary

- The measurement of nDVCS cross section can provide unique information on GPDs
- The nDVCS cross section is measured at the CLAS12 experiment, with a \sim 10.4 GeV electron beam scattering off a liquid deuterium target
- Both unpolarized cross section and polarized cross-section difference are extracted
 - The measured unpolarized cross sections are compatible with the BH calculations
 - The polarized cross-section differences are consistent with the VGG model predictions given the large statistical uncertainties
- The systematic uncertainties are still under study, and the analysis will be completed soon

Thank you!