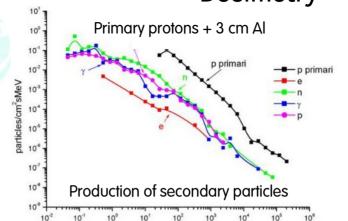
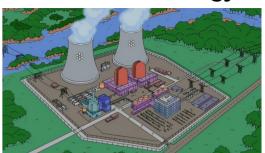


Re-TOF: A novel detector for the measurement of the fission cross section induced by high energy neutrons

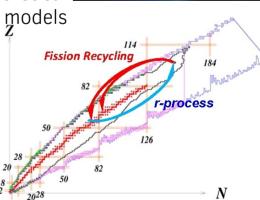
A. Manna, R. Zarrella, L. Audouin, F. Garcia-Infantes, C. Massimi, A. Mengoni, P. Morfouace, R. Mucciola, E. Pirovano, M. Spelta, J. Taieb, L. Tassan-Got, G. Vannini, A. Ventura on behalf of the n_TOF Collaboration

Reaction induced by high energy (> 10 MeV) neutrons...


Collective Single particle degrees of freedom in nuclei


Dynamic effects of the nuclear fission process

Dosimetry


Reactor technology

Nuclear Astrophysics

Reaction induced by high How energy (> 10 MeV) neutrons...

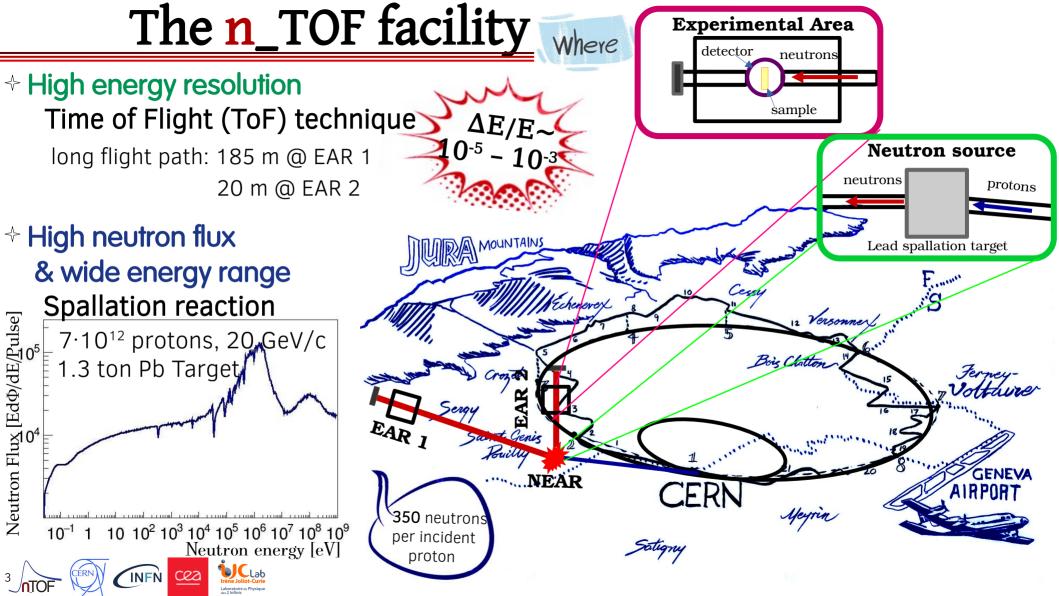
Detectors, able to measure up to GeV, ideally **Neutrons**

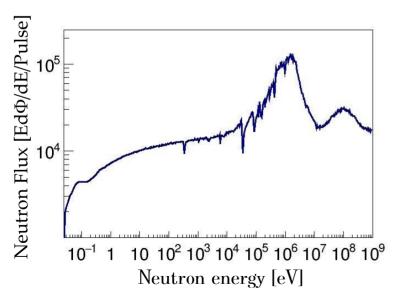
- 1. Reaction to investigate
- 2. Neutron flux

Reaction induced by high energy (> 10 MeV) neutrons...

fission events

Neutrons Detectors, able to measure up to GeV, ideally

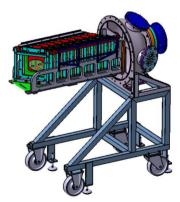

- 1. Reaction to investigate
- 2. Neutron flux


Reaction induced by high energy (> 10 MeV) neutrons...

Neutrons

fission events

Detectors, able to measure up to GeV, ideally



1. Reaction to investigate

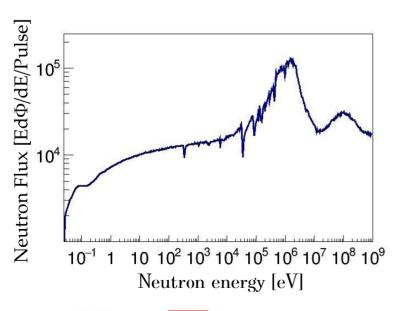
PPAC ensemble:

Detector already used in cross section measurement from thermal energy to GeV

Very good time resolution

Low sensitivity to the γ-flash

Good discrimination between α particles and FFs


<u>High energy neutron</u>

Reaction induced by high energy (> 10 MeV) neutrons...

1. Reaction to investigate $\sigma_f(E_n) = \frac{C(E_n)}{N(\Phi(E_n))\varepsilon}$

fission events

2. Neutron flux

$$\Phi(E_n) = N_{\varphi} \frac{C_{\varphi}(E_n)}{\sigma_{st}(E_n)}$$

Neutron conversion using a Standard cross section

sample

Reaction	Standard range			International Nuclear I
H(n,n)	1 keV - 20 MeV		Newscar	
³He(n,p)	Thermal - 50 keV	Pulsed proton beam	Neutron production target Low E	
⁶ Li(n,t)	Thermal - 1 MeV		neutro	ns
¹⁰ Β(n,α);(n,α ¹ γ)	Thermal - 1 MeV			sar
^{nat} C(n,n)	1keV - 1.8 MeV (w angular distribution)		← Time-of-flight ←	
¹⁹⁷ Au(n,γ)	200keV - 2.5MeV			
²³⁵ U(n,f)	150keV – 200MeV + Integral [7.8 - 11] e\	V		
²³⁸ U(n,f)	2 – 200MeV			
Thermal Neutron Constants: (nth,f), (nth,el), (nth,γ) cross sections for fissile targets ²³³ U, ²³⁵ U, ²³⁹ Pu, ²⁴¹ Pu.				

Evaluation of the Neutron Data Standards, Nuclear Data Sheets (2018)

 $+ {}^{197}Au(n,\gamma)$

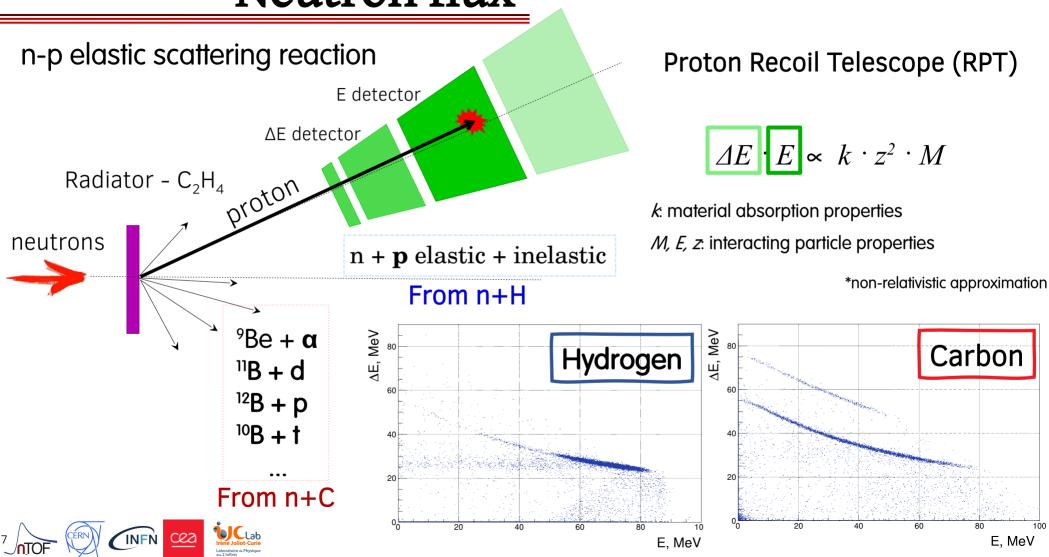
Total nubar 252Cf(sf).

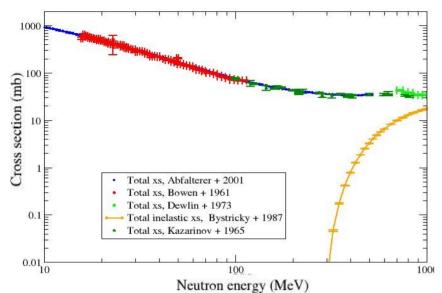
International Nuclear Data Committee

INDC

Reaction	Standard range	Pulsed proton beam	Neutron production target Low	High Energy / Energy neutrons
H(n,n)	1 keV - 20 MeV			rons γ-rays detector
³He(n,p)	Thermal - 50 keV	R.+		sample
⁶ Li(n,t)	Thermal - 1 MeV	Dui	← Time-of-flight	J
¹⁰ Β(n,α);(n,α ¹ γ)	Thermal - 1 MeV	"The neutro	n induced fission	cross sections at high energies
^{nat} C(n,n)	1keV - 1.8 MeV (w angular distribution)		are recogni	ised as a convenient reference."
¹⁹⁷ Αυ(n,γ)	200keV - 2.5MeV		²³⁵ U(n,f)	0.0253 eV - 1 GeV
²³⁵ U(n,f)	150keV – 200MeV + Integral [7.8 - 11] eV		²³⁸ U(n,f)	0.0253 eV - 1 GeV
²³⁸ U(n,f)	2 – 200MeV		²³⁹ Pu(n,f)	0.0253 eV - 300 MeV
		_	²⁰⁹ Bi(n,f)	34 MeV - 1 GeV
	n Constants: (nth,f), (nth,el), (nth,γ) cross sections	S	natPb(n,f)	34 MeV - 1 GeV
for fissile targets ²³³ U, ²³⁵ U, ²³⁹ Pu, ²⁴¹ Pu ,				
7	Total nubar 252Cf(sf). "Our c	analysis indicat	tes that the new abs	solute measurements of the neutron
+ ¹⁹⁷ Au(n,γ) induced fission cross secilate le.g. relative to n-p scattering on Franium , Bismuth,				

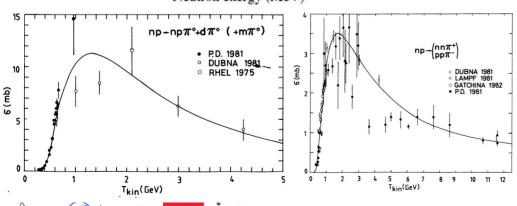
fission reaction standard above 200 MeV..."


Evaluation of the Neutron Data Standards,


Lead and Plutonium have the highest priority in establishing neutron induced

Neutron flux

Neutron flux


From ~290 MeV of neutron energy: opening of the inelastic channel

$$n+p \rightarrow N+N+\pi$$

With a Recoil Proton Telescope:

 calculate the angular distribution considering the boost effect

<i>-</i> 11	non chargy distribution or body				
En, MeV		corr, % - 20°	corr, % - 25°		
	300	0.0	0.0		
	350	0.0	0.0		
	400	0.9	0.0		
	425	3.1	0.8		
	450	6.4	2.7		
	475	11.4	5.9		
	500	18.5	10.7		

C,H

RPT-INFN

Re-TOF detector

TOF-Wall

Sample

n beam

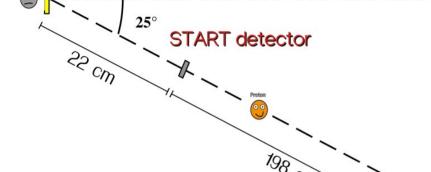
START

Wide neutron energy range: From ~20 MeV to GeV wide range of energy loss

Fix kinematic from the elastic channel

$$E_p = E_n \cos^2 \vartheta.$$

Least-favorable scenario:


1 GeV neutron

TOF-Wall

the nucleons take the full kinetic energy after creation of the pion

 Δt (elastic - inelastic protons) = 440 ps

Time resolution of 300 ps

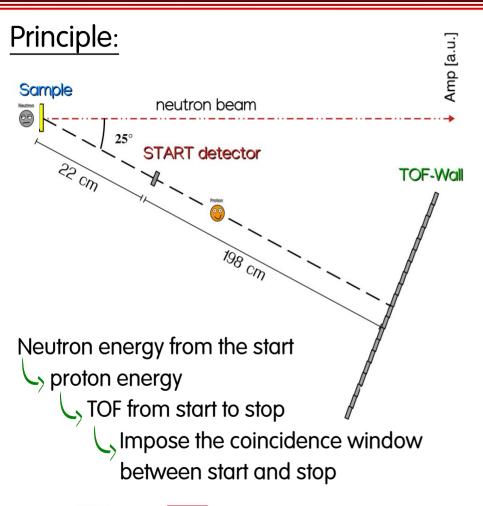
neutron beam

Sample: PE (2/5 mm), C (1/2.5 mm)

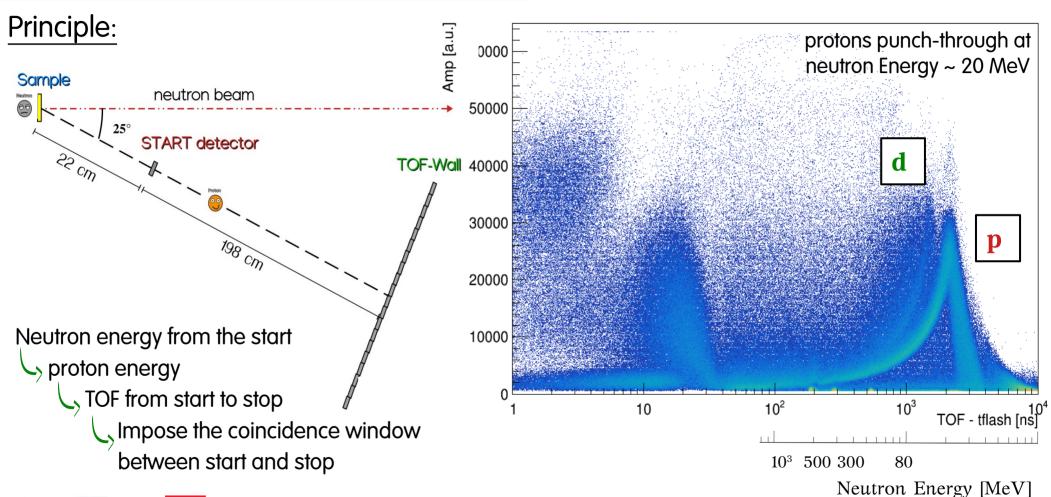
START: 4x4x0.3 cm³ plastic scintillator + PMT

TOF-Wall: 20 66x2x0.3 cm³ plastic scintillator bars + 2 PMTs each (40 channels)

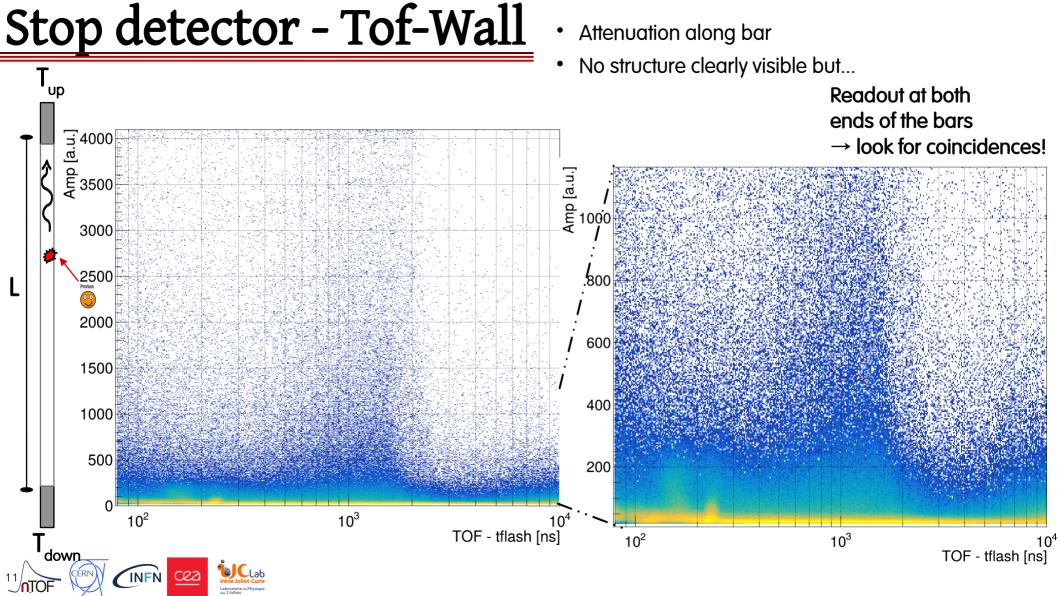
Sample

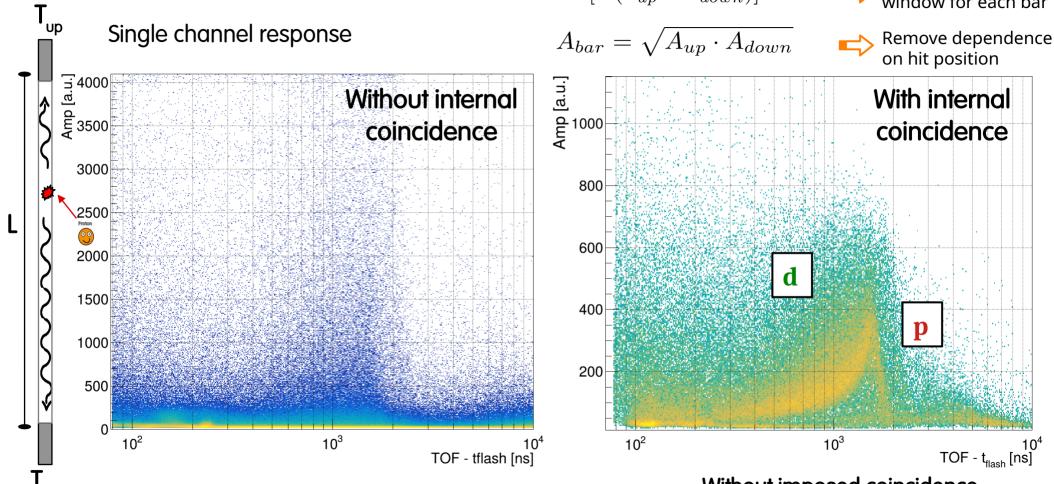


Start detector



Start detector

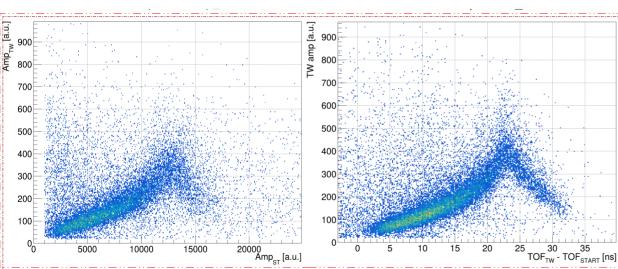


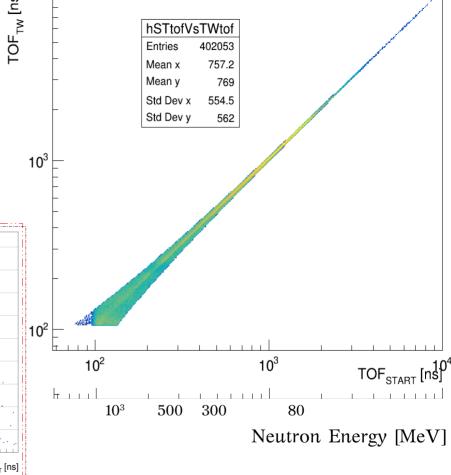


Stop detector - Tof-Wall $\max [\Delta(T_{up} - T_{down})] \pm 5 \text{ ns} \Rightarrow$

Time coincidence window for each bar

down


Without imposed coincidence with start detector!!!

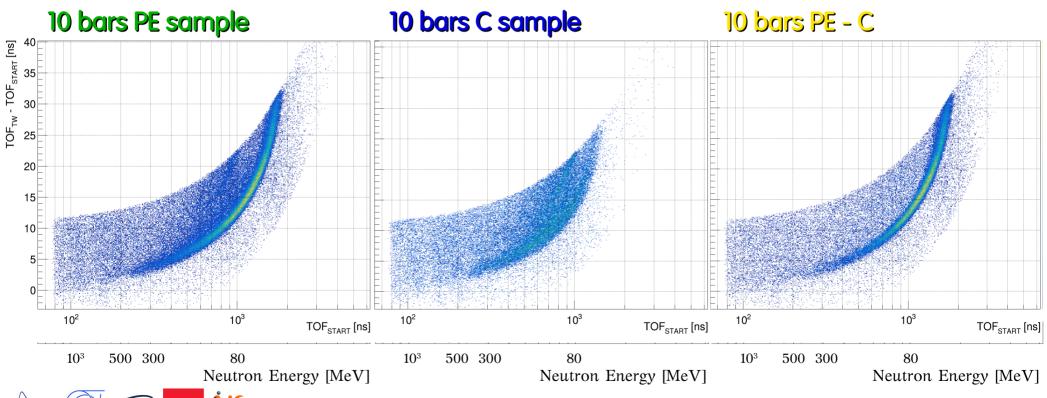

Re-TOF coincidences

Start and Tof-Wall coincidences

Expected TOF of elastic scattered protons

$$(TOF_{TW} - TOF_{ST})_{el} \simeq TOF_{p,el}(E_{p,el})$$

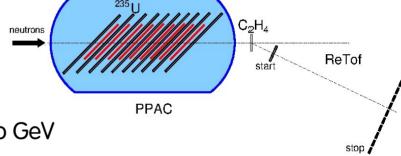
Wide coincidence window (30 ns)



Re-TOF coincidences

Start and Tof-Wall coincidences

Each bar at slightly different angle \rightarrow Angle coverage of 0.5° TOF coincidence window optimization per bar \rightarrow sum of 10 bars


Conclusions

Re-TOF is a neutron flux detector based on the neutron-proton elastic scattering reaction

Optimizing the analysis of the performed test, of the events selection for the high energy region it will be possible to use Re-TOF from 20 MeV to GeV neutron energy.

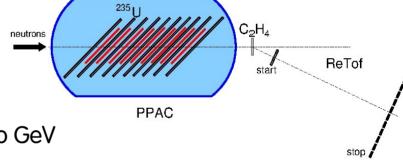
How

@ n TOF in EAR1, thanks to the wide neutron flux, up to GeV

the first measurement of ²³⁵U and ²³⁹Pu fission cross section and fission angular distribution up to GeV of neutron energy will be possible

Measurements already approved by the CERN scientific committee

Conclusions


Thank you for your attention

Re-TOF is a neutron flux detector based on the neutron-proton elastic scattering reaction

Optimizing the analysis of the performed test, of the events selection for the high energy region it will be possible to use Re-TOF from 20 MeV to GeV neutron energy.

How

@ n TOF in EAR1, thanks to the wide neutron flux, up to GeV

the first measurement of ²³⁵U and ²³⁹Pu fission cross section and fission angular distribution up to GeV of neutron energy will be possible

Measurements already approved by the CERN scientific committee