

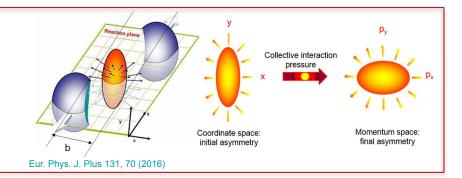
Quarkonium collectivity in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.36 TeV with ALICE

EuNPC2025, 23/09/2025

Rebecca Cerri*
On behalf of the ALICE Collaboration

*University and INFN of Turin, Italy

Anisotropic Flow in heavy-ion collisions



Collective medium behavior studied via particle azimuthal distributions with respect to the reaction plane

In non-central collisions:

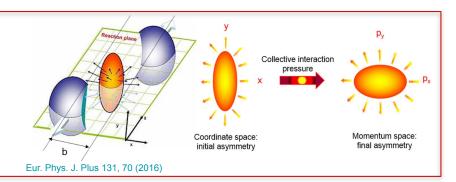
The initial **geometrical anisotropy** translates into a particle momentum anisotropy

Anisotropic flow is described via Fourier expansion of particle distributions

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}\mathbf{p}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{t}}\mathrm{d}p_{\mathrm{t}}\mathrm{d}y} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\varphi - \Psi_{\mathrm{RP}})] \right)$$

the Fourier coefficients:
$$v_n(p_{\rm t},y) = \langle \cos[n(\varphi - \Psi_{\rm RP})] \rangle$$

Anisotropic Flow in heavy-ion collisions



Collective medium behavior studied via particle azimuthal distributions with respect to the reaction plane

In non-central collisions:

 The initial geometrical anisotropy translates into a particle momentum anisotropy

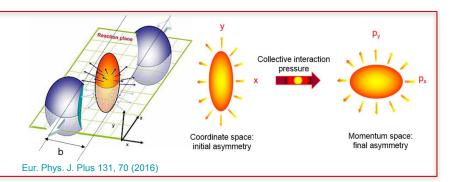
Anisotropic flow is described via Fourier expansion of particle distributions

$$E\frac{\mathrm{d}^3N}{\mathrm{d}^3\mathbf{p}} = \frac{1}{2\pi} \frac{\mathrm{d}^2N}{p_{\mathrm{t}} \mathrm{d}p_{\mathrm{t}} \mathrm{d}y} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_{\mathrm{RP}})] \right)$$
 the Fourier coefficients:
$$v_n(p_{\mathrm{t}}, y) = \left\langle \cos[n(\varphi - \Psi_{\mathrm{RP}})] \right\rangle$$

Final stage flow observables:

- Directed flow (v_1) : sensitive to pre-equilibrium phase
- Elliptic flow (v_2) : early-stage expansion, thermalization
- Triangular flow (v_3) :
 fluctuation in initial geometry

Anisotropic Flow in heavy-ion collisions



Collective medium behavior studied via particle azimuthal distributions with respect to the reaction plane

In non-central collisions:

 The initial geometrical anisotropy translates into a particle momentum anisotropy

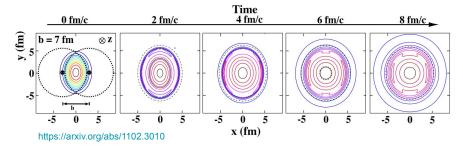
Anisotropic flow is described via Fourier expansion of particle distributions

$$E\frac{\mathrm{d}^3N}{\mathrm{d}^3\mathbf{p}} = \frac{1}{2\pi} \frac{\mathrm{d}^2N}{p_{\mathrm{t}}\mathrm{d}p_{\mathrm{t}}\mathrm{d}y} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_{\mathrm{RP}})]\right)$$
 the Fourier coefficients:
$$v_n(p_{\mathrm{t}}, y) = \left\langle \cos[n(\varphi - \Psi_{\mathrm{RP}})]\right\rangle$$

Final stage flow observables:

- Directed flow (v₁):
 sensitive to pre-equilibrium phase
- Elliptic flow (v_2) :
 early-stage expansion, thermalization
- Triangular flow (v_3) : fluctuation in initial geometry

In-medium and collective effects on quarkonium

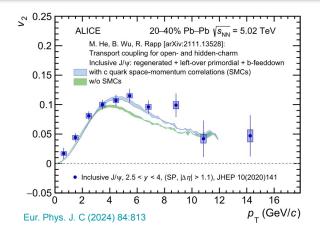


Quarkonium elliptic flow (v_2) in heavy-ion collisions:

Low p_{π} : hydrodynamic expansion with pressure gradients

- Regenerated J/ψ inherits the flow of charm quarks in the medium
- → **Y(1S)** acquires a minor flow component via regeneration

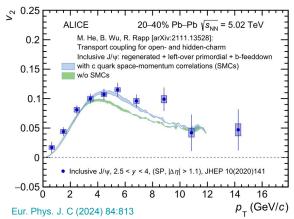
High p_{τ} : effect resulting from in-medium path-length variations

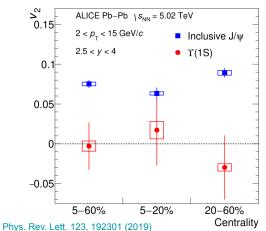

→ Open HF and quarkonium exhibit converging flow at large p_{T}

$$\langle L_{in} \rangle \approx \langle L_{out} \rangle$$
 $\langle L_{in} \rangle < \langle L_{out} \rangle$
Induced $v_2 \approx 0$ Induced $v_2 > 0$

Previous v₂ results

Forward J/ψ flow in Pb-Pb collision (Run 2):


 Results are consistent with transport models, supporting charm quark thermalization

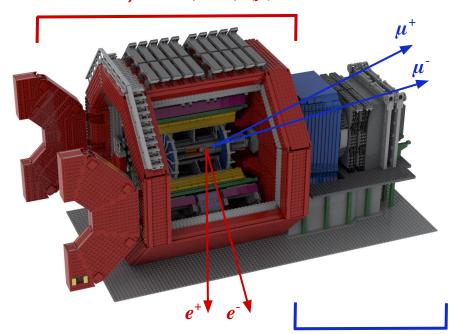

Low p_T : follows hydrodynamic description, Regeneration contributes to J/ψ from low to intermediate p_T : **High** p_T : path-length dependent effects

Previous v₂ results

Forward J/ψ flow in Pb-Pb collision (Run 2):

 Results are consistent with transport models, supporting charm quark thermalization

Low p_T : follows hydrodynamic description, Regeneration contributes to J/ ψ from low to intermediate p_T : **High** p_T : path-length dependent effects


Forward **Y(1S)** flow in Pb-Pb collision (Run 2):

- Observed flow is consistent with 0, regeneration contribution negligible
- Early-stage dissociation is the dominant effect

Central barrel, Midrapidity: |y| < 0.9

Muon spectrometer, Forward rapidity: 2.5 < y < 4

Quarkonium studied through its dielectron decay channel (e^+, e^-)

- Inner Tracking System (ITS): tracking, vertexing, multiplicity
- Time Projection Chamber (TPC): tracking, PID, event-plane
- Fast Interaction Triggers (FITs): centrality, event-plane

Quarkonium studied through its dimuon decay channel (μ^+, μ^-)

- Muon tracking
- Muon identification

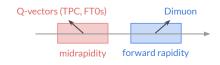
Overview of Preliminary Results from Run 3

1. J/ψ flow measurement at <u>forward rapidity</u> in Pb-Pb collision

2. **Y(1S)** flow measurement at <u>forward rapidity</u> in Pb-Pb collision

1. **J/ψ** flow measurement at <u>forward rapidity</u> in Pb-Pb collision

2. **Y(1S)** flow measurement at <u>forward rapidity</u> in Pb-Pb collision

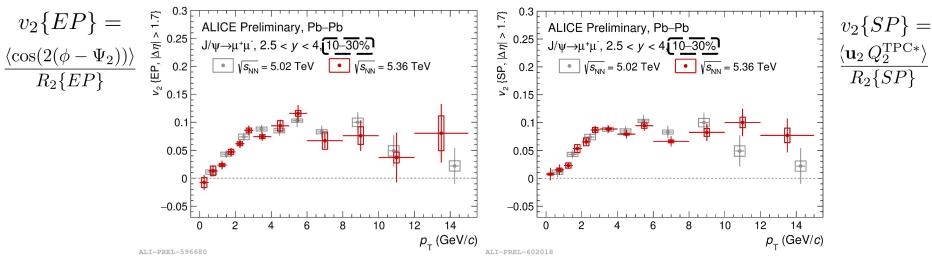

Forward $v_2^{J/\psi}$ vs. p_T in Pb-Pb collision (Run 3)

Event Plane (EP) Method

$$v_2\{EP\} = \frac{\langle \cos(2(\phi - \Psi_2)) \rangle}{R_2\{EP\}}$$

Scalar Product (SP) Method

$$v_2\{SP\} = \frac{\langle \mathbf{u}_2 Q_2^{\text{TPC*}} \rangle}{R_2\{SP\}}$$

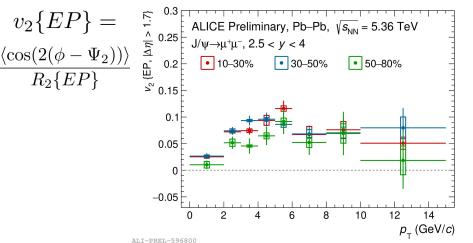


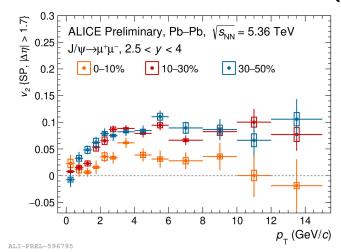
Event Plane (EP) Method

Scalar Product (SP) Method

Run 3 results (SP & EP) are compatible with Run 2:

- Finer binning at low p_{τ} (up to 3 GeV/c)
- Positive v_2 at low p_T , consistent with regeneration

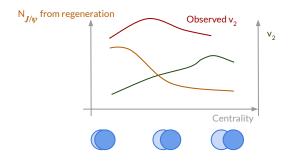




Additional centrality classes studied:

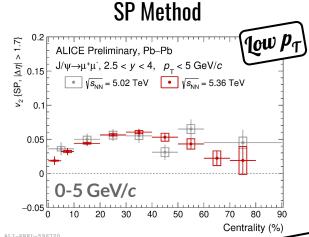
Event Plane (EP) Method

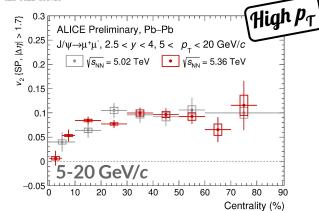
Scalar Product (SP) Method



First measurement in ALICE within 50-80% centrality!

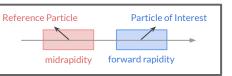
Forward $v_2^{J/\Psi}$ vs. centrality in Pb-Pb collision (Run 3)


Results compatible with Run 2

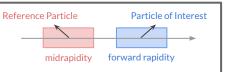

Low PT

- Smooth progression from central to peripheral
- Peak around 30%, slightly more central relative to light flavors

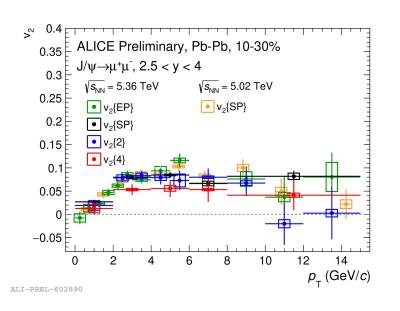
- Clear increase from zero at central collisions
- Path-length dependence of E-loss levels off toward peripheral



Correlate charged particles at midrapidity with J/ψ at forward rapidity



Multi-particle correlation method (cumulants)



Correlate charged particles at midrapidity with J/ψ at forward rapidity

Multi-particle correlation method (cumulants)

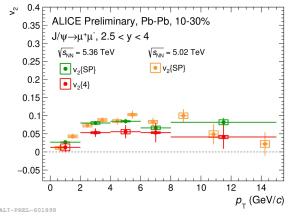
 v_2 {2}: Elliptic flow from 2-particle correlation v_2 {4}: Elliptic flow from 4-particle correlation

First forward-rapidity $J/\psi v_2$ measurement with cumulants in Pb-Pb collisions!

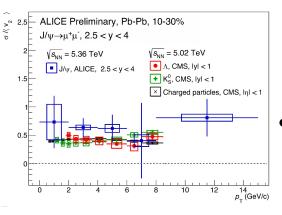
- v_2 {2} compatible with SP, EP and Run 2 within current uncertainties
- Indication that $v_2\{4\} < v_2\{2\}$, possible flow fluctuations?

Flow fluctuation measurement (Run 3)

Assuming Gaussian fluctuations of the flow, the approximations for v_2 are:


$$v_2\{SP\} \approx \langle v_2 \rangle + \sigma$$
 $v_2\{4\} \approx \langle v_2 \rangle - \sigma$

the fluctuation ratio can be expressed as:


$$\frac{\sigma}{\langle v_2 \rangle} \approx \frac{v_2 \{SP\} - v_2 \{4\}}{v_2 \{SP\} + v_2 \{4\}}$$

Fluctuation ratio independent of p_T

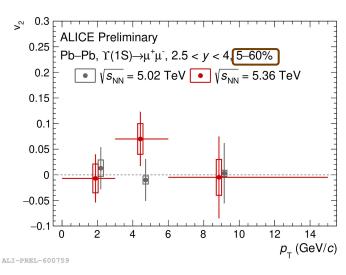
 v_2 fluctuations likely reflect variations in the initial-state geometry from event to event

• v_2 {SP} > v_2 {4} with a significance of ~ 2.6 σ

First measurement of J/ψ flow fluctuation ratio!

Result compatible with light flavors

Overview of Preliminary Results from Run 3

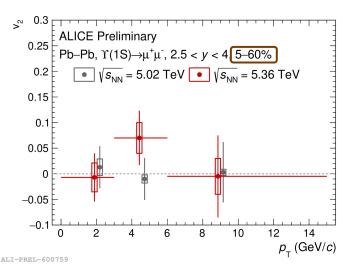

J/ψ flow measurement at <u>forward rapidity</u> in Pb-Pb collision

Y(1S) flow measurement at forward rapidity in Pb-Pb collision

EP Method

• Run 3 result compatible with Run 2

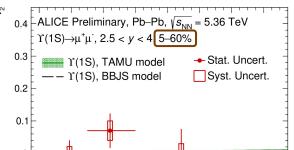
Forward $v_2^{\Upsilon(1S)}$ vs. p_T in Pb-Pb collision (Run 3)



12

 $p_{_{T}}$ (GeV/c)

EP Method


Model Comparison (TAMU & BBJS)

TAMU:

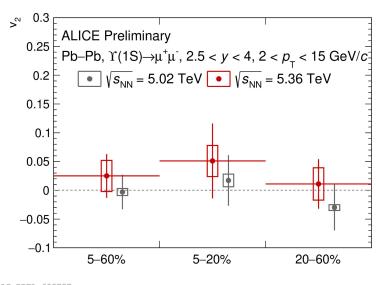
 Langevin-based transport model with ideal hydro.
 Including regeneration mechanism

BBJS:

PYTHIA + (3+1d) quasiparticle aniso-hydro. *No regeneration*

EP Method

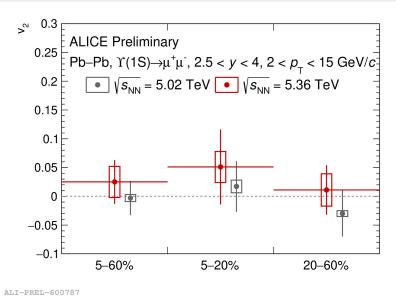
X. Du, R. Rapp, and M. He, Phys. Rev. C 96, 054901 (2017)
 P. P. Bhaduri, N. Borghini, A. Jaiswal, and M. Strickland,
 Phys. Rev. C 100, 051901 (2019)


Run 3 result compatible with Run 2

- Test for regeneration mechanism
- Indistinguishable within current uncertainties

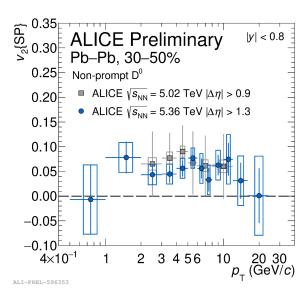
ALI-PREL-600791

- ALI-PREL-600787
- Run 3 result compatible with Run 2
- Significant suppression of v_2 across different centrality ranges



Results compatible with 0 within uncertainties: indicating b quarks may not be thermalized?

Forward $v_2^{\Upsilon(1S)}$ vs. centrality in Pb-Pb collision (Run 3)



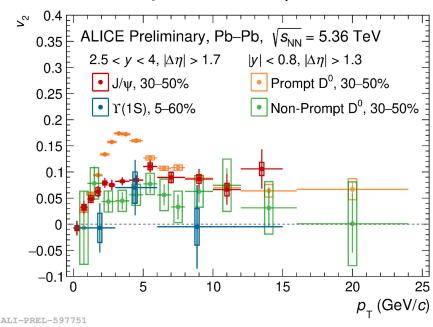
- Run 3 result compatible with Run 2
- Significant suppression of v_2 across different centrality ranges

Results compatible with 0 within uncertainties: indicating b quarks may not be thermalized?

When associated with light flavors, beauty hadrons exhibit a positive v_2

Heavy-quarks collectivity (Run 3)

$$v_2^{\Upsilon(1S)} \le v_2^{\text{non-prompt D}^0} < v_2^{J/\psi} < v_2^{\text{prompt D}^0}$$


Low to intermediate p_{π} :

Ordering between prompt/non-prompt D^0 , J/ψ and $\Upsilon(1S)$

High p_{T} :

- Convergence Energy-loss
- Prompt vs. non-prompt D meson flow comparison indicates different thermalization for c and b quarks
- No decisive evidence for **Y(1S)** flow, results are compatible with 0 within uncertainties.

Quarkonium + Open-HF

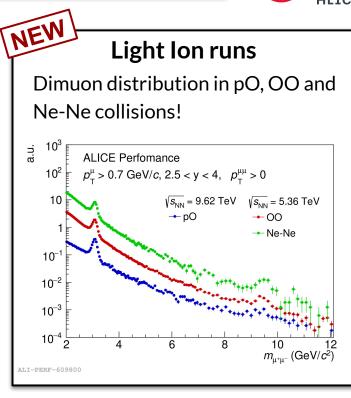
Conclusions

New Run 3 measurements on quarkonium flow in Pb-Pb:

- J/ψ flow at forward rapidity
 - First Run 3 results with SP/EP/cumulants!
 - Consistent with Run 2, finer p_{T} binning
 - First v_1 {2, 4} via cumulants
 - First flow fluctuation ratio
- **Y(1S)** flow at forward rapidity
 - First Run 3 measurement!
 - Compatible with Run 2 within current uncertainties
 - Compared with different theoretical models

Future plans:

Increase the datasets by adding new data from 2024 and beyond

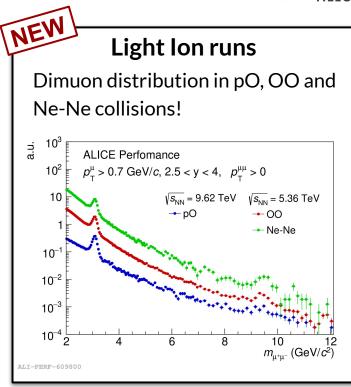


New Run 3 measurements on quarkonium flow in Pb-Pb:

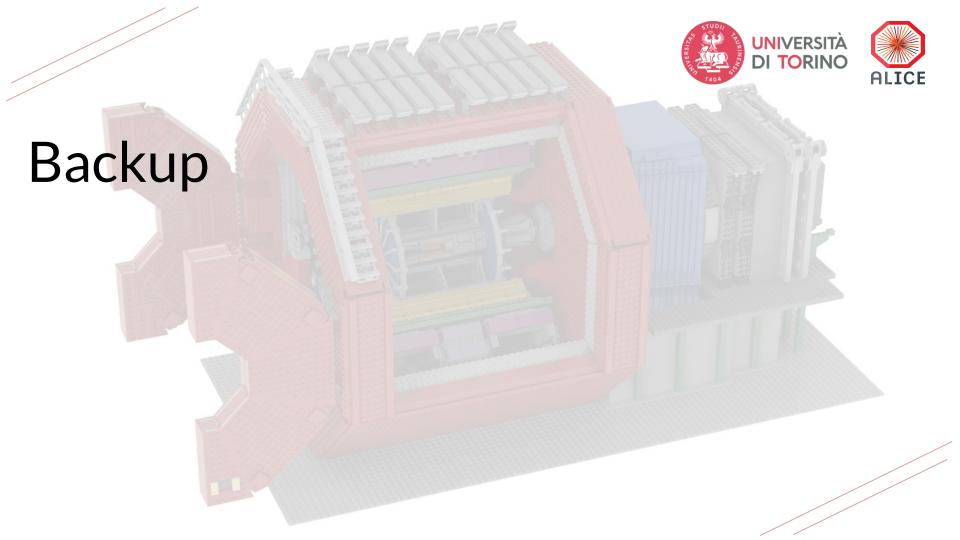
- J/ψ flow at forward rapidity
 - First Run 3 results with SP/EP/cumulants!
 - Consistent with Run 2, finer p_T binning
 - First v, $\{2, 4\}$ via cumulants
 - First flow fluctuation ratio
- Y(1S) flow at forward rapidity
 - First Run 3 measurement!
 - Compatible with Run 2 within current uncertainties
 - Compared with different theoretical models

Future plans:

Increase the datasets by adding new data from 2024 and beyond

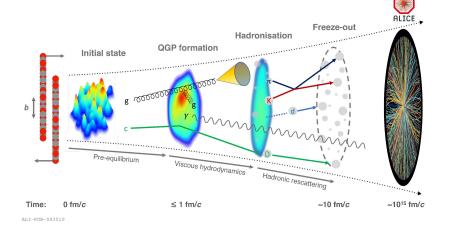


New Run 3 measurements on quarkonium flow in Pb-Pb:


- J/ψ flow at forward rapidity
 - First Run 3 results with SP/EP/cumulants!
 - Consistent with Run 2, finer p_T binning
 - First v_2 {2, 4} via cumulants
 - First flow fluctuation ratio
- Y(1S) flow at forward rapidity
 - First Run 3 measurement!
 - Compatible with Run 2 within current uncertainties
 - Compared with different theoretical models

Future plans:

Increase the datasets by adding new data from 2024 and beyond



Heavy-quarks & quarkonium in heavy-ion collisions

Heavy-quarks (charm, beauty):

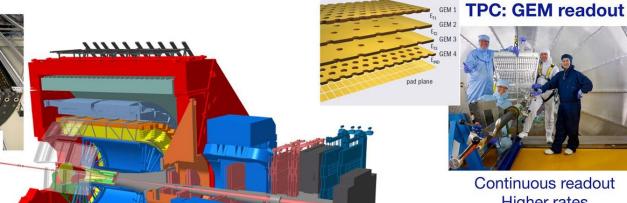
- Produced in the **initial hard parton scatterings**, before QGP formation ($\sim \frac{1}{2} m_{\odot} \sim 0.1 \text{ fm/c}$)
- Production described by pQCD, since their mass scale (>> Λ_{OCD})
- Thermalization time (~ fireball life-time)

Evolution into bound states:

- Quarkonia (charmonia cc, bottomonia bb)
 - → In-medium modifications
 - Color-screening
 - Dynamic dissociation
 - Collisional & radiative energy loss
 - Regeneration

- Open heavy-flavors (D and B mesons)
 - \rightarrow Transport properties
 - → Thermalization degree
 - → Hadronization

ALICE upgrades in LS2

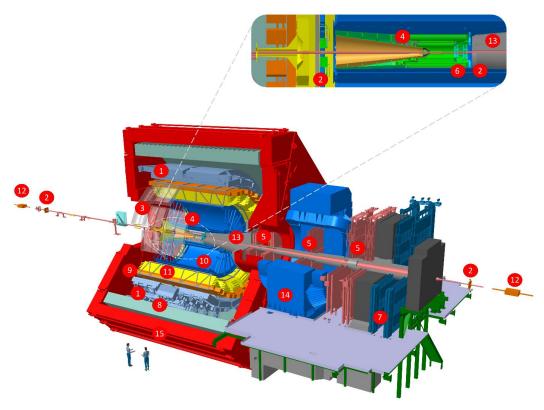


Full pixel detector Improved read-out rate, spatial resolution

Muon Forward Tracker

Improved pointing resolution for muons

Continuous readout Higher rates


Upgraded readout and online processing

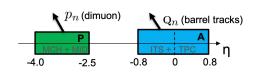
ALICE upgrades in LS2

- 1 EMCAL | Electromagnetic Calorimeter
- PIT | Fast Interaction Trigger
- HMPID| High Momentum Particle Identification Detector
- 4 ITS | Inner Tracking System
- MCH | Muon Tracking Chambers
- 6 MFT | Muon Forward Tracker
- MID | Muon Identifier
- 8 PHOS/CPV | Photon Spectrometer
- 9 TOF| Time Of Flight
- 10 TPC | Time Projection Chamber
- 11 TRD | Transition Radiation Detector
- 12 ZDC | Zero Degree Calorimeter
- 13 Absorber
- 14 Dipole Magnet
- 15 L3 Magnet

$$v_2\{EP\} = \frac{\langle \cos(2(\phi - \Psi_2^A))\rangle}{R_2\{EP\}}$$

$$v_2\{SP\} = \frac{\langle \mathbf{u}_2 \, Q_2^{A*} \rangle}{R_2\{SP\}}$$

$$R_2\{EP\} = \sqrt{\frac{\left\langle \cos\left(2[\psi_2^A - \psi_2^C]\right)\right\rangle \left\langle \cos\left(2[\psi_2^A - \psi_2^B]\right)\right\rangle}{\left\langle \cos\left(2[\psi_2^B - \psi_2^C]\right)\right\rangle}}$$


$$R_2\{SP\} = \sqrt{\frac{\left\langle Q_2^A Q_2^{B*} \right\rangle \left\langle Q_2^A Q_2^{C*} \right\rangle}{\left\langle Q_2^B Q_2^{C*} \right\rangle}}$$

Three sub detector (A: TPC, B: FT0A and C: FT0C) for the Event Plane and Q₂ vectors calculation

Multi-particle correlation method: cumulants

$$egin{aligned} Q_{n;k} &= \sum_{i=1}^M w_i^k e^{(in\phi_i)} \ S_{p,k} &\equiv \left[\sum_{i=1}^M w_i^k
ight]^p \mathcal{M}_{abcd\cdots} &\equiv \sum_{i,j,k,l,\ldots=1}^{M'} w_i^a w_j^b w_k^c w_l^d \cdots \end{aligned}$$

Differential Flow

$$\begin{split} \langle \langle 2' \rangle \rangle &= \frac{\sum_{i=1}^{N} (\mathcal{M}_{01}')_{i} \langle 2' \rangle_{i}}{\sum_{i=1}^{N} (\mathcal{M}_{01}')_{i}} \qquad \langle \langle 4' \rangle \rangle = \frac{\sum_{i=1}^{N} (\mathcal{M}_{0111}')_{i} \langle 4' \rangle_{i}}{\sum_{i=1}^{N} (\mathcal{M}_{0111}')_{i}} \\ \mathcal{M}_{01} &\equiv \sum_{i=1}^{n_{p}} \sum_{i,j=1}^{M'} w_{j} \qquad \qquad \mathcal{M}_{0111} \equiv \sum_{i=1}^{n_{p}} \sum_{j,k,l=1}^{M'} w_{j} w_{k} w_{l} \\ d_{n}^{\mu\mu} \{2\} &= \langle \langle 2' \rangle \rangle \\ d_{n}^{\mu\mu} \{4\} &= \langle \langle 4' \rangle \rangle - 2 \cdot \langle \langle 2' \rangle \rangle \langle \langle 2 \rangle \rangle \\ & \qquad \qquad \qquad \\ v_{n}^{\mu\mu} \{2\} &= \frac{d_{n} \{2\}}{\sqrt{c_{n} \{2\}}} \\ v_{n}^{\mu\mu} \{4\} &= -\frac{d_{n} \{4\}}{(-c_{n} \{4\})^{3/4}} \end{split}$$

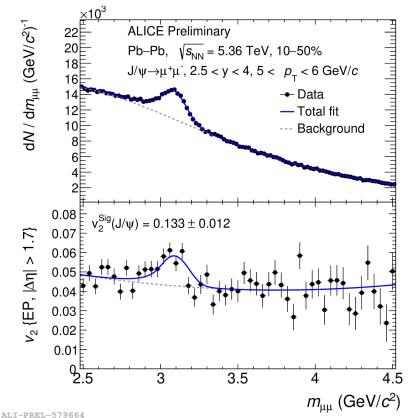
Reference Flow

$$\begin{split} \langle \langle 2 \rangle \rangle &= \frac{\sum_{i=1}^{N} (\mathcal{M}_{11})_i \langle 2 \rangle_i}{\sum_{i=1}^{N} (\mathcal{M}_{11})_i} \quad \langle \langle 4 \rangle \rangle = \frac{\sum_{i=1}^{N} (\mathcal{M}_{1111})_i \langle 4 \rangle_i}{\sum_{i=1}^{N} (\mathcal{M}_{1111})_i} \\ \mathcal{M}_{11} &\equiv \sum_{i,j=1}^{M'} w_i w_j \qquad \qquad \mathcal{M}_{1111} &\equiv \sum_{i,j,k,l=1}^{M'} w_i w_j w_k w_l \\ c_n \{2\} &= \langle \langle 2 \rangle \rangle \\ c_n \{4\} &= \langle \langle 4 \rangle \rangle - 2 \cdot \langle \langle 2 \rangle \rangle^2 \\ \hline \\ v_n \{2\} &= \sqrt{c_n \{2\}} \\ \hline \\ v_n \{4\} &= \sqrt[4]{-c_n \{4\}} \end{split}$$

Step 1

Fit dimuon invariant mass distribution

- Signal: described with empirical functions (CB2, NA60)
- Background: either fixed by event-mixing or by empirical function (VWG...)
- Calculated alpha factor:

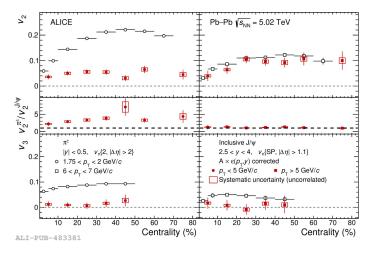

$$\alpha(m_{\mu\mu}) = \frac{S(m_{\mu\mu})}{S(m_{\mu\mu}) + B(m_{\mu\mu})}$$

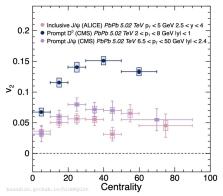
Step 2 Fit dimuon v, distribution

• The fitting function:

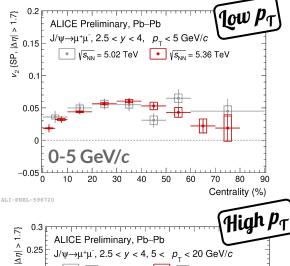
$$v_2^{\mu\mu}(m_{\mu\mu}) = \alpha(m_{\mu\mu})v_2^{J/\psi} + (1 - \alpha(m_{\mu\mu}))v_2^{\text{Bkg}}$$

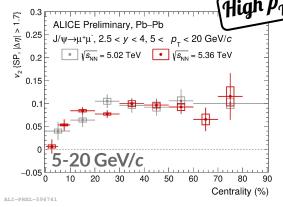
- Background flow can be:
 - Modeled by empirical functions (Chebyshev, Pol2)
 - Fixed using event-mixing




ALL TIME 375004

Forward $v_2^{J/\Psi}$ vs. centrality in Pb-Pb collision (Run 3)





In the low p_{τ} region:

- Peak around 30%, slightly more central relative to light quarks
- D meson flow peaked around 40%
- Pion flow peaked around 40–50%

