
Fraternité

THE SCALP PROJECT

the SCALP project

measurement and evaluation

• (n,alpha) reactions of interest for nuclear reactors

• from threshold up to 20 MeV

 19 F(n, α) 16 N

large discrepancies (up to afactor 3)

• sensitivity analysis (MSR)

neutron multiplication factor (± 40 - 130 pcm)

Safety optimisation of nuclear power plants:

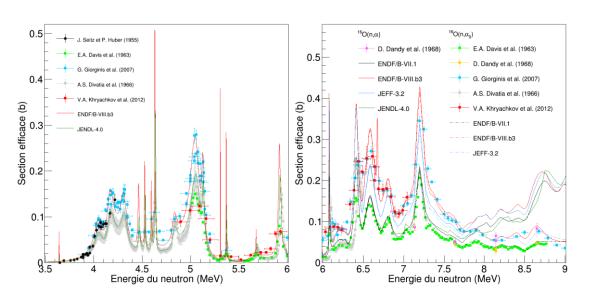
improvement of neutron crosssections impacting the precision of reactor modelling and ageing of fuel pins for 3rd and 4th generation nuclear reactors

 $^{16}O(n,\alpha)^{13}C$

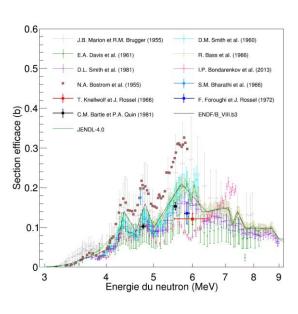
• NEA: HPRL & WPEC 26 (2005) & WPEC 40 (2015)

sensitivity analysis (WPR, FR)

large discrepancies (up to 30%)


helium formation in fuel cladding (± 7%)

neutron multiplication factor (± 100 pcm)



THE SCALP PROJECT

 $^{16}\mathrm{O}(\mathsf{n},\alpha)^{13}\mathrm{C}$

 19 F(n,lpha) 16 N

large discrepancies

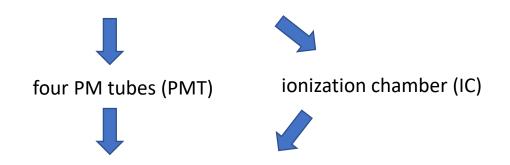
- measurement vs measurement
- measurement vs evaluation
- evaluation vs evaluation

underline the need of new measurements

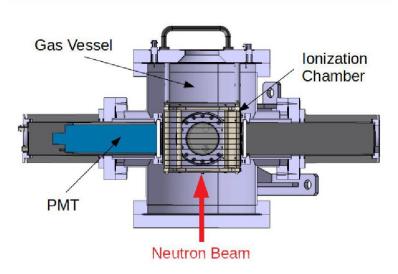
- with new setups
- using several facilities

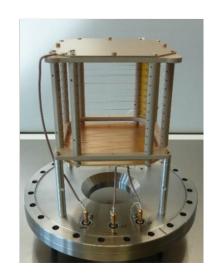
main objective

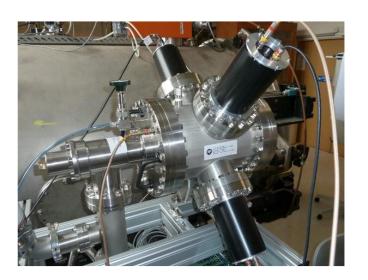
to provide new data sets for the evaluation process


the SCALP detector

at NFS (sept'21), at nELBE (feb'22)...

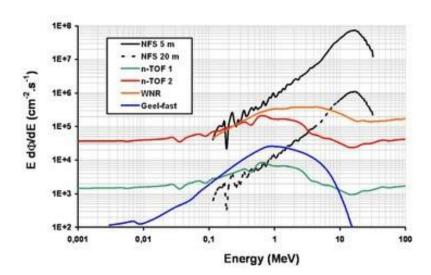

THE SCALP DETECTOR

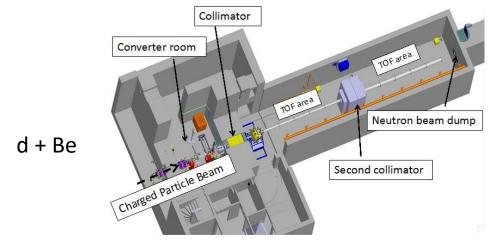

SCALP = Scintillating ionization Chamber for ALPha particle detection in neutron induced reaction



Gaz	CF4	CF4 (CO2 3%)
energy resolution (IC)	150 keV (1σ)	220 keV (1σ)
time resolution (PMt)	820 ps (1σ)	820 ps (1σ)

neutron time-of-flight & deposited energy & drift time

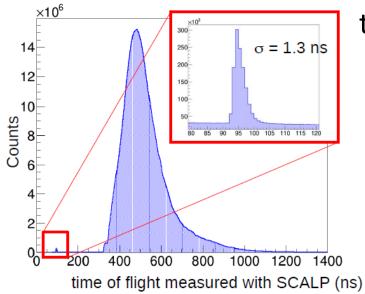




 19 F(n, α) 16 N

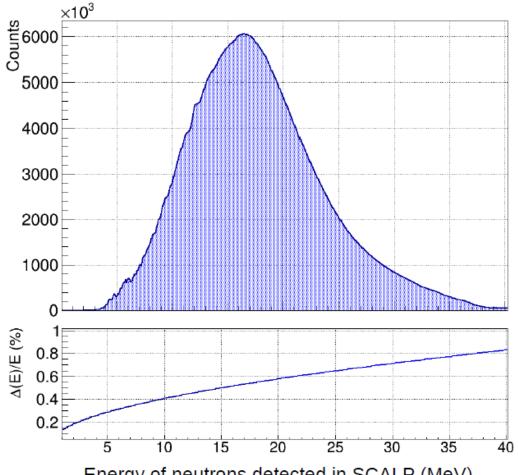
NFS = Neutron For Science (SPIRAL2, GANIL)

SPIRAL 2	LINAG
HF	88 MHz (1/11.4 ns)
beam intensity	up to 5 mA
beam energy	up to 40 MeV



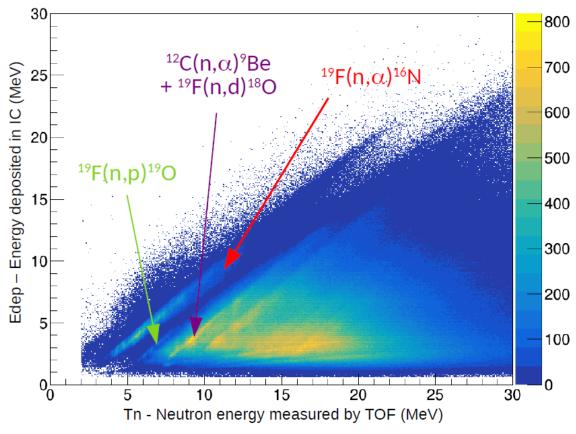
NFS	max	SCALP experiment
chopper	1/100	1/120
beam intensity	50 μΑ	7.5 μΑ
Flight distance	30 m	28 m


- no gamma flash...
- well suited to measurement between 1 and 40 MeV



 19 F(n, α) 16 N

Energy of neutrons detected in SCALP (MeV)



 19 F(n, α) 16 N

two-bodies reactions

$$E_{dep} = T_n + Q$$

reaction	Q (MeV)	threshold (MeV)
19 F(n, $lpha$) 16 N	- 1.52	1.61
¹⁹ F(n,p) ¹⁹ O	- 4.04	4.25
¹⁹ F(n,d) ¹⁸ O	- 5.76	6.08
12 C(n, α) 9 Be	- 5.70	6.18
¹⁹ F(n,t) ¹⁷ O	- 7,56	7,96

reaction channel identification matrix

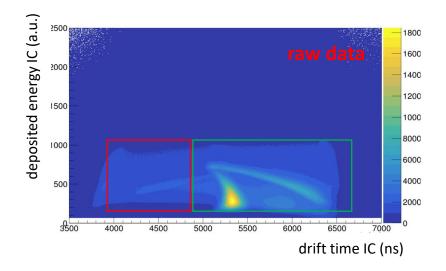
(n,alpha) and (n,p) reactions on F-19 are well separated from other reactions

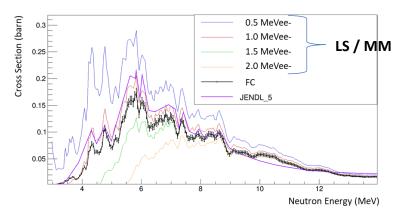
 19 F(n, α) 16 N

SCALP at NFS – First results & Encoutered problems

number of events (identification matrix) detector response (GEANT4) nuclear density neutron flux at SCALP location (LS/MM monitor or U8 monitor) active zone lenght

 19 F(n, α) 16 N

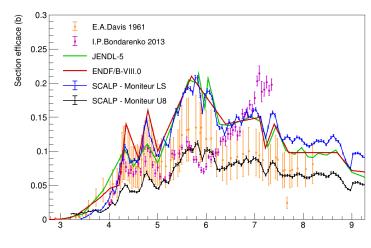

SCALP at NFS – First results & Encoutered problems

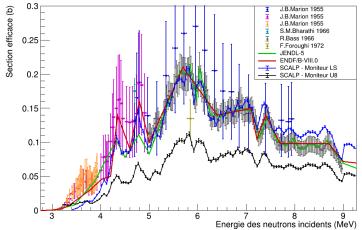

Data contamination

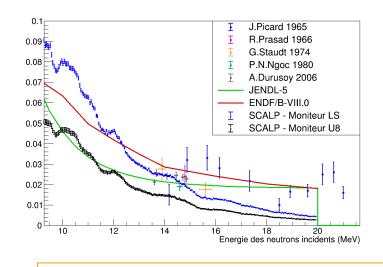
- associated to hydrogenated materials (cathode)
- loss of two third of the statistic
 - \triangleright prohibitive for $^{16}O(n,\alpha)^{13}C$ measurement

Cross-section nomalization / Neutron flux measurement

- LS / MM monitor
- U8 FC monitor







 19 F(n, α) 16 N

SCALP at NFS – First results & Encoutered problems

First results

A. CHEVALIER, PhD, 2024/12/19

confirmation of structures already observed + additionnal structures & data (9 – 13.5 MeV)

++ continuous cross-section distribution

++ neutron energy resolution (< 0.6% below 20 MeV)

-- normalization procedure (just the order of magnitude)

-- data contamination (prohibitive for O-16 measurements)

STATUS OF THE SCALP PROJECT

Ongoing

SCALP modification

removal of hydrogenated materials

> increase in operating voltage

> via the U8 FC monitor

(to remove data contamination)

(for (n,p) measurement)

• Improvement of the normalization procedure at NFS

> via the p(n,n)p standard cross-section using MoNHaP

(High Precision Neutron Monitor)

neutron flux

neutron flux & beam spot

Data analysis

 \rightarrow NFS - ¹⁶O

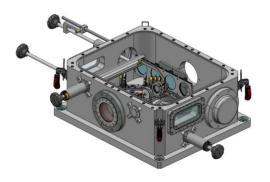
 \rightarrow nELBE – ¹⁹F & ¹⁶O

not enough stat (data contamination)

normalization procedure ongoing for ¹⁹F, not enough stat for ¹⁶O

Experimental program

Proposal submitted to NFS PAC (SPIRAL2, GANIL)


oct'25

¹⁹F(n,alpha)¹⁶N

Proposal NFS PAC (SPIRAL2, GANIL)

oct'25

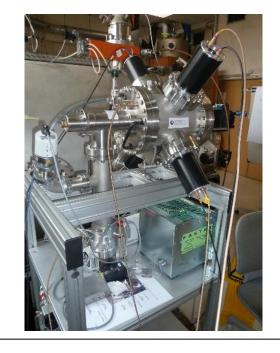
¹⁶O(n,alpha)¹³C

THE SCALP PROJECT

The SCALP collaboration

LPC Caen A. Chevalier, F.-R. Lecolley, J.-L. Lecouey, N. Marie

EAMEA L. Manduci


CEA O. Bouland, O. Serot GANIL A.M. Frelin, X. Ledoux

To summarize...

SCALP detector is already fully operational upgrade is ongoing, tests are required first results are very promising

SCALP will be ready to run at NFS in september'25 (n,α) on fluorine 19 (PAC ongoing) the use of MoNHaP is mandatory

 (n,α) on oxygen 16 (Fall'25 PAC)

OPALE (MP IN2P3) NACRE (NEEDS, CNRS)SANDA & ARIEL (EC)

CaeSAR (France 2030, RN) 2023/03 – 2029/03 – WP2 NFS Experiments (1 PhD fall'25, 1 Post-Doc fall'26)