# Hybrid Nuclear Interaction Models for Improved Fragmentation Modeling in Ion Therapy

European Nuclear Physics Conference 2025 - Caen, France

<u>L. Arsini</u><sup>1,2</sup>, S. Burrello<sup>3</sup>, B. Caccia<sup>4</sup>, A. Ciardiello<sup>4</sup>, M. Colonna<sup>3</sup>, S. Giagu<sup>1,2</sup>, C. Mancini Terracciano<sup>1,2</sup>

<sup>1</sup>Department of Physics, Sapienza University of Rome, Rome, Italy. <sup>2</sup>INFN, Section of Rome, Rome, Italy. <sup>3</sup>INFN, Section of LNS, Catania, Italy. <sup>4</sup>Istituto Superiore di Sanità, Rome, Italy.



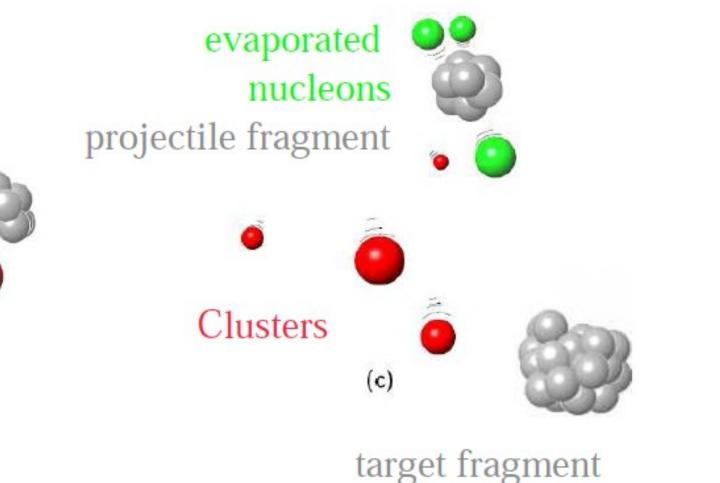
### Nuclear interaction models

#### In Geant4

projectile

- Nuclear interaction models are <u>slow</u>
- In particular the most sophisticated ones e.g. QMD

prefragment



Trade-off between computing time and precision

Use simpler models

### Problems in Geant4 below 100 MeV/u

No dedicated model to nuclear interaction below 100 MeV/u in Geant4

#### Many papers showed discrepancies:

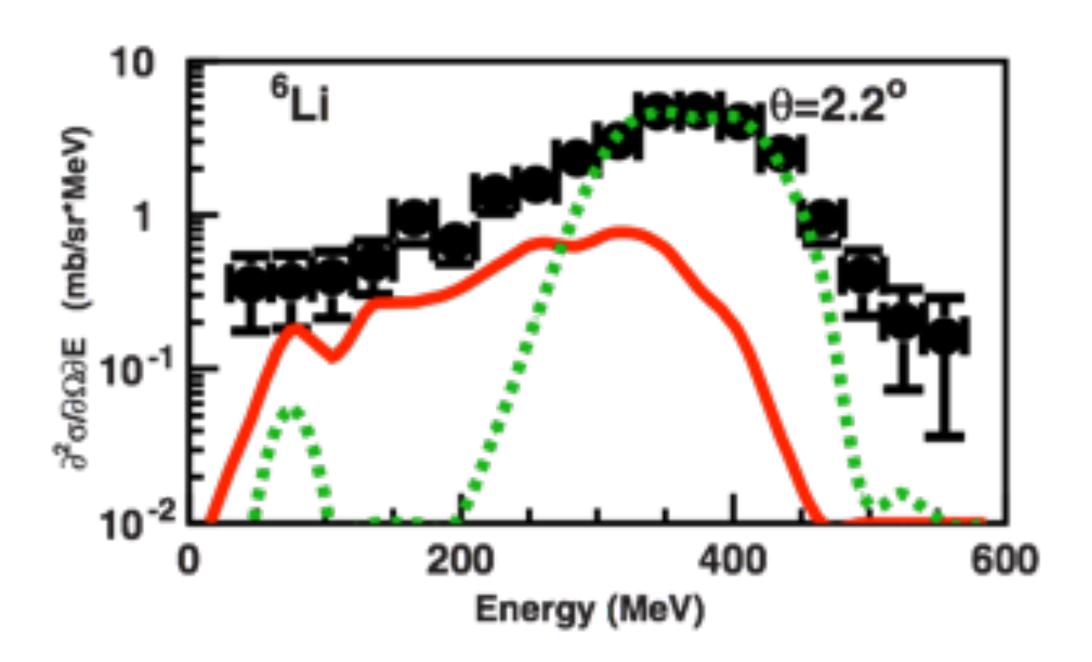
Braunn et al.: one order of magnitude in 12C fragmentation at 95 MeV/u on thick PMMA target

De Napoli et al.: angular distribution of the secondaries emitted in the interaction of 62 MeV/u 12C on thin carbon target

Dudouet et al.: similar results with a 95 MeV/u 12C beam on H, C, O, Al and Ti targets

- Exp. data
- **G4-BIC**
- **G4-QMD**

[Plot from De Napoli et al. Phys. Med. Biol., vol. 57, no. 22, pp. 7651–7671, Nov. 2012]

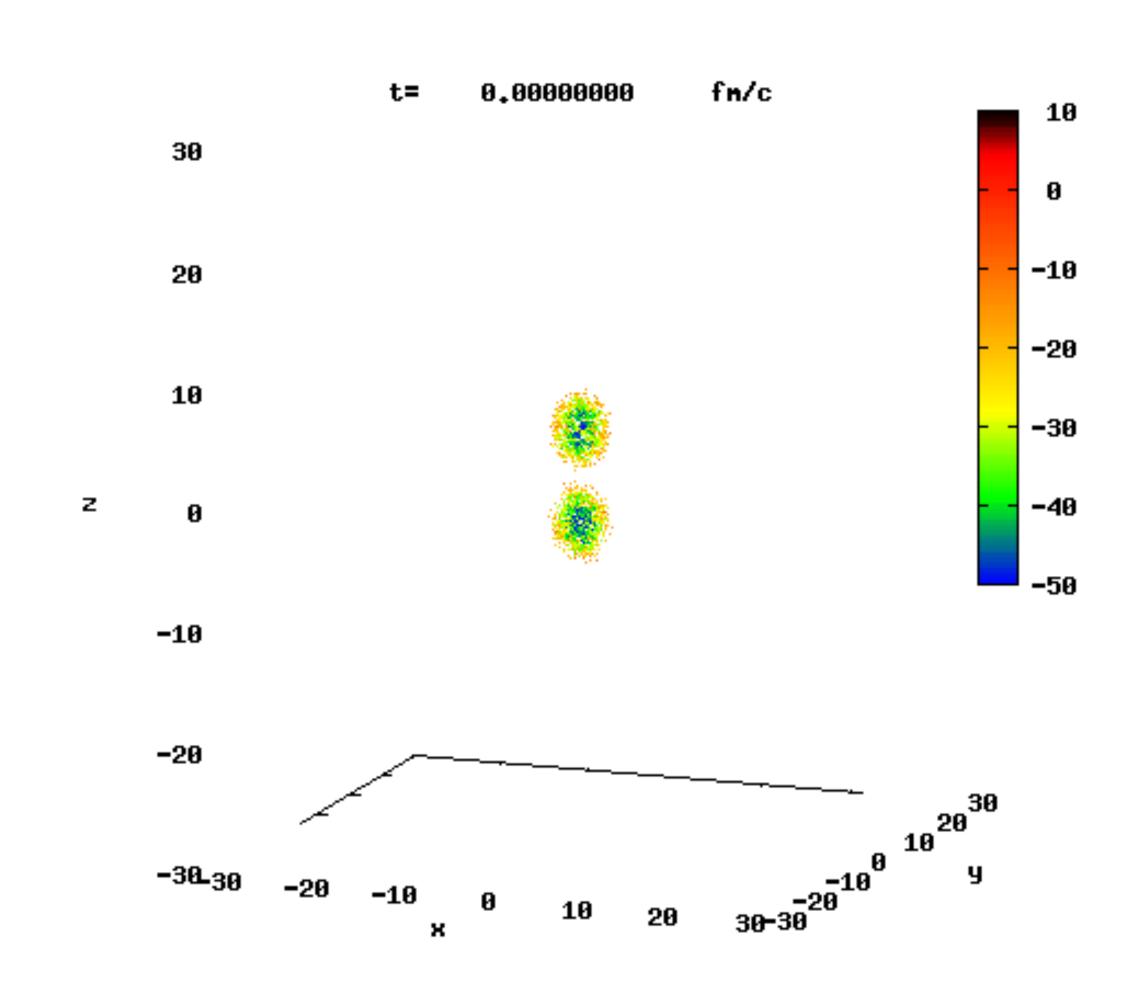


Cross section of the <sup>6</sup>Li production at 2.2 degree in a <sup>12</sup>C on <sup>nat</sup>C reaction at 62 MeV/u.

Test-particle approach

Self-consistent mean field + collisions

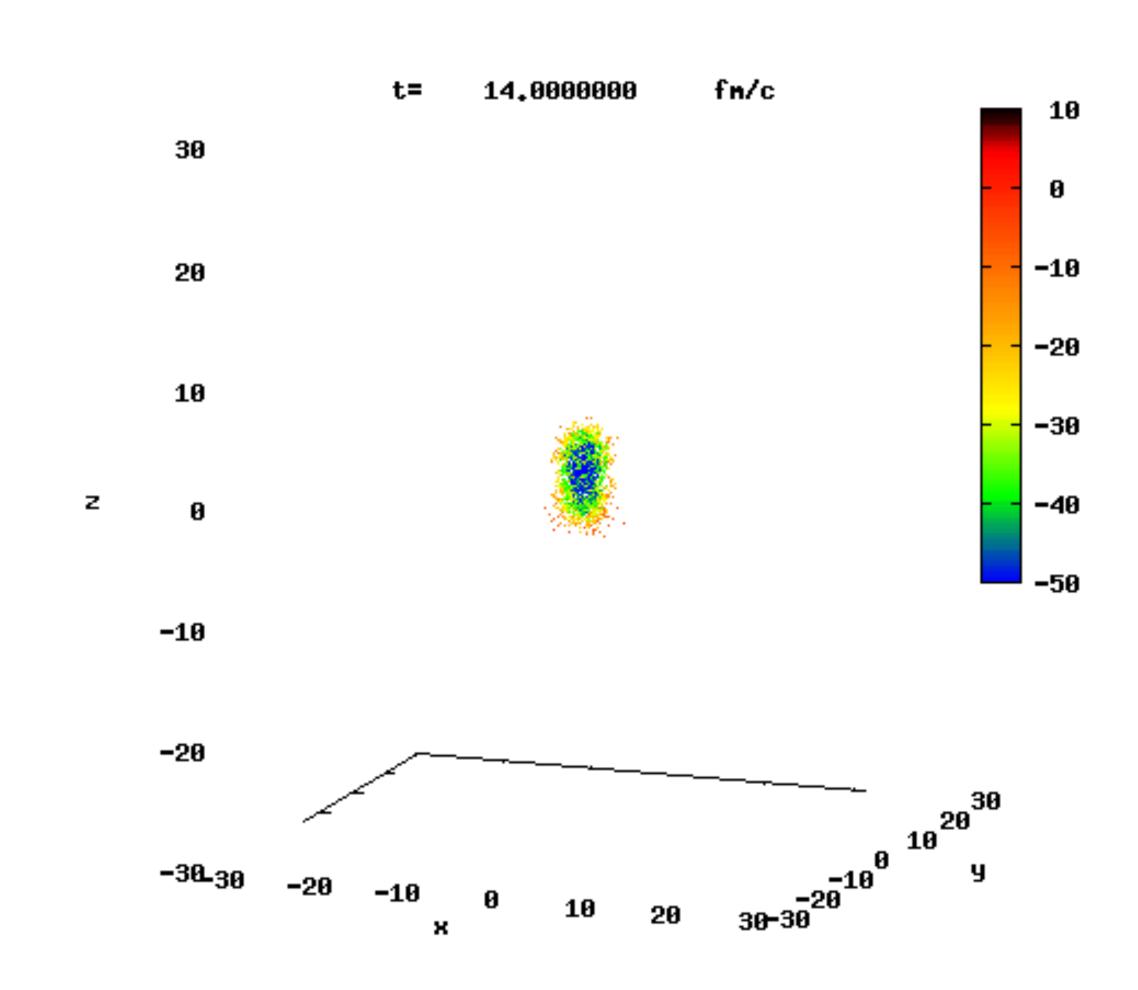
Probability to find a nucleon in the phase space



Test-particle approach

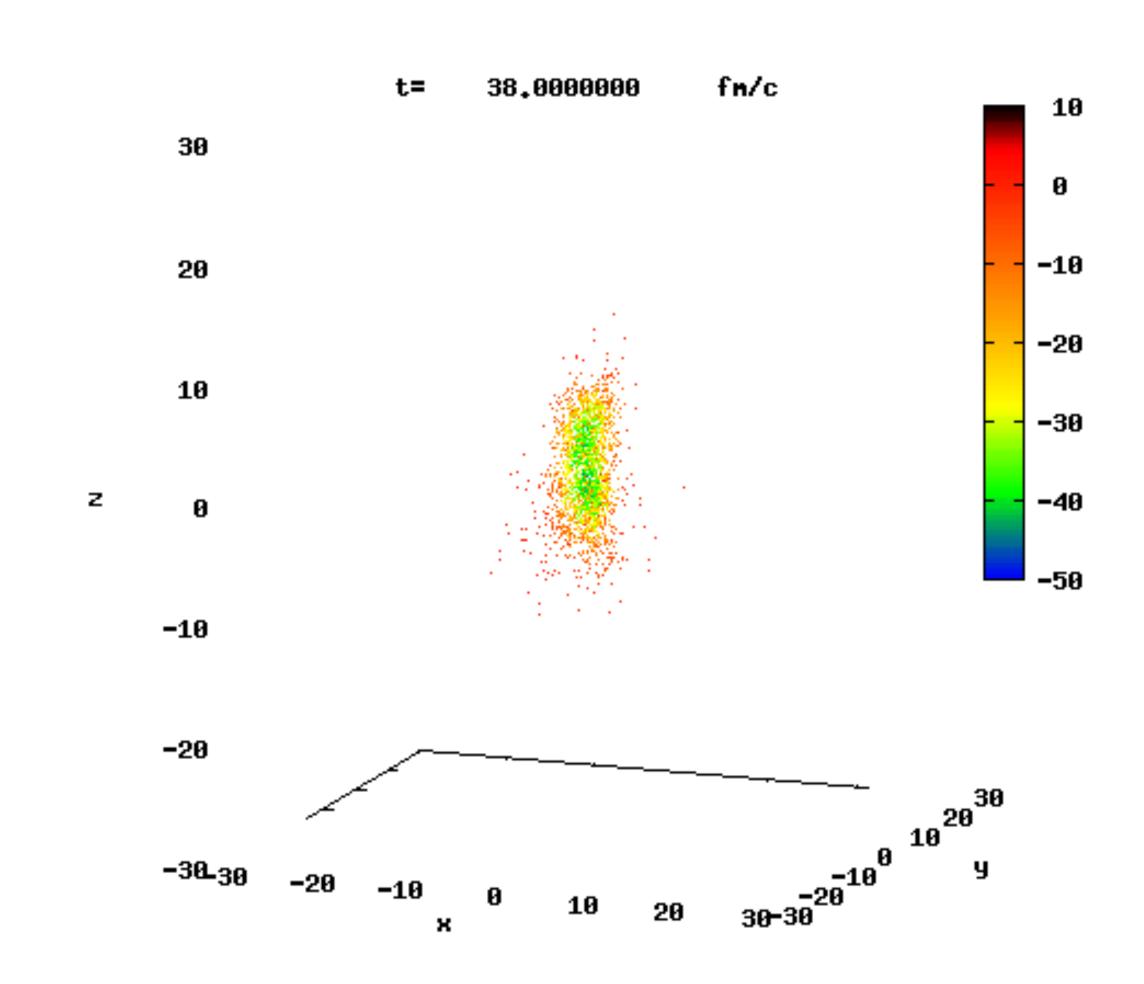
Self-consistent mean field + collisions

Probability to find a nucleon in the phase space



- Test-particle approach
- Self-consistent mean field + collisions

Probability to find a nucleon in the phase space

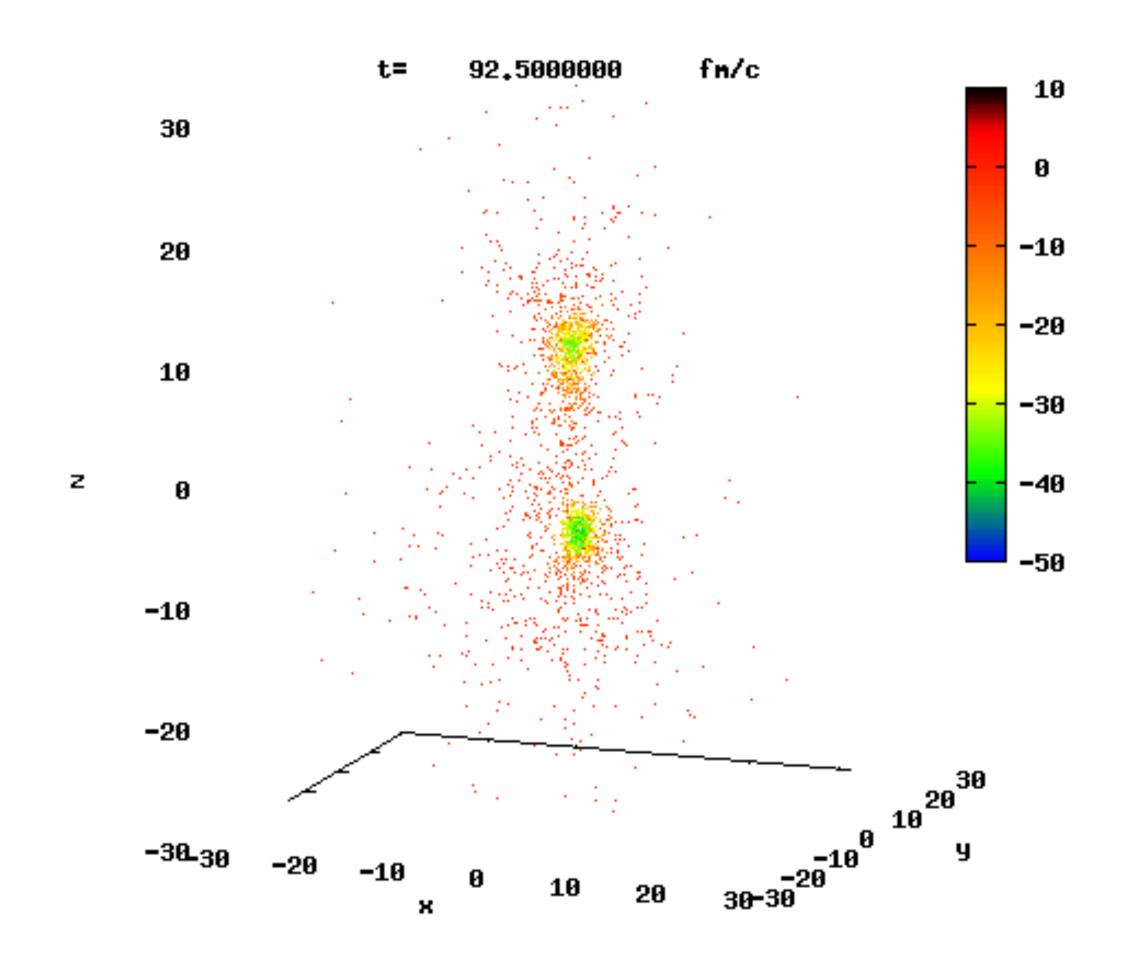


6

Test-particle approach

Self-consistent mean field + collisions

Probability to find a nucleon in the phase space



# We interfaced BLOB with Geant4 and its de-excitation model

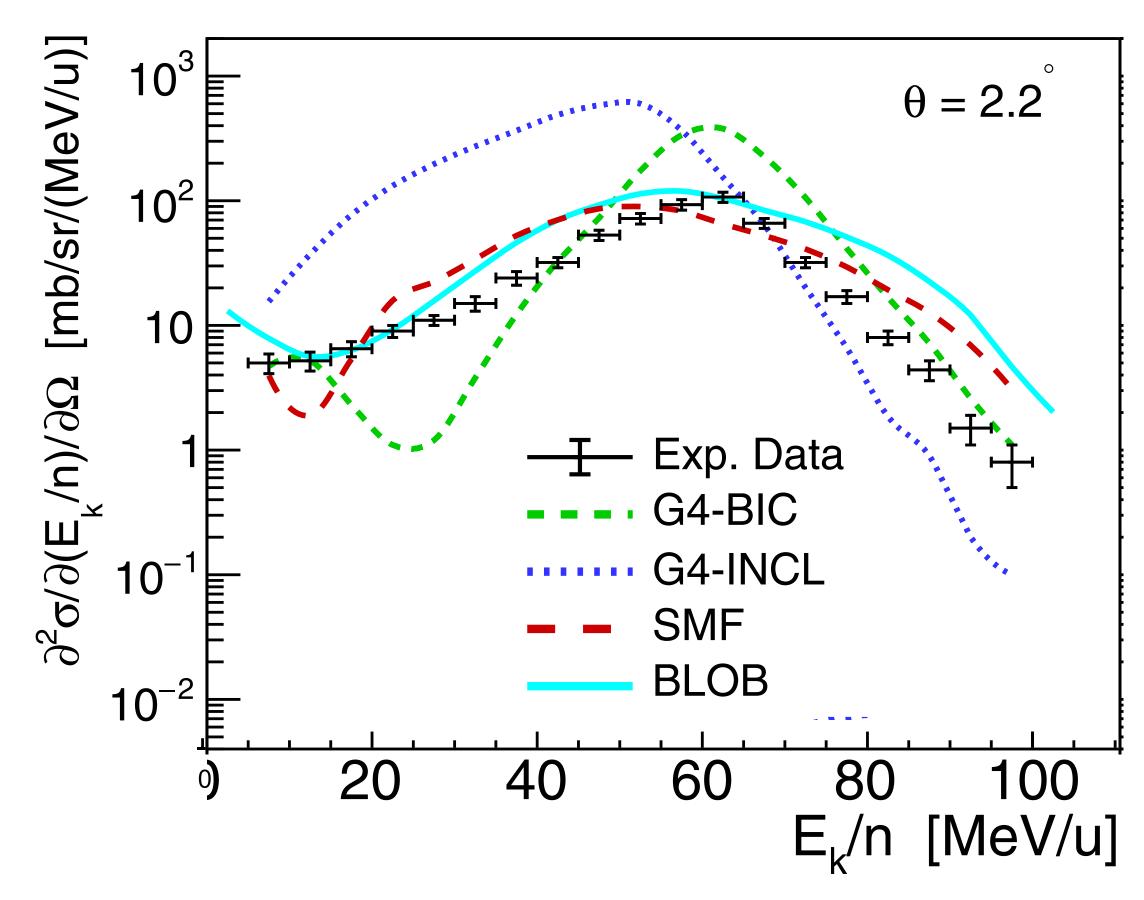
[C. Mancini-Terracciano et al. Preliminary results coupling "Stochastic Mean Field" and "Boltzmann-Langevin One Body" models with Geant4. In: Physica Medica 67 (2019), pp. 116–122. doi: 10.1016/j.ejmp.2019.10.026.]

Accurate

Slow

Order of minutes per interaction!

 $^{12}\text{C} + ^{\text{nat}}\text{C} \rightarrow ^{4}\text{He at 62 MeV/u}$ 



### Blob code optimization

 We optimised BLOB without changing the code structure (52% speed-up overall)

Not enough for practical applications

Elapsed Time 2: 231.966s

CPU Time 2: 231.938s

Total Thread Count: 1
Paused Time 2: 0s



✓ Elapsed Time <sup>②</sup>: 110.235s
⑤ CPU Time <sup>②</sup>: 110.223s
Total Thread Count: 1

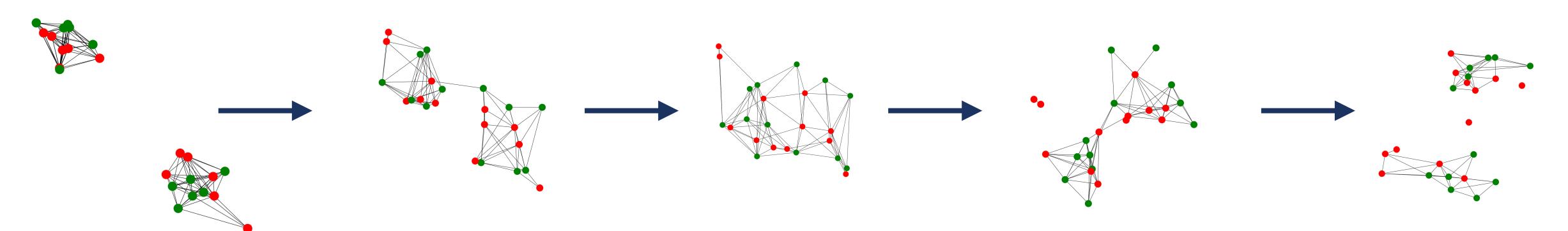
Paused Time (17):

Deep Learning to accelerate NIMs

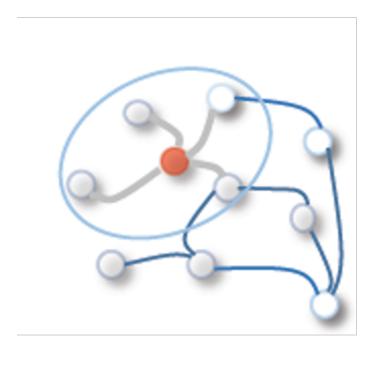
Starting from a proof-of-concept study on G4-QMD

# Graph Networks Simulator approach

Train a Graph Neural Network to emulate the interaction dynamics

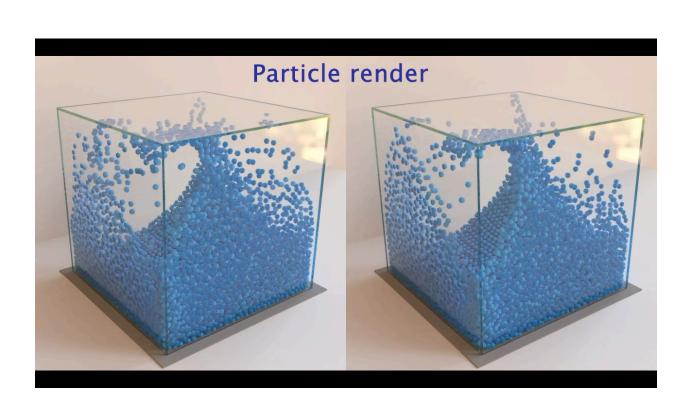


Each nucleon is a node of the graph



Convolve the central node's representation with its neighbours' representations

[A. Sanchez-Gonzalez et al. "Learning to simulate complex physics with graph networks." PMLR, 2020.]

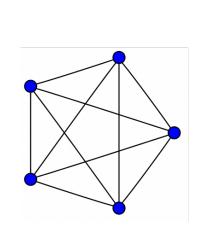


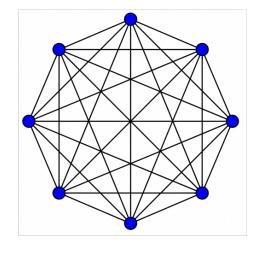
### Drawbacks

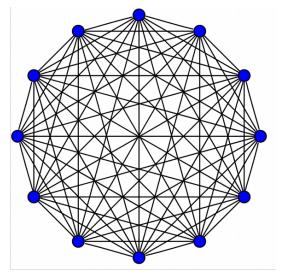
- Quantities are conserved on average
- Comparable performance to Euler method

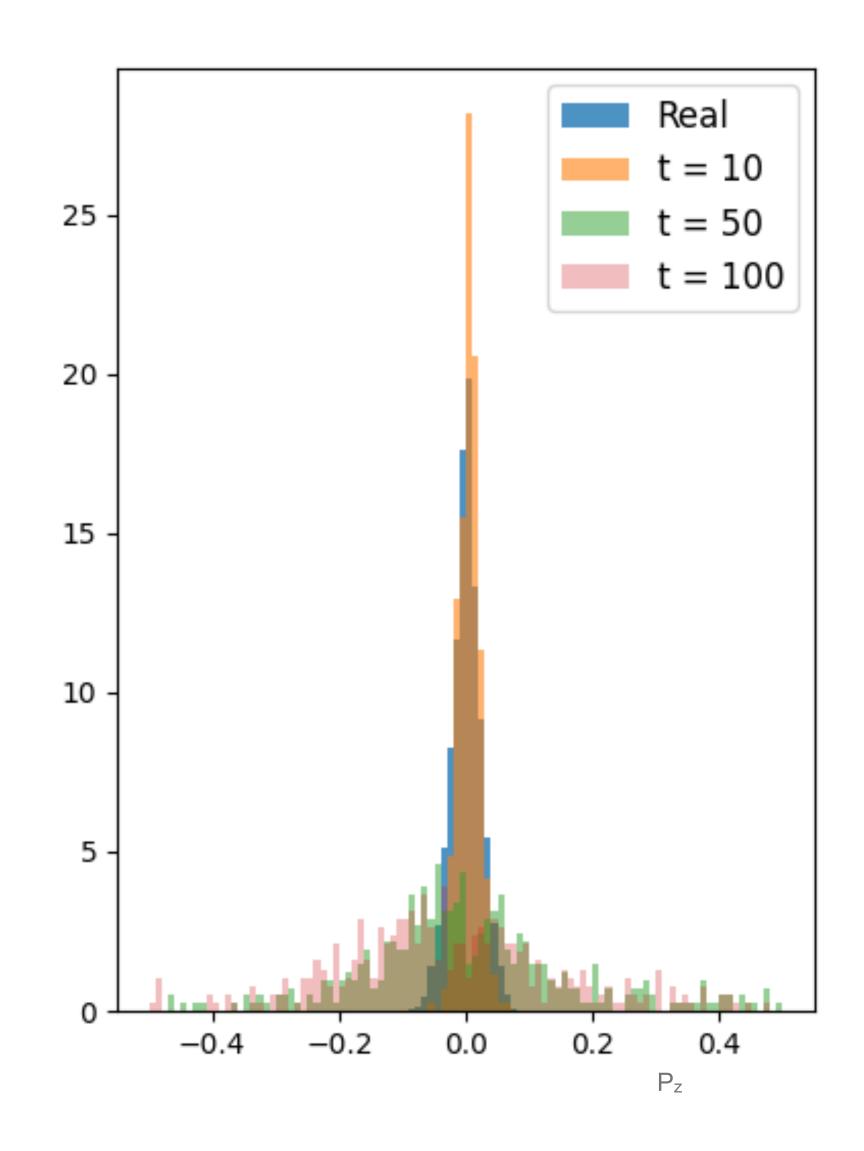
Results with fully connected graph

• 
$$N_{edges} \propto N^2$$









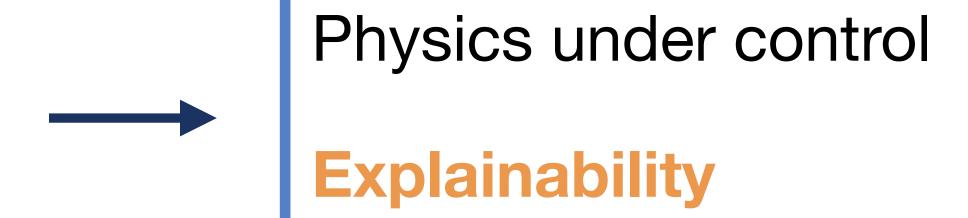
# Going Hybrid

### Why?

- Approximating complex functions with Neural Networks
- Leveraging GPU acceleration for ultra-fast execution

#### How?

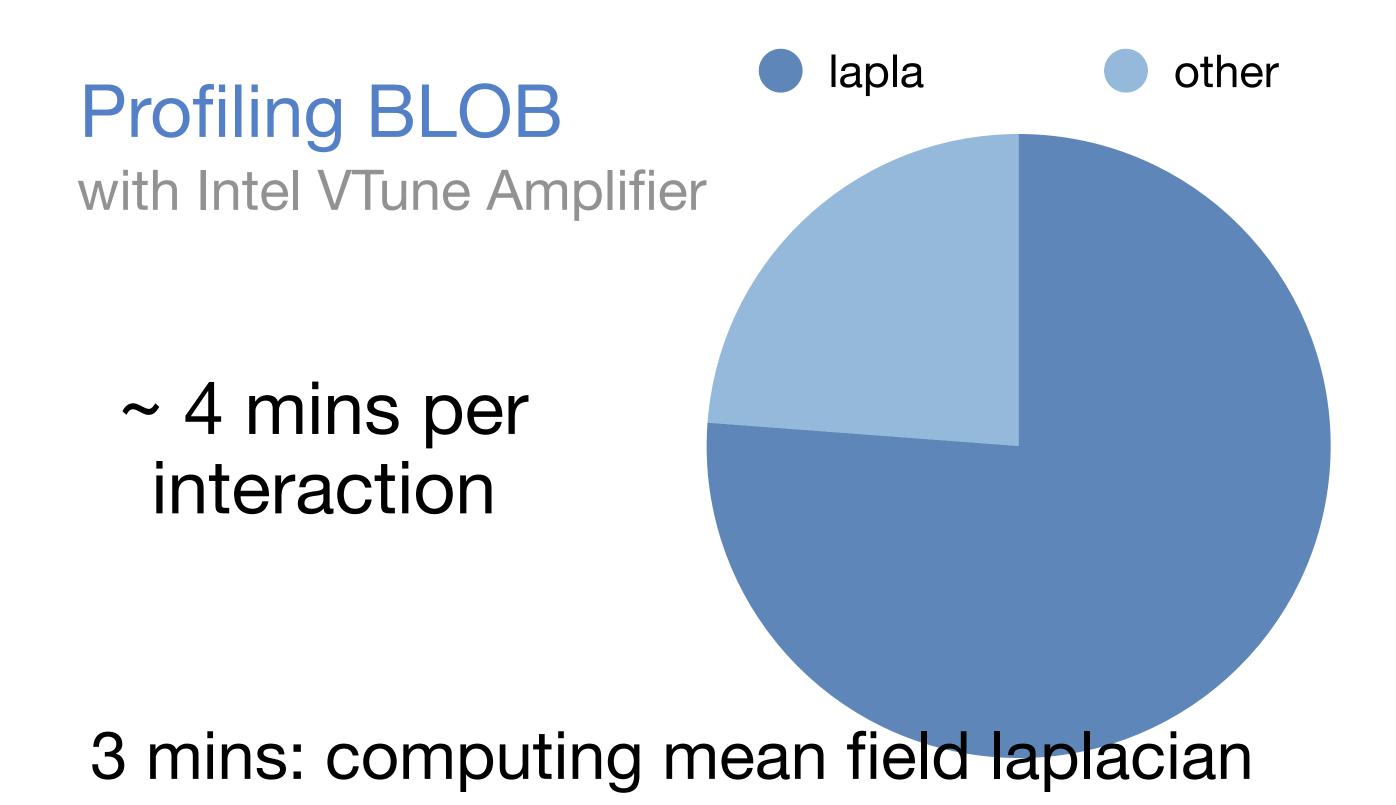
Building Physics-inspired architectures



# What to emulate?

### The Potential

#### It is the Bottleneck



### Elapsed Time <sup>②</sup>: 110.235s

O CPU Time :: 110.223s Total Thread Count:

Paused Time <sup>®</sup>:

### Top Hotspots

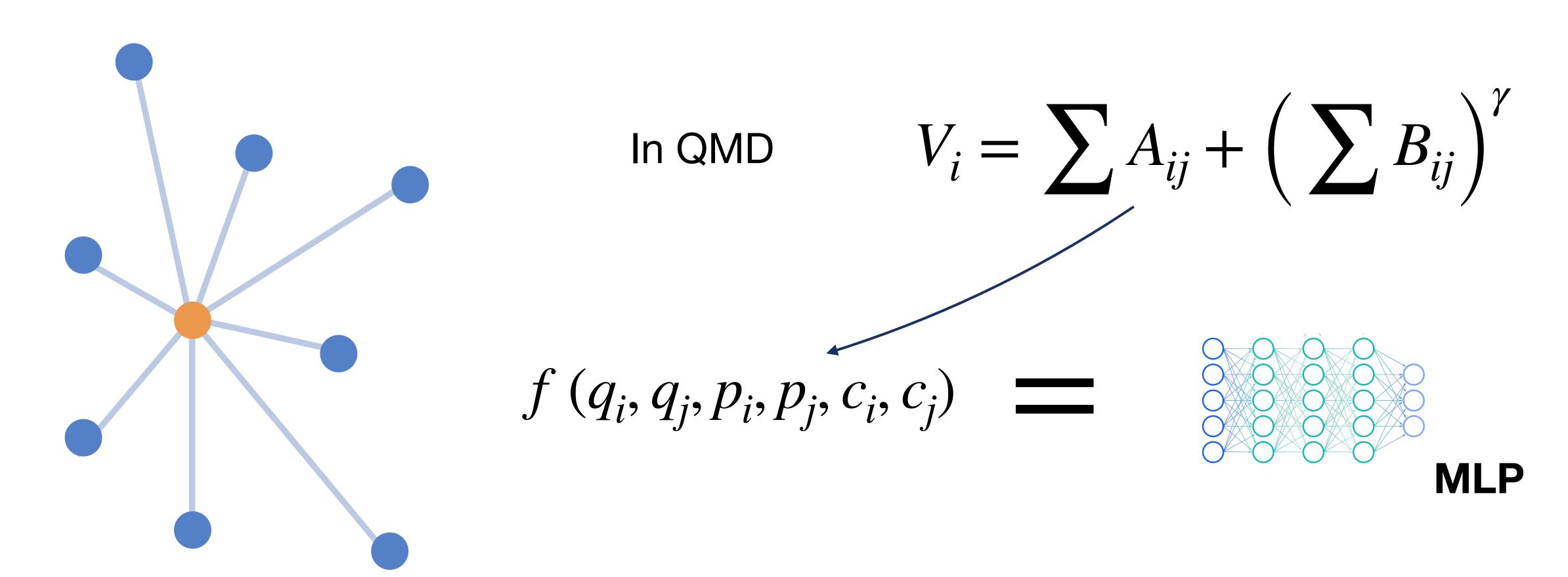


This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

| Function             | Module    | CPU Time ③ |
|----------------------|-----------|------------|
| lapla                | run       | 56.086s    |
| erff                 | libm.so.6 | 17.038s    |
| define_two_clouds_rp | run       | 9.051s     |
| sortrx               | run       | 7.450s     |
| powf                 | libm.so.6 | 5.184s     |
| [Others]             |           | 15.414s    |

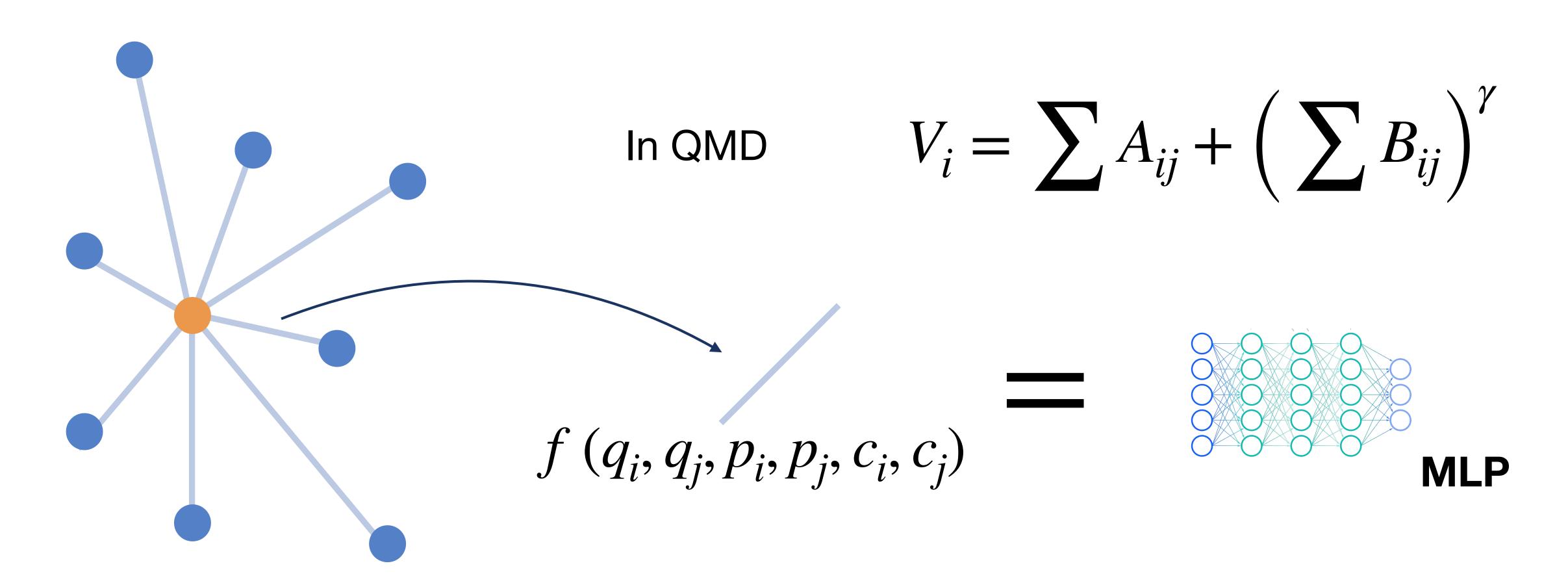
## Learning the Potential: DL model

#### Particle-wise MLP for Potential Prediction



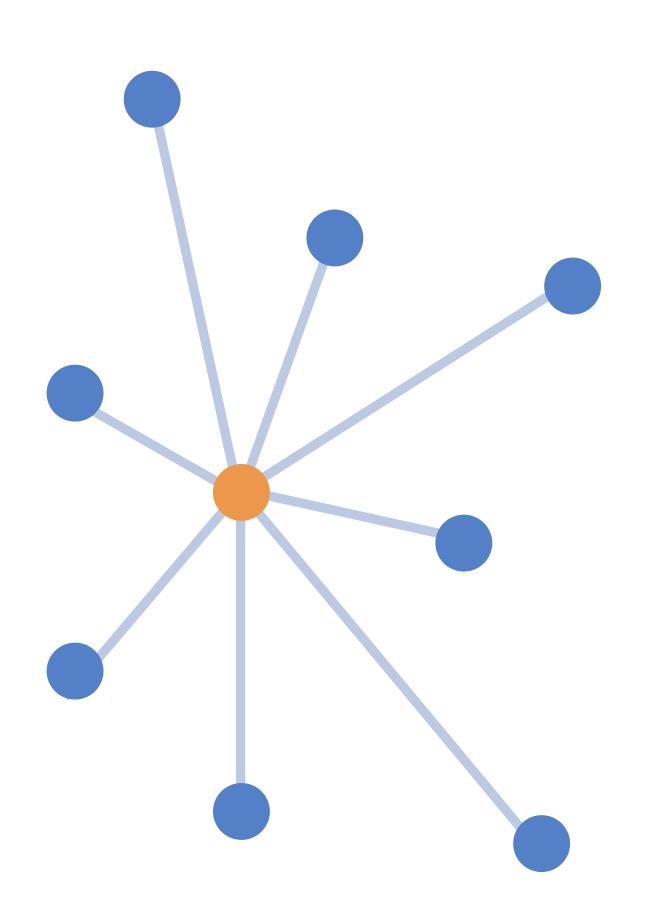
## Learning the Potential: DL model

#### Particle-wise MLP for Potential Prediction



# Learning the Potential: DL model

#### Particle-wise MLP for Potential Prediction



Building a DL model which:

• is coherent with the Physics

Two body interactions embedded in the architecture

works with any number of particles

Particles are treated in batch

### **Potential Predictions**

#### C12 on C12 at 62 MeV/u

#### Model:

5 layers MLP + ReLu + LayerNorm

#### Data:

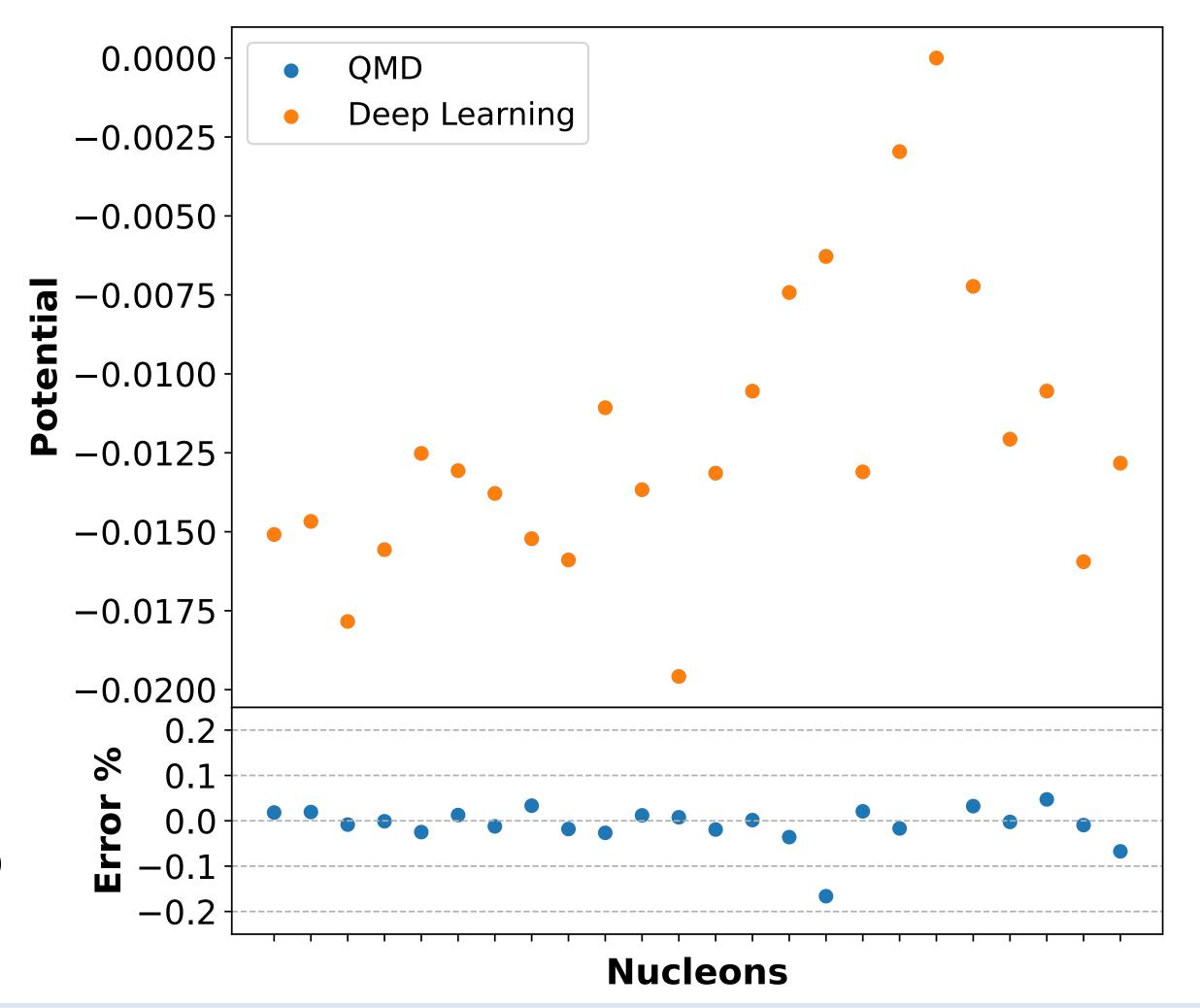
23k stories

10 events

24 particles: ~5 M examples

Training: ~3d training on Nvidia V100

Results: Median Relative Error 0,05 %



### Implementation in Geant4

Exporting the DL models from pytorch to ONNX

Using ONNX C++ API ----



substituting GetPotential() Method in QMD

```
G4double MyQMDMeanField::GetPotential_dl( G4int i )
    -----PREDICT WITH DEEP LEARNING ------
 return static_cast<G4double>( ONNXInterface::GetInstance()->Generate(i, system)[0]);
```

### Thread-safe implementation

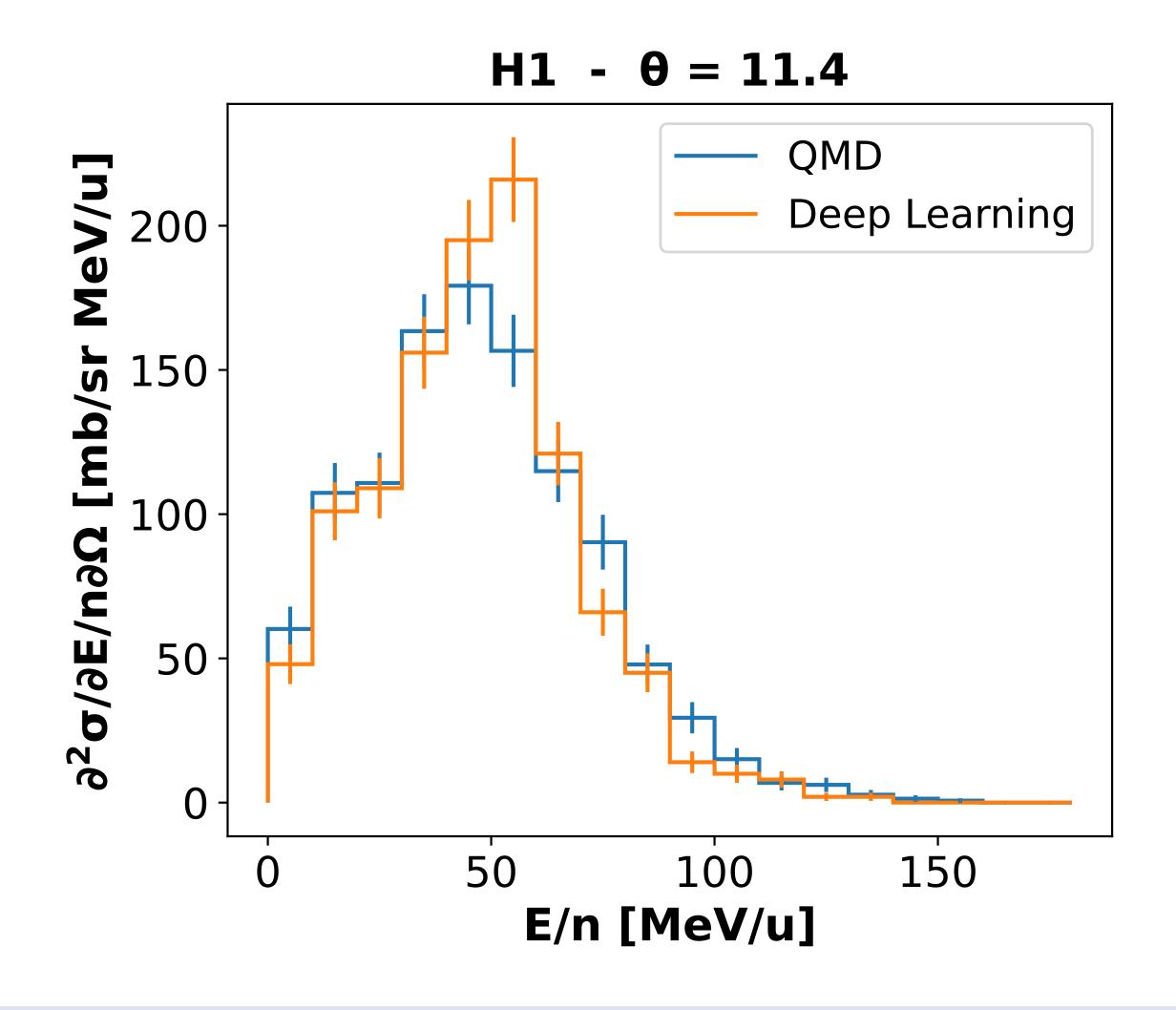
### Test on the Potential

Simulating the reaction:

C12 on C\_nat at 62 MeV/u

Interfacing DL model with Geant4

 Reasonable accuracy on double differential cross section of lighter fragments



### Test on the Potential

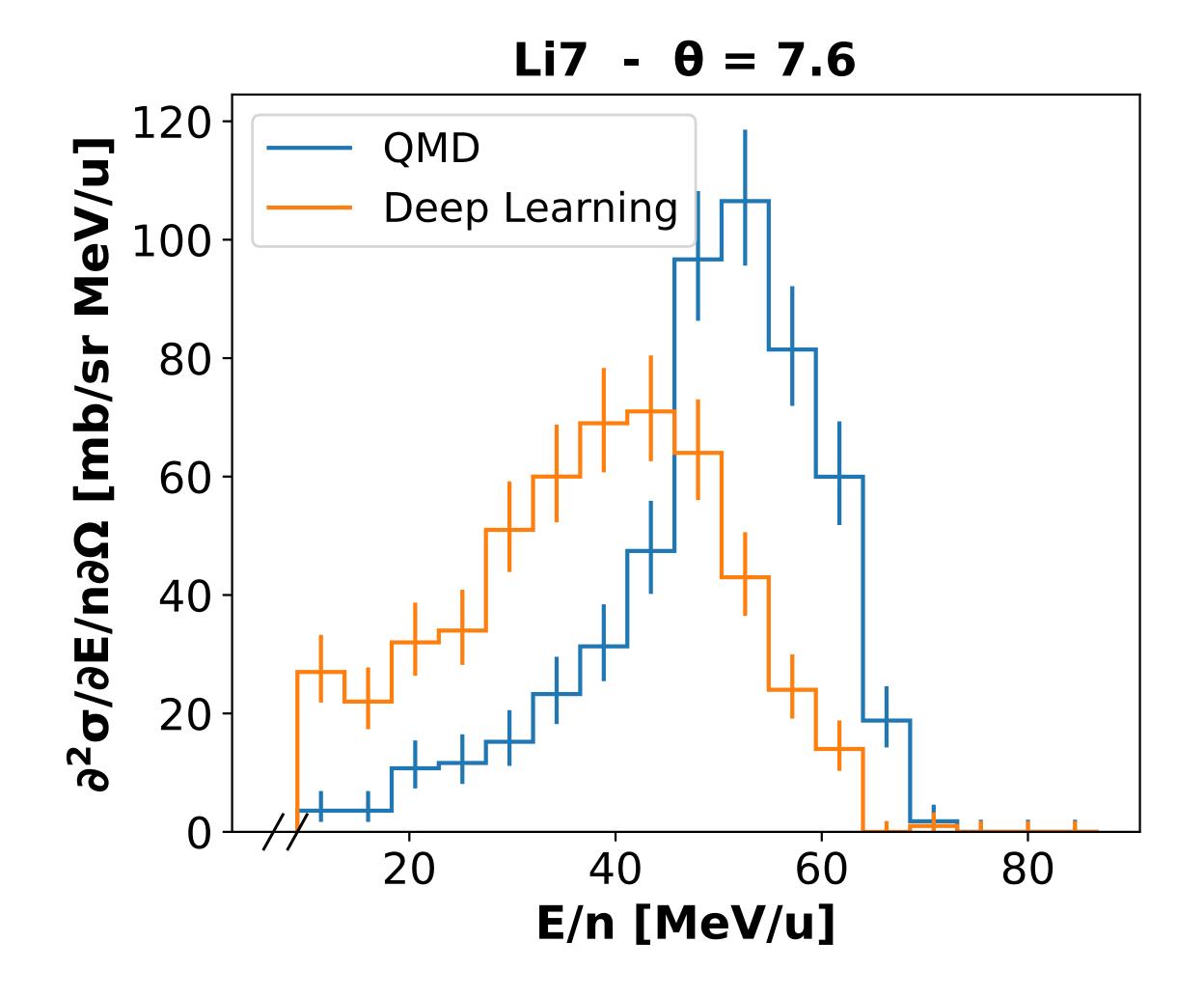
**However:** for heavier fragments

 Even small errors on the potential propagate badly to the double differential cross sections

It is not the bottleneck!

**Only 4%** 

of QMD execution time



## Another possibility

#### **Derivatives of the Hamiltonian**

1) Cross sections are resilient to 1-2% errors

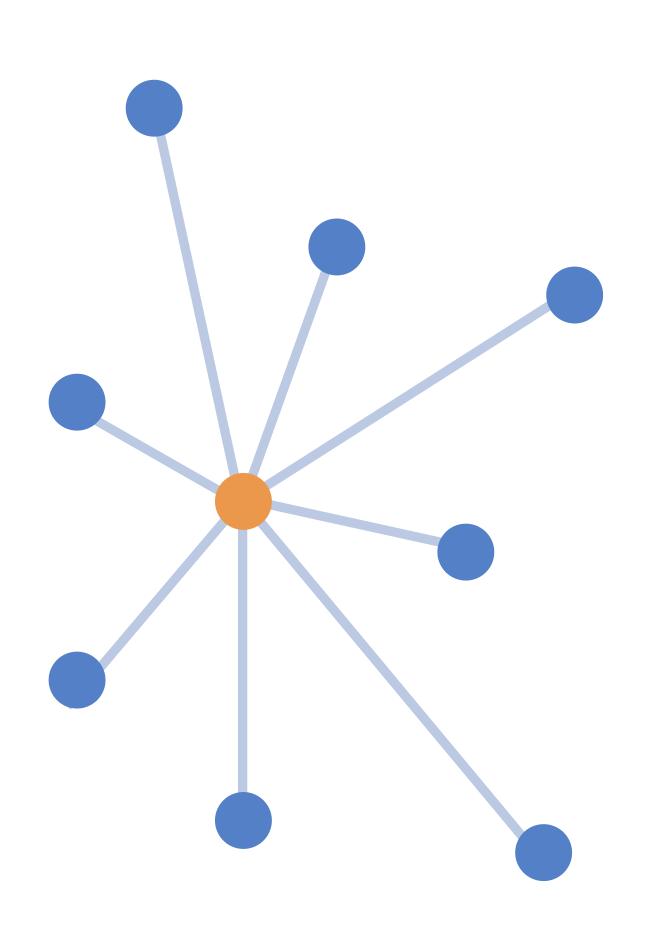
| Callees                            | CPU Time: Total ▼ ③ |
|------------------------------------|---------------------|
| ■ MyQMDReaction::ApplyYourself     | 100.0%              |
| ■ G4QMDMeanField::DoPropagation    | 88.7%               |
| ► G4QMDMeanField::CalGraduate      | 47.5%               |
| G4QMDMeanField::Cal2BodyQuantities | 40.5%               |

Emulating  $\frac{\partial H}{\partial q}, \frac{\partial H}{\partial p}$ 

2) This is the bottleneck!

CalGraduate() is 50% of QMD

### Emulating the derivatives



Same architectural design of the Potential model

$$\frac{\partial H}{\partial q, p} \approx \sum_{ij} A_{ij} + \sum_{\alpha^{(k)}} \left(\sum_{ij} B_{ij}^{(k)}\right)^{\alpha^{(k)}}$$

Approximating the derivatives

Hyper-parameter optimization on the number of terms K

### Derivatives prediction

Model:  $2 \alpha^{(k)}$  terms + 5 layers MLP + ReLu + LayerNorm

#### Data:

12k stories

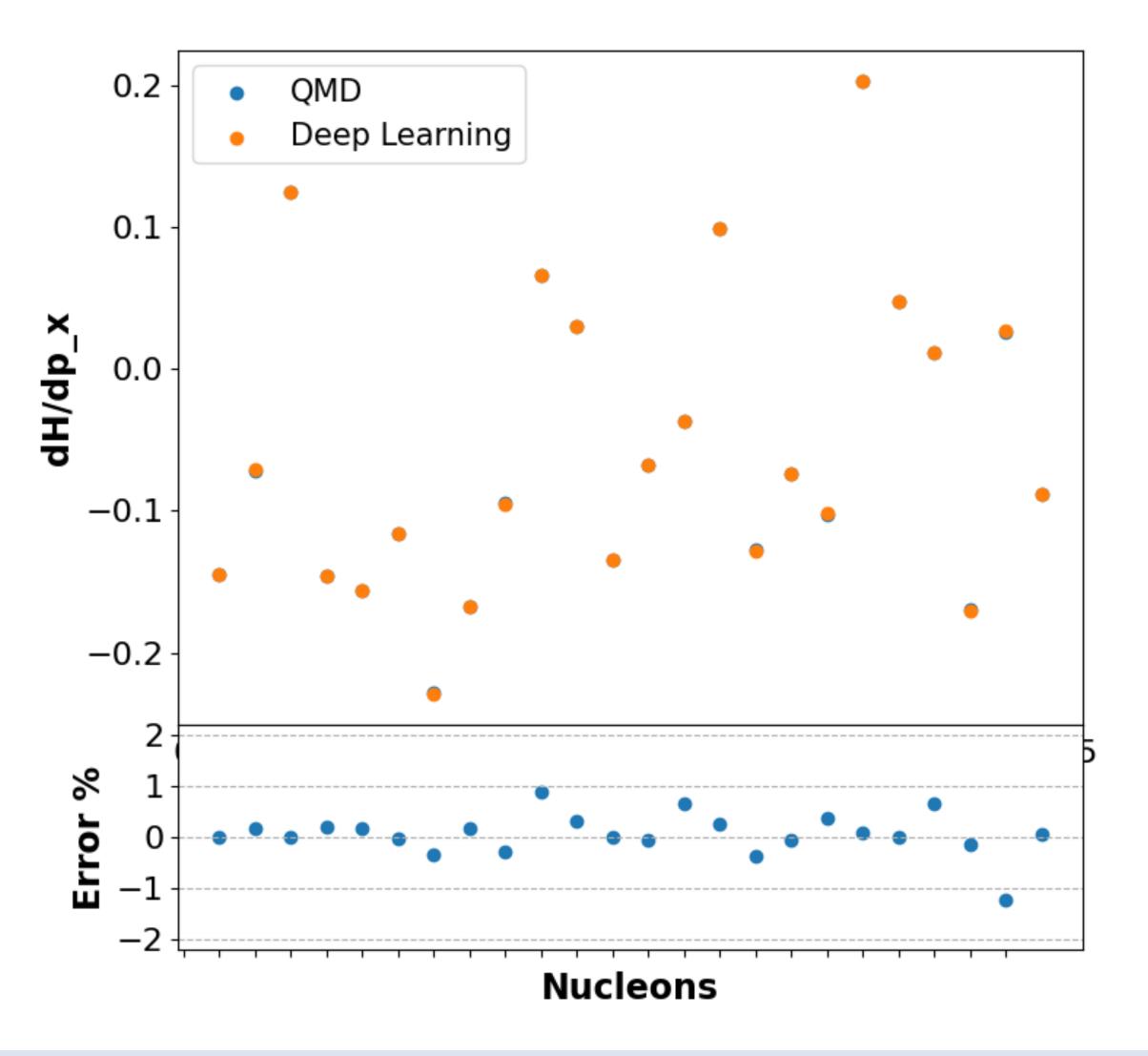
1 events

24 particles: ~300k examples

Training: ~3h training on Nvidia V100

Results: Median Relative Error 0,6 %

#### C12 on C12 at 62 MeV/u



## Implementation in Geant4

Exporting the DL models from pytorch to ONNX

Using ONNX C++ API ----



substituting CalGraduate() Method in QMD

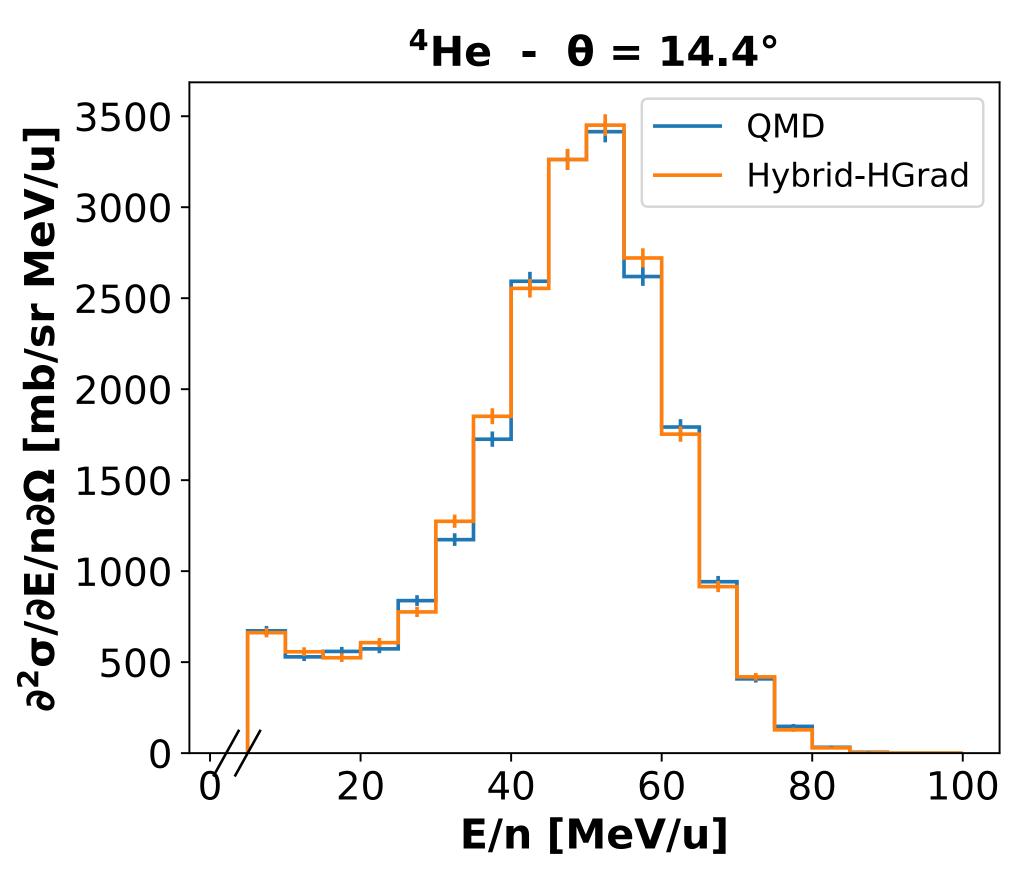
```
void MyQMDMeanField::CalGraduate dl()
  ffr.resize( system->GetTotalNumberOfParticipant() );
  ffp.resize( system->GetTotalNumberOfParticipant() );
                      PREDICT WITH DEEP LEARNING
 auto gradients = ( ONNXInterface::GetInstance()->Generate(system));
  ffr = gradients[0];
  ffp = gradients[1];
```

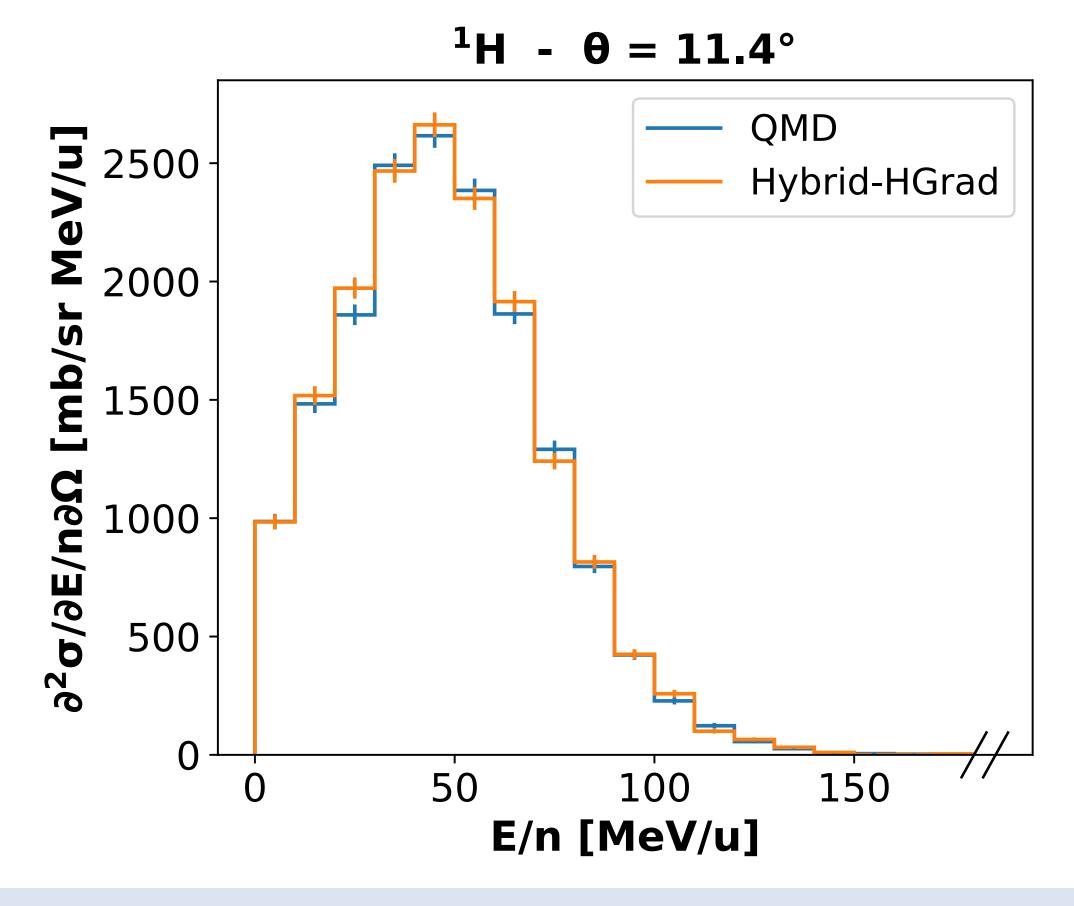
Thread-safe implementation

### Double differential cross sections

### **Emulating H Grad**

 $^{12}C$  on  $^{nat}C$  at 62 MeV/u



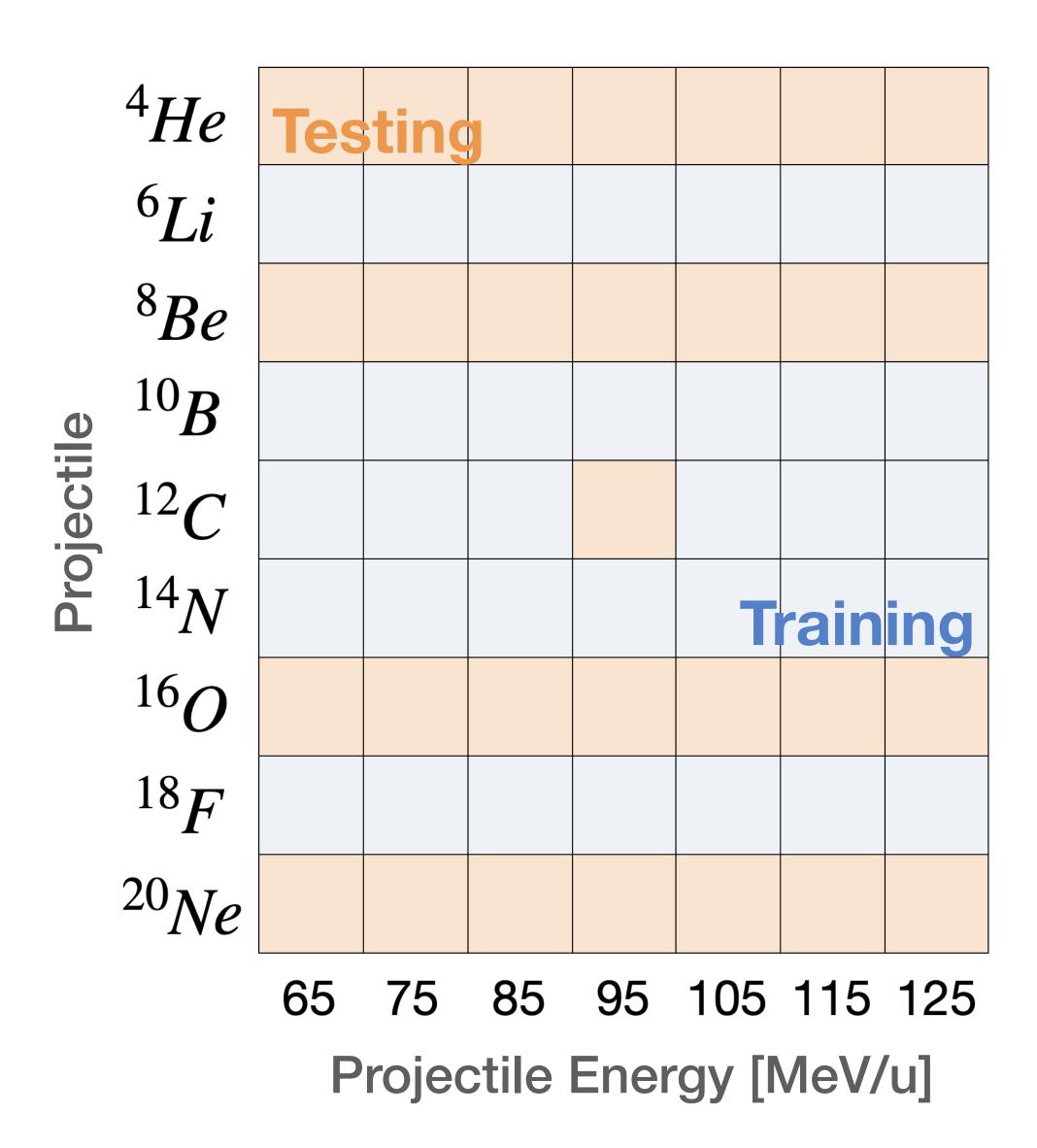


## Multi Ion Training

- Extension to multi ions and energies
- Extension to Light Ion QMD

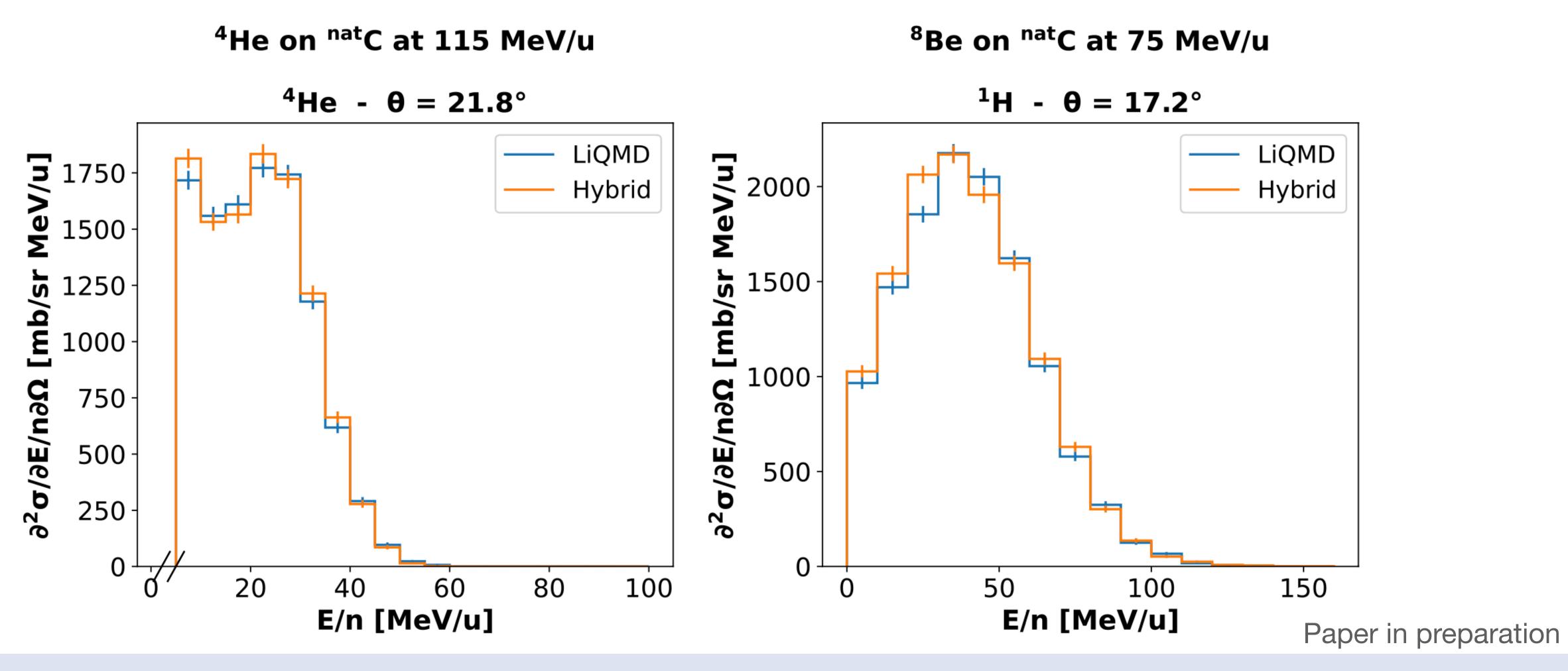
Recent QMD optimization

$$\frac{\partial H}{\partial q, p} \approx \sum_{ij} A_{ij} + \sum_{\alpha^{(k)}} \left(\sum_{\alpha^{(k)}} B_{ij}^{(k)}\right)^{\alpha^{(k)}}$$



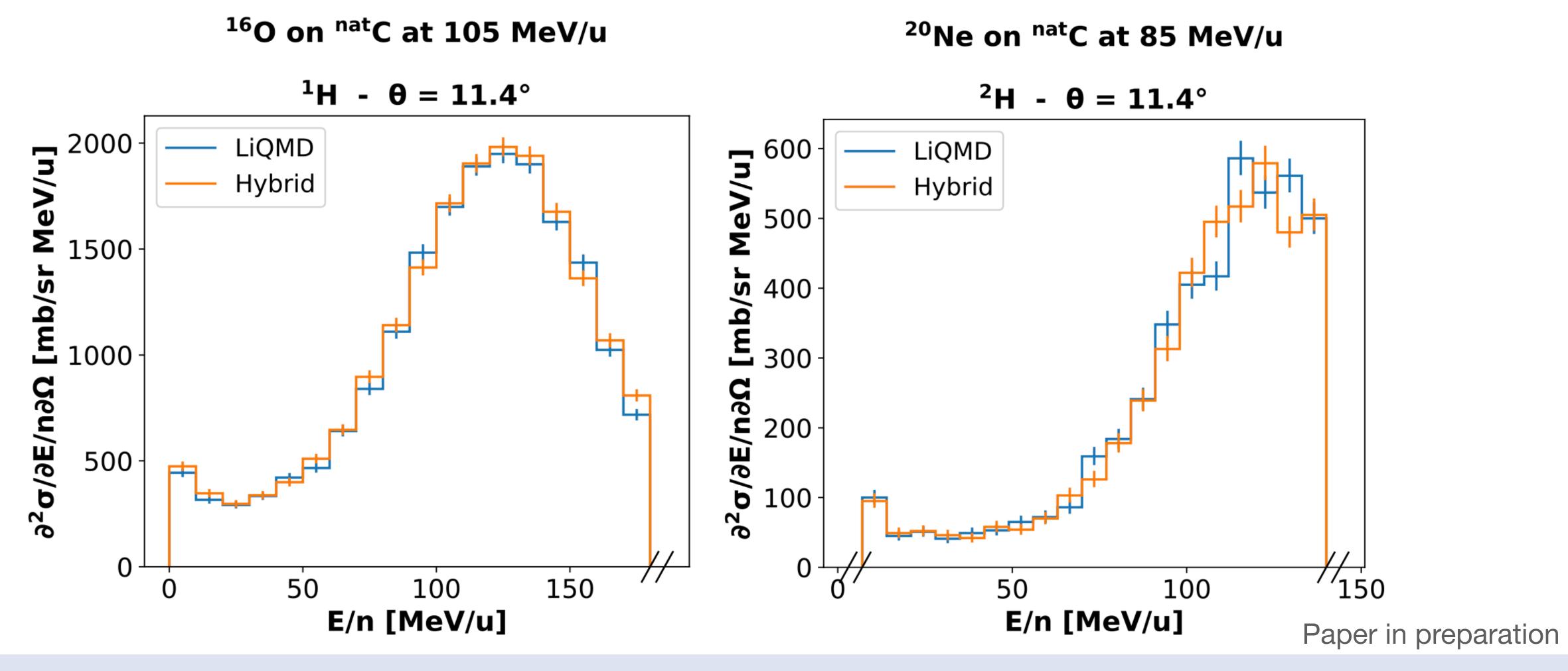
### Double differential cross sections

#### **Test set**



### Double differential cross sections

#### **Test set**



# Next steps

**Extension to BLOB** 

## Next steps

#### **Extension to BLOB**

#### Full DL modeling

Inputing the potential removes the need for fully connected geometry

Emulating tracking and collisions with GNN

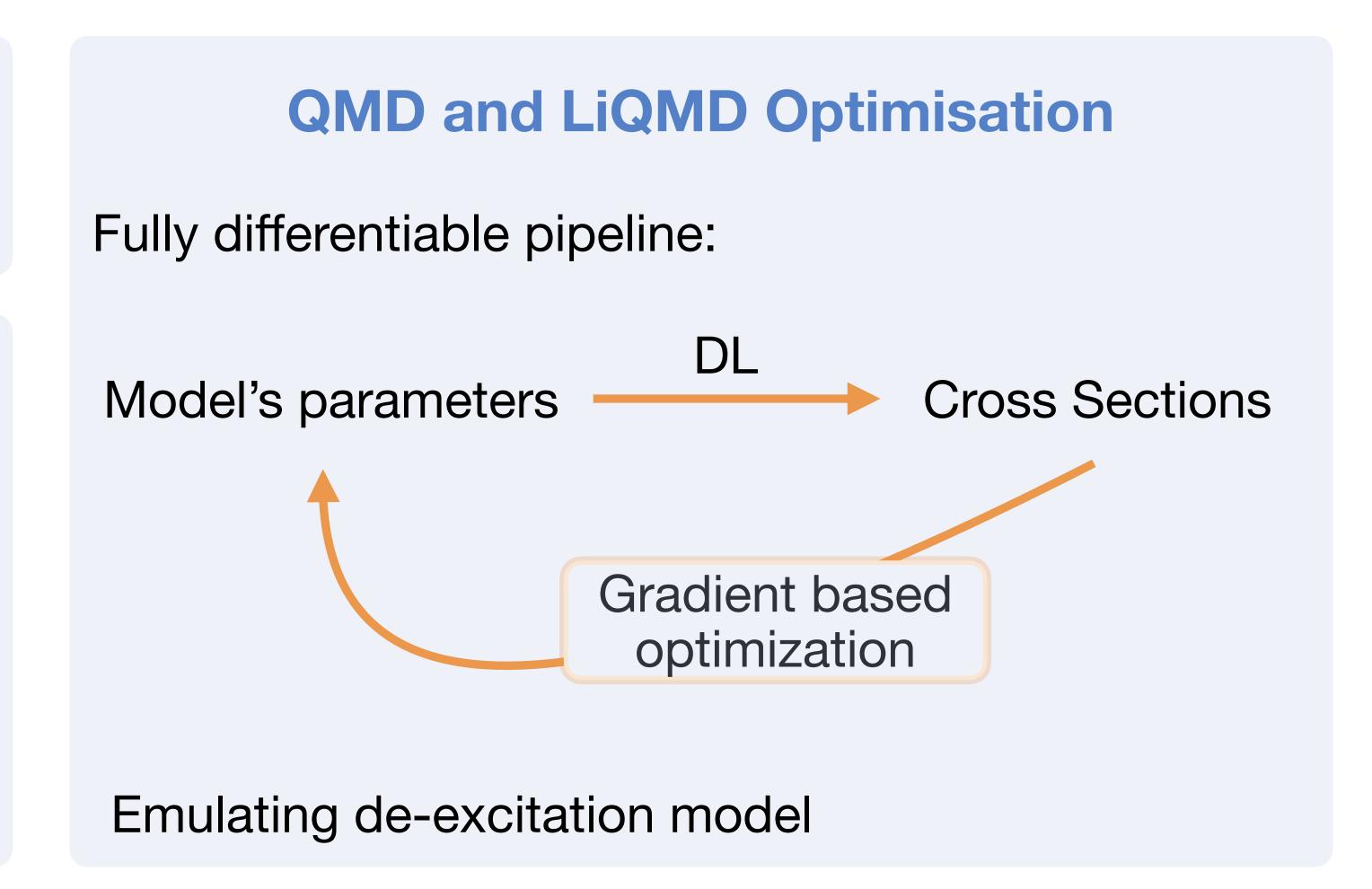
## Next steps

#### **Extension to BLOB**

#### Full DL modeling

Inputing the potential removes the need for fully connected geometry

Emulating tracking and collisions with GNN



# Thank you for your attention!

- Nuclear interaction models in Geant4:
  - Sophisticated models are slow
  - No dedicated model under 100 MeV/u
- Deep Learning approach for model emulation
  - Emulation of Hamiltonian derivatives with DL for QMD
  - Multi ion training to achieve generalization
  - Possible model optimization or speed-up



# Backup



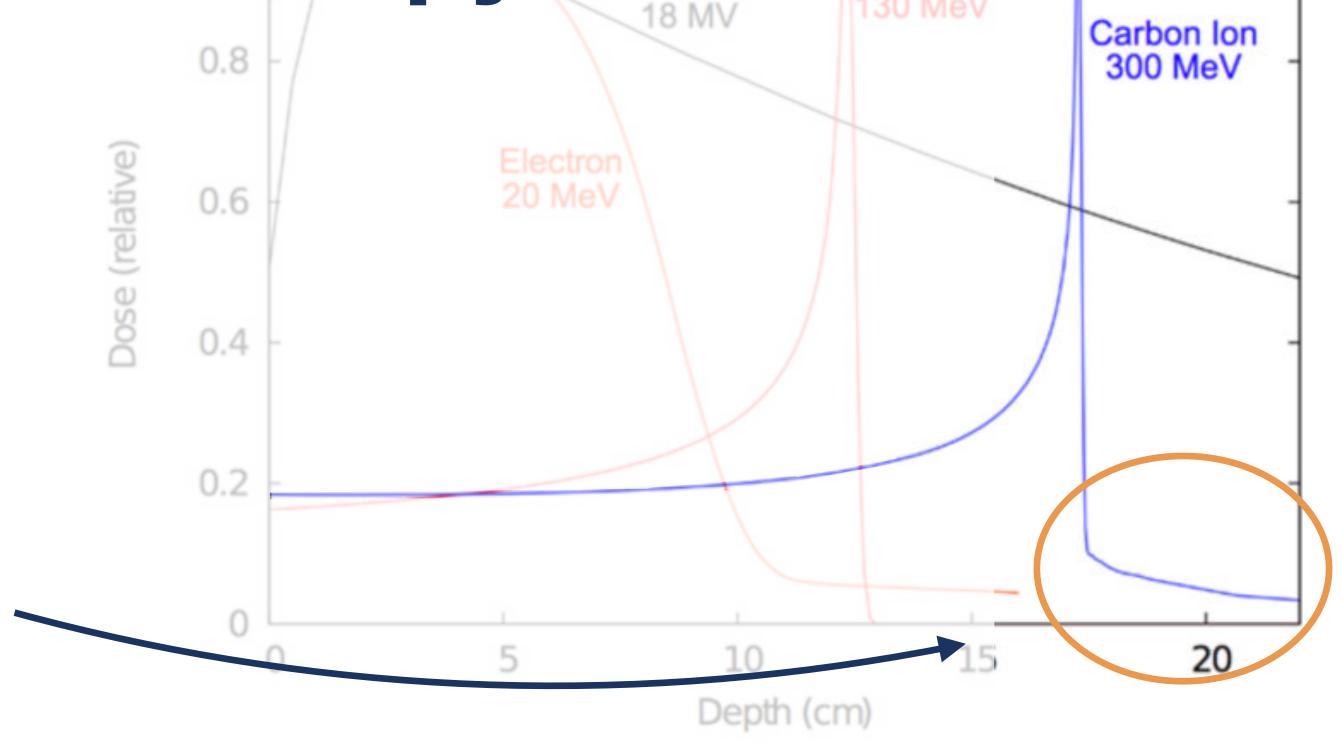
Carbon Ion Radiation Therapy

High biological effectiveness

Subject to fragmentation



Responsible for the tail in the dose distribution



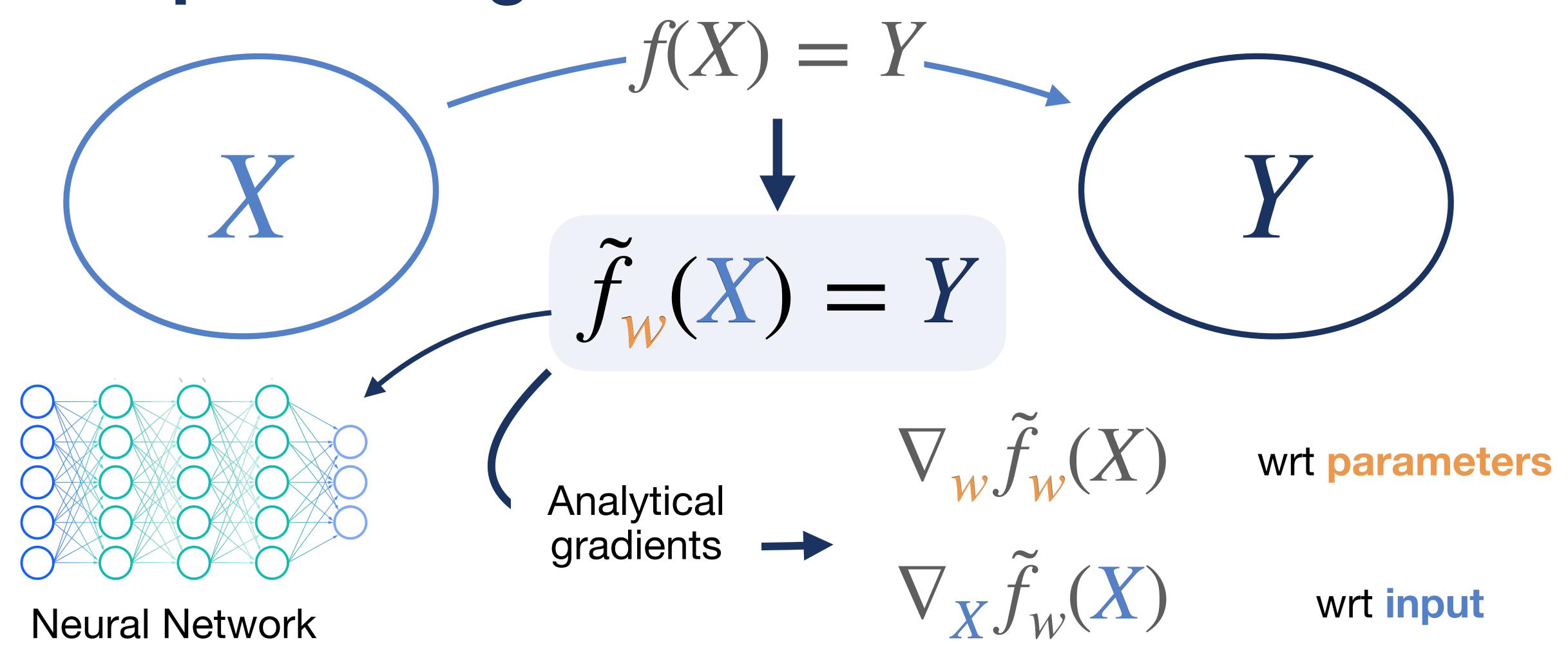
Photon

Proton

130 MeV

Accurate modeling of fragmentation is crucial Lack of dedicated nuclear interaction models under 100 MeV/u

### Deep Learning



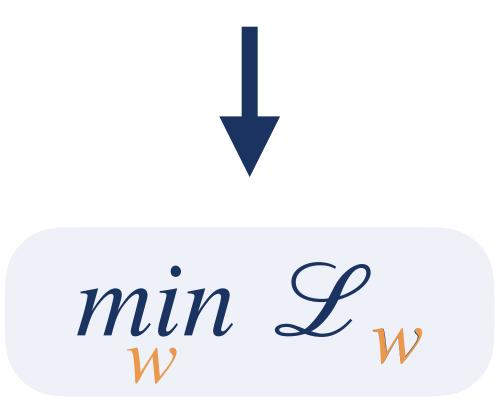
# Differentiability

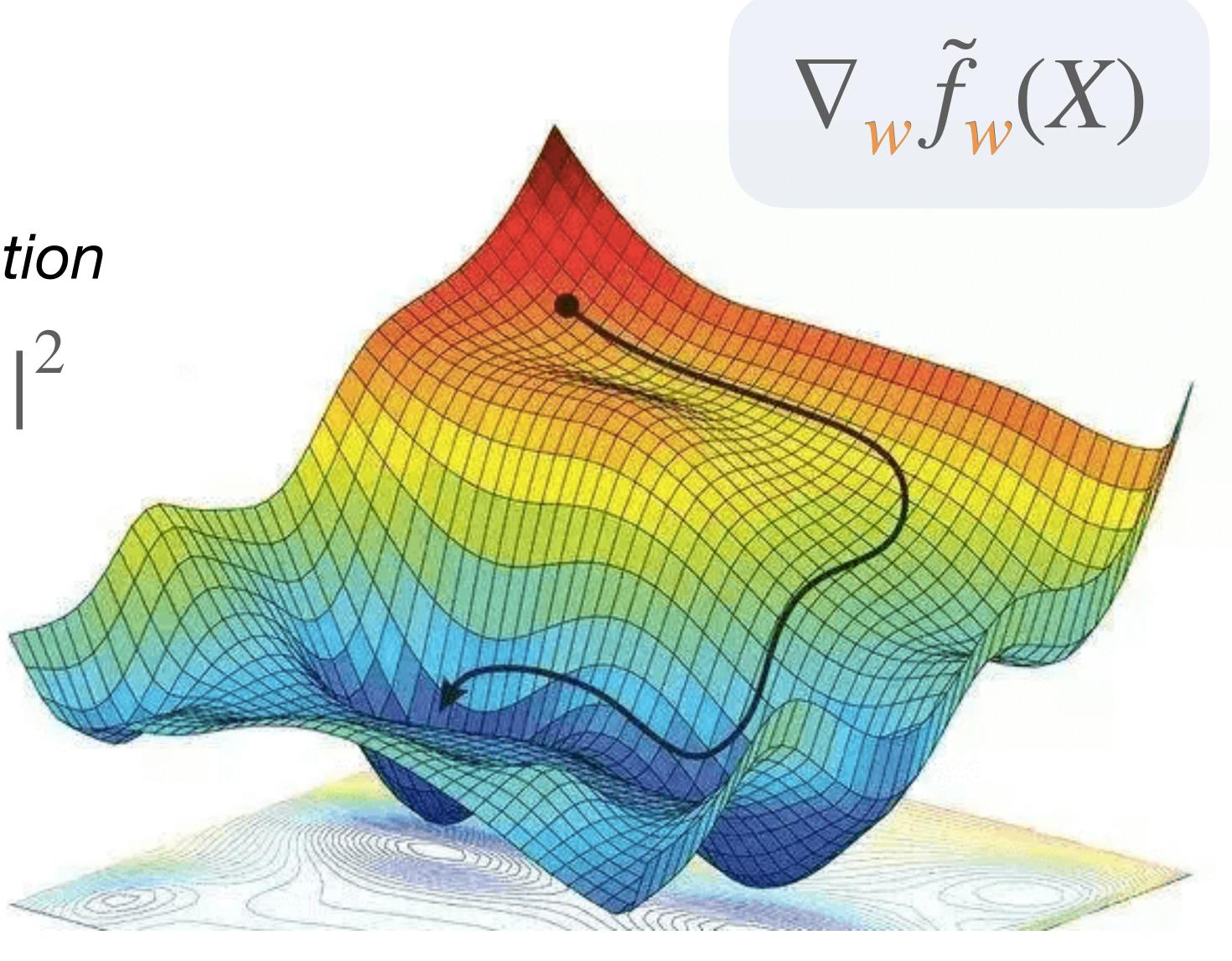
Training a Neural Network

Minimization of a Loss Function

$$\mathcal{L}_w = |f(X) - \tilde{f}_w(X)|^2$$

**Gradient descent** 



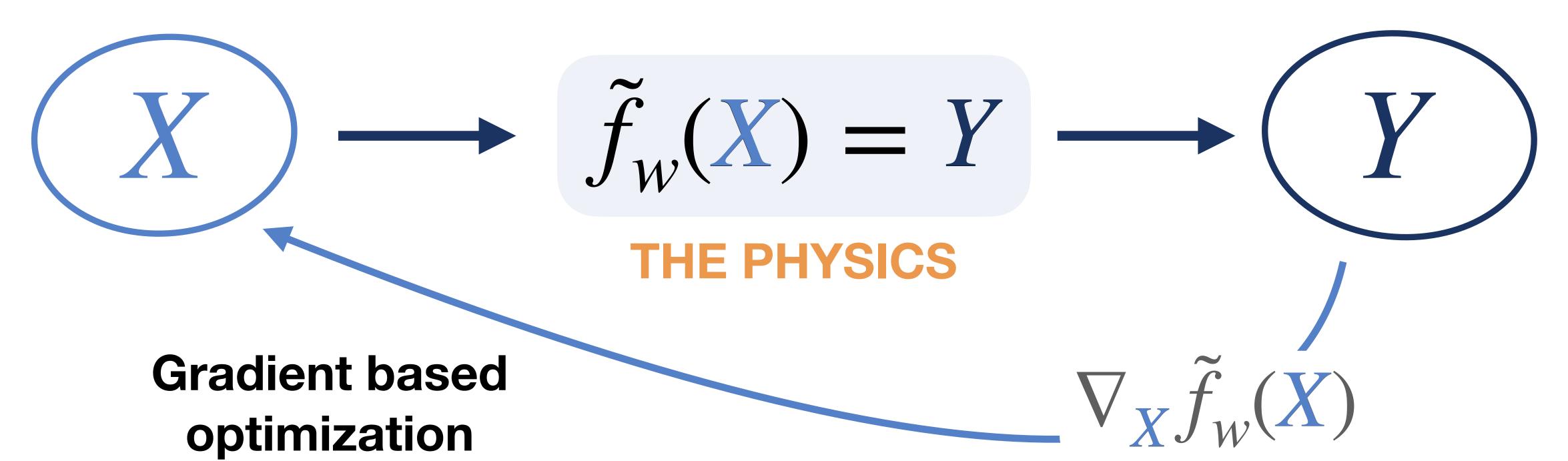


## Differentiability

### After the training

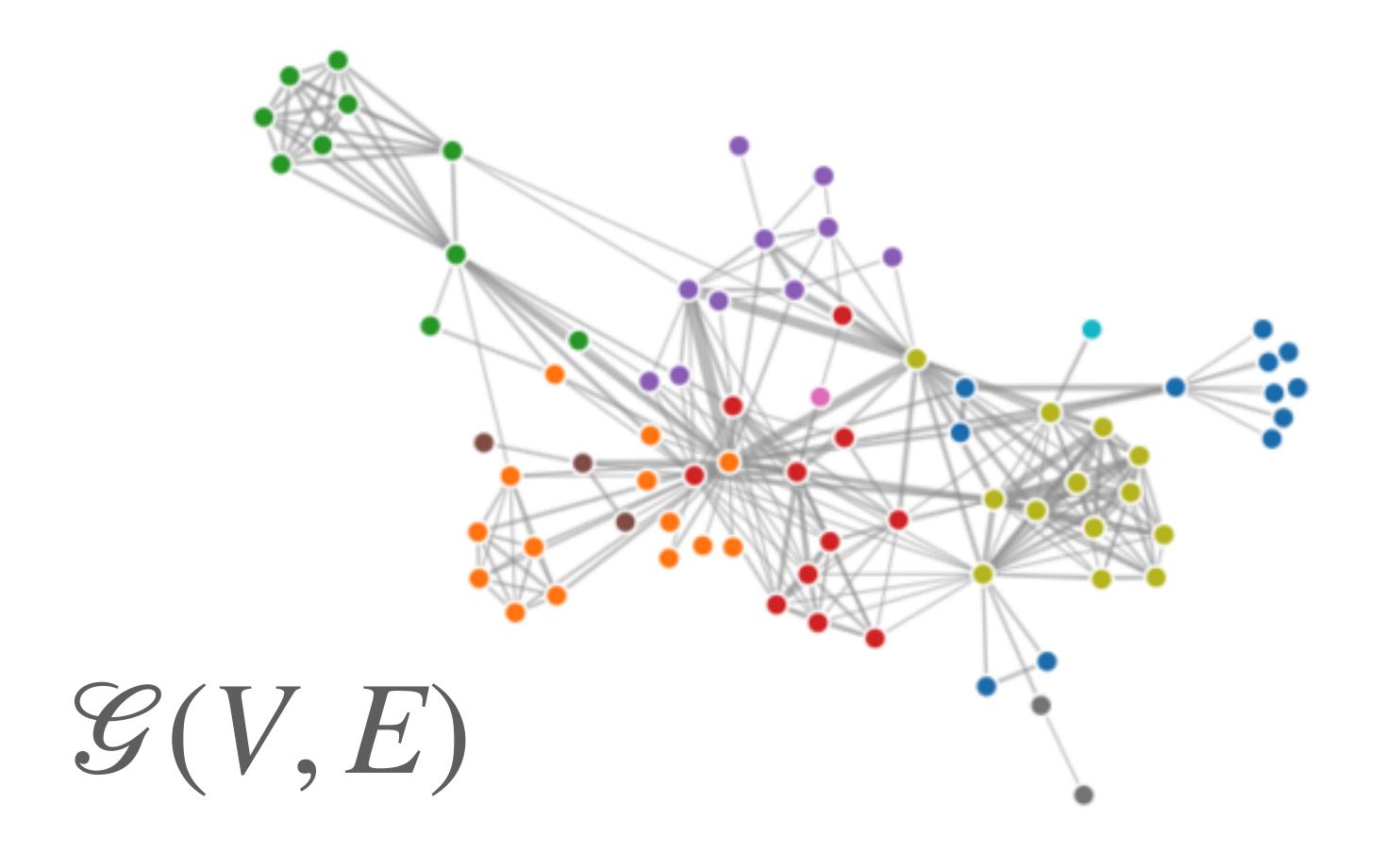
Fast and Accurate approximation of f(X)

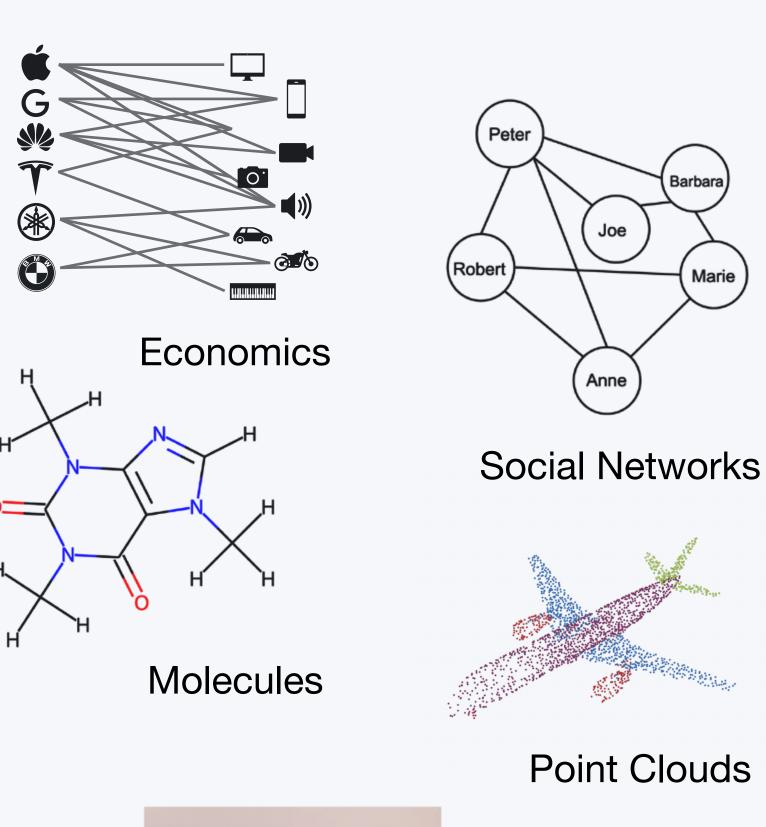
Fix the weights w  $\longrightarrow$   $\tilde{f}_w(X)$  is differentiable with respect to X

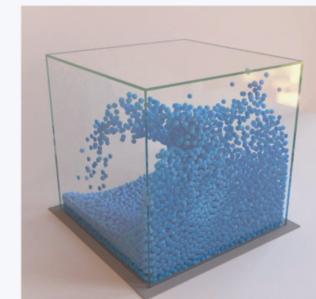


## Graph Neural Networks

Learning on Graphs

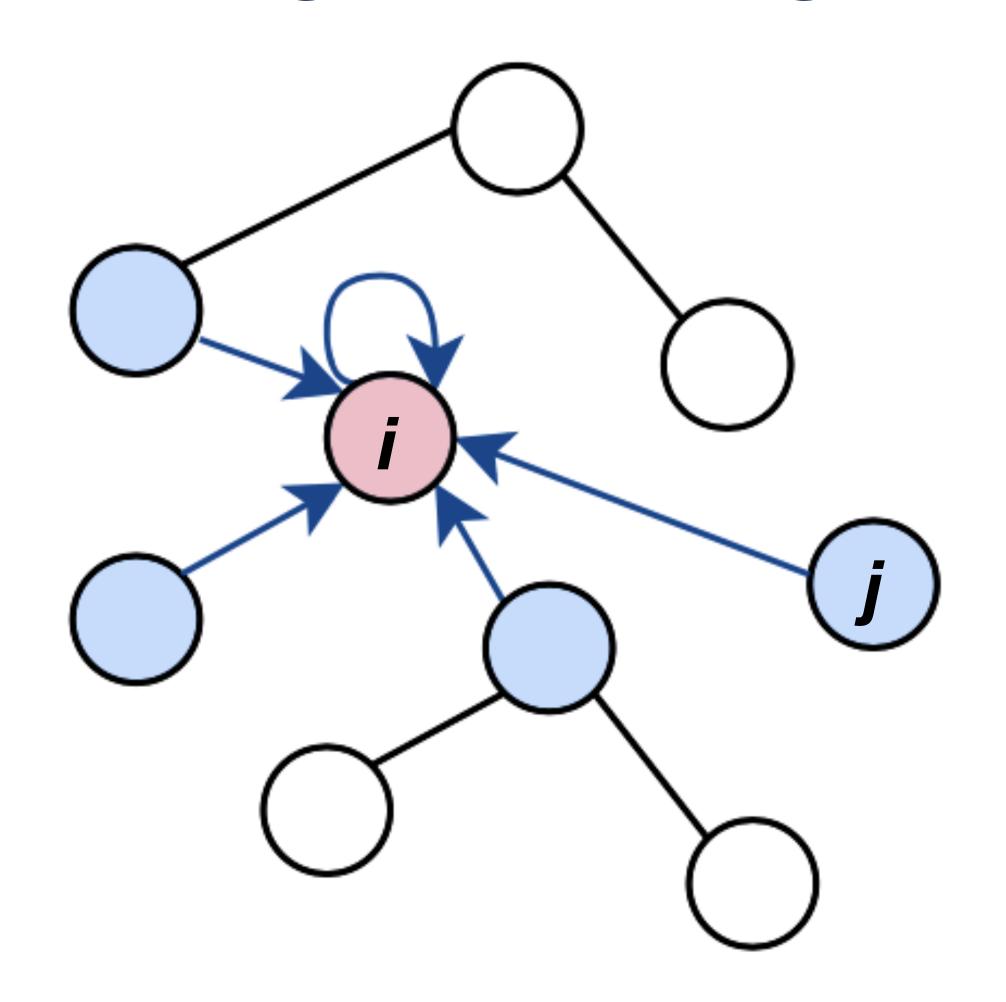




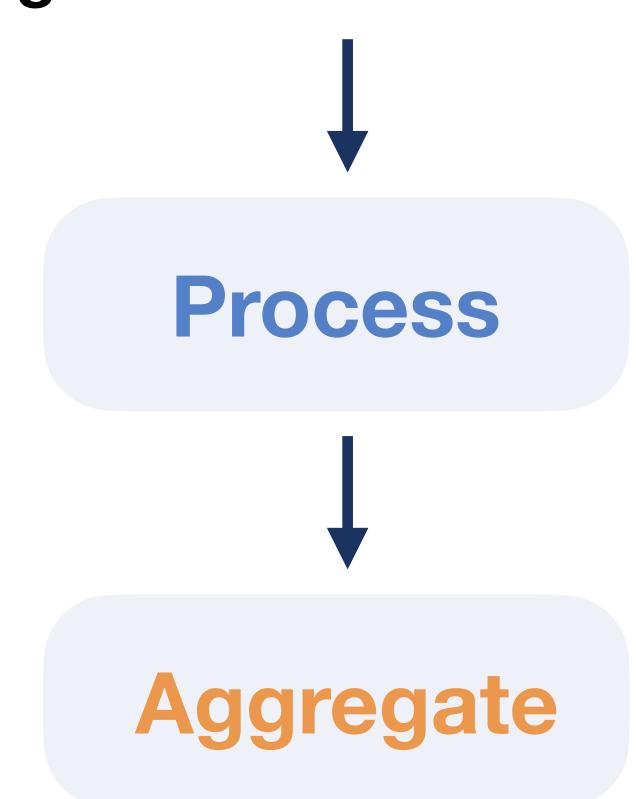


Physics Simulations

## Message passing



### **Neighborhood information**



Learning on nodes

Learning on edges

### QMD

Quantum extension of the classical molecular dynamics

Nucleons — Gaussian wave packet

$$arphi_i(\mathbf{r}) = rac{1}{(2\pi L)^{3/4}} \exp\left(-rac{(\mathbf{r} - \mathbf{r}_i)^2}{4L} + rac{i}{\hbar} \mathbf{r} \cdot \mathbf{p}_i\right)$$

#### **Covariant Hamiltonian**

$$H = \sum_{i} \sqrt{\mathbf{p}_i^2 + m_i^2 + 2m_i V_i}$$

#### **Equation of motion**

$$\dot{\mathbf{r}}_i = \frac{\partial H}{\partial \mathbf{p}_i}, \qquad \dot{\mathbf{p}}_i = -\frac{\partial H}{\partial \mathbf{r}_i}$$

### QMD Potential

$$V_{i} = \frac{A}{2\rho_{0}} \sum_{j \neq i} \rho_{ij} + \frac{B}{\gamma + 1} \frac{1}{\rho_{0}^{\gamma}} \left( \sum_{j \neq i} \rho_{ij} \right)^{\gamma} + \frac{g_{0}}{2\rho_{0}} \sum_{j \neq i} f_{sij} \rho_{ij} + \frac{g_{\tau}}{\rho_{0}^{\eta}} \left( \sum_{j \neq i} \rho_{ij} \right)^{\eta} + \frac{C_{s}}{2\rho_{0}} \sum_{j \neq i} \tau_{3,i} \tau_{3,j} \rho_{ii} (1 - \kappa_{s} f_{sij})$$

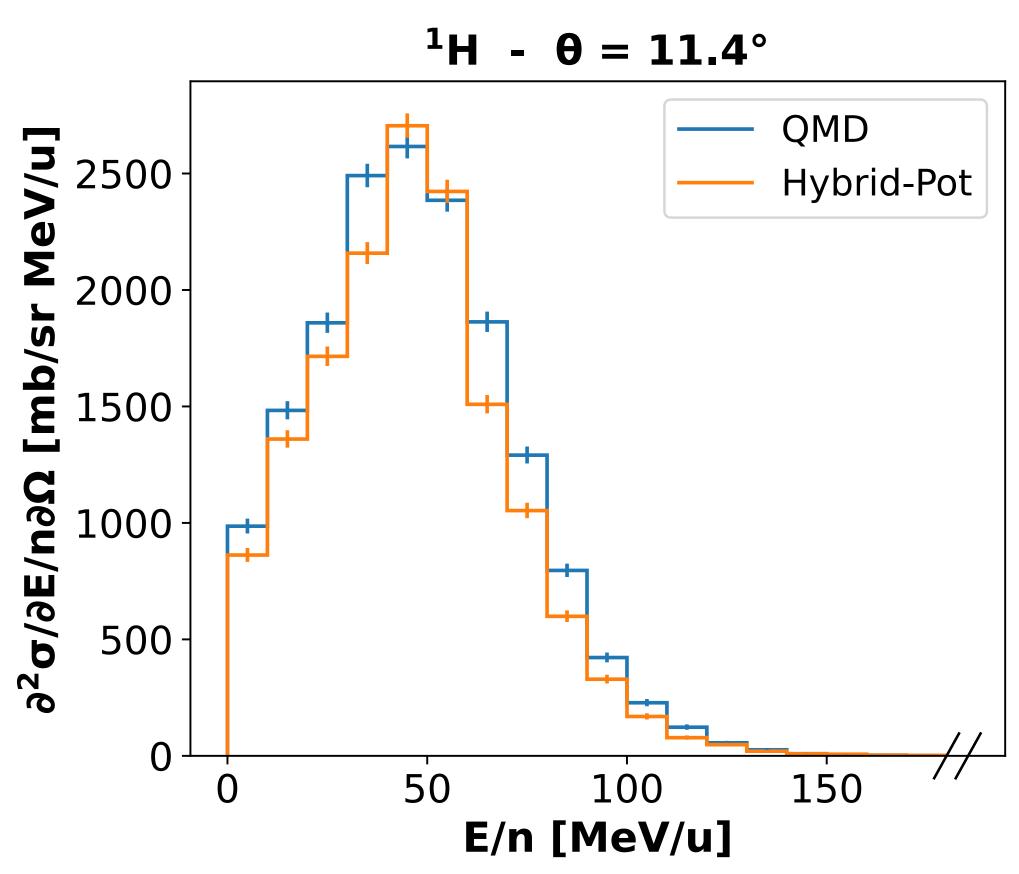
$$+\frac{C_s}{2\rho_0}\sum_{j\neq i}\tau_{3,i}\tau_{3,j}\rho_{ij}(1-\kappa_s f_{sij})$$

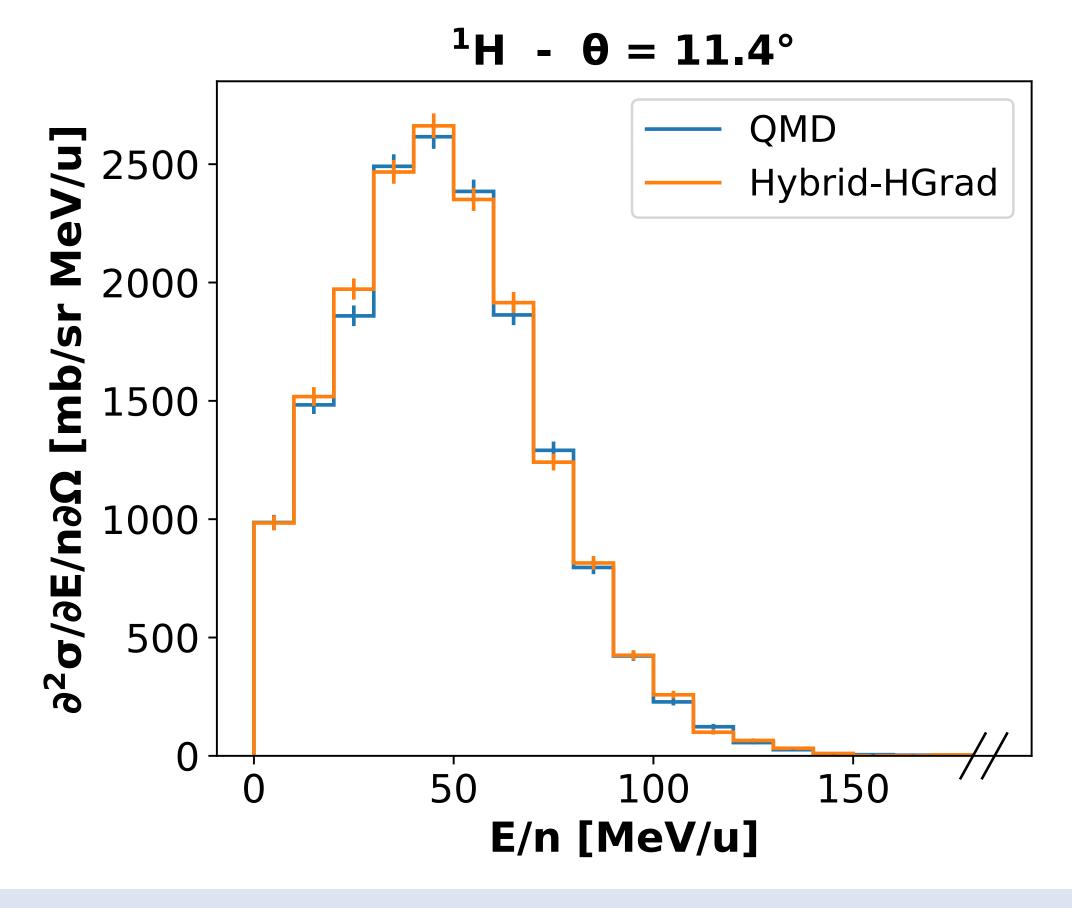
$$+ \frac{\alpha \hbar c}{2} \sum_{j \neq i} \frac{c_i c_j}{|\mathbf{r}_i - \mathbf{r}_j|} \operatorname{erf}\left(\frac{|\mathbf{r}_i - \mathbf{r}_j|}{\sqrt{4L}}\right)$$

### Double differential cross sections

### Lighter fragments

 $^{12}C$  on  $^{nat}C$  at 62 MeV/u

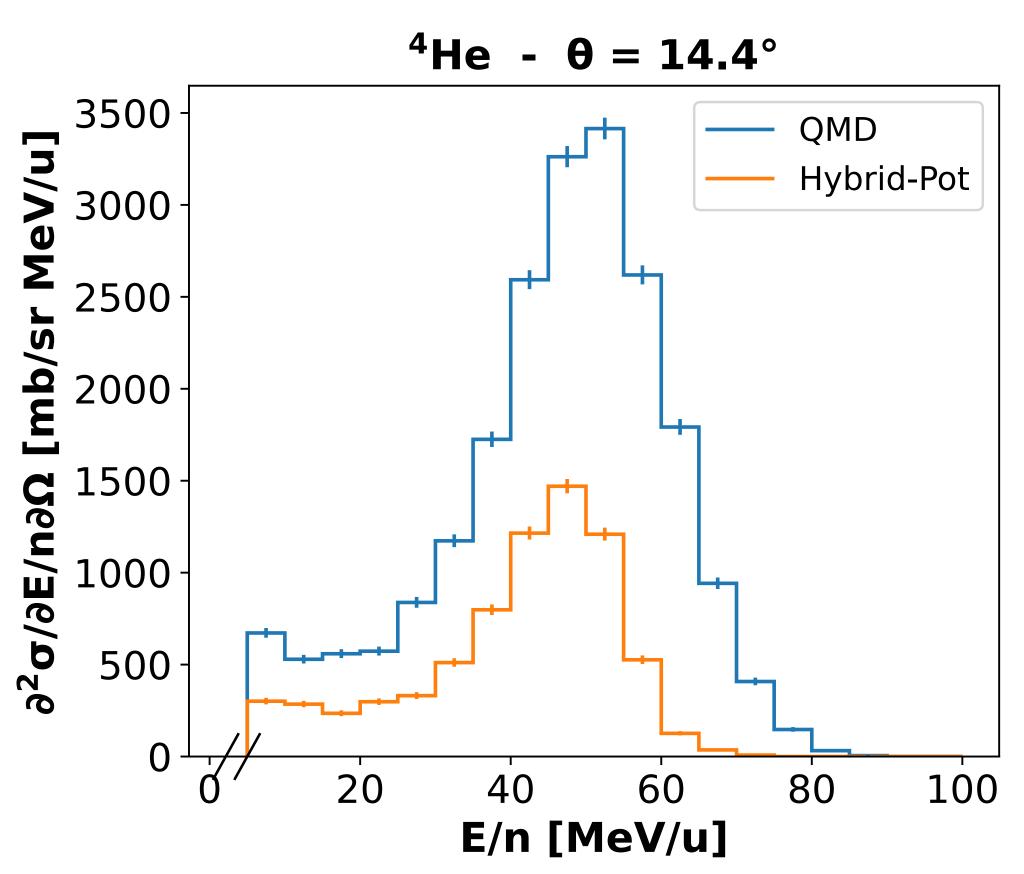


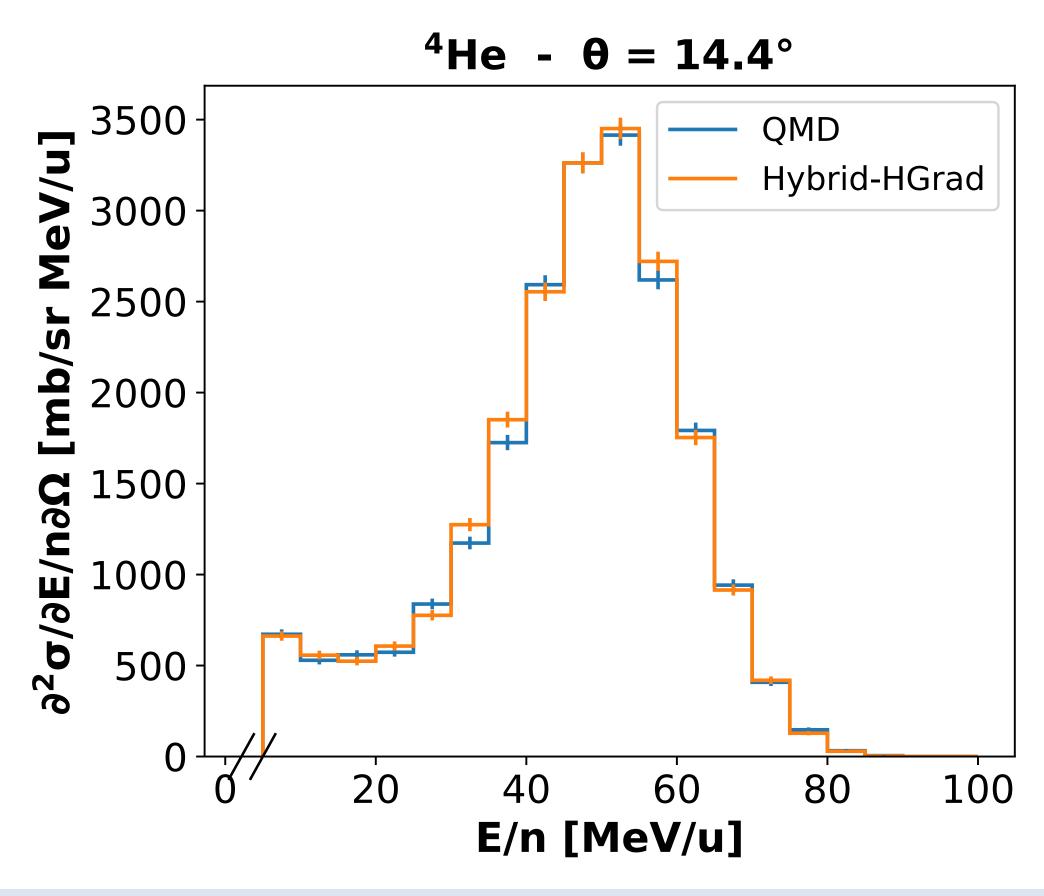


### Double differential cross sections

### Heavier fragments

 $^{12}C$  on  $^{nat}C$  at 62 MeV/u





44