

A Large Ion Collider Experiment

- Optimized for the study of the Quark Gluon Plasma (QGP) in heavy ion collisions at the CERN LHC
- Tracking and identification of particles in high multiplicity events
- ➤ Interest in low momentum (≤1 GeV/c) particle reconstruction

- Inner Tracking System 2 (ITS2): current vertex detector taking data since September 2021
- Largest Monolithic Active Pixel Sensor (MAPS) detector in highenergy physics
 - 7 layers: Inner Barrel (3 layers) + Outer Barrel (4 layers)
 - 1st layer radius 24 mm
 - Low material budget: $0.36\% X_0$ per layer

ITS3: upgrade of the ITS2

- Main physics motivations:
 - improve the precision in heavy-flavour measurements
 - enable detailed studies of (anti)(hyper)nuclei
 - observe rare short-lived states
- Basic idea: minimize material budget and distance to interaction point
- > ITS3 replaces the Inner Barrel of ITS2 in LS3
- 3 layers of MAPS divided into half-layers:
 - Innermost layer 4mm closer to IP
 - Large area sensors bent around beam pipe
 - · Self supporting, no rigid mechanical structure
 - Air cooling
 - No circuit boards
 - Layer thickness reduced to 0.09% X₀
- Improvement of a factor 2 in the impact parameter resolution with respect to ITS2

LOI: https://cds.cern.ch/record/2703140

TDR: https://cds.cern.ch/record/2890181

Bending of Silicon

Project target for thicknesses and bending radii are in a "not breaking" regime

- Full mock-up "μITS3": 6 ITS2 ALPIDE sensors bent to ITS3 target radii
- In-beam results show no performance degradation they work as flat chips!
- > Results validated on bent ITS3 small-scale prototypes

https://doi.org/10.1016/j.nima.2021.166280 https://doi.org/10.48550/arXiv.2502.04941

Mechanics and cooling solutions

- > Carbon foam used as support and radiator
- Air cooling to keep material budget low
- > Tests in wind tunnel using thermal mock-up with heaters & temperature sensors
- > Temperature rise well within limits, ΔT < 5° C
- \triangleright Vibrations perpendicular to beam axis \pm **0.4** μ m (RMS)

Development of the sensor

Project requirements:

- > 65 nm CMOS process
- Spatial resolution ~ 5 μm
- ➤ High efficiency > 99%
- \triangleright Low Fake Hit Rate (FHR) < 10^{-6} /pixel/event
- ightharpoonup Excellent radiation tolerance (up to 4 x10¹² 1 MeV n_{eq} cm⁻² and 400 krad)
- Wafer-scale chips
- ➤ Low power consumption 40 mW/cm² (air cooling)
- > 50 μm thick (bending)

Development of the sensor

Project requirements:

- ▶ 65 nm CMOS process
- Spatial resolution ~ 5 μm
- ➤ High efficiency > 99%
- ➤ Low Fake Hit Rate (FHR) < 10⁻⁶ /pixel/event
- Excellent radiation tolerance (up to 4 x10¹² 1 MeV n_{eq} cm⁻² and 400 krad)

Paola La Rocca – University & INFN Catania

TECHNOLOGY VALIDATION

MLR1: Multi Layer Reticle 1

→ first submission in the 65 nm technology
Small area test structures:

APTS
4x4 px matrix with
direct
analog readout

32x32 px matrix with digital asynchronous readout

64x32 px matrix with rolling shutter analog readout

DPTS https://doi.org/10.1016/j.nima.2023.168589

DPTS https://arxiv.org/abs/2505.05867

APTS https://doi.org/10.1016/j.nima.2024.169896

APTS https://doi.org/10.1016/j.nima.2024.170034

Development of the sensor

Project requirements:

- ➢ 65 nm CMOS process
- > Spatial resolution ~ 5 μm
- ➤ High efficiency > 99%
- ➤ Low Fake Hit Rate (FHR) < 10⁻⁶ /pixel/event
- ightharpoonup Excellent radiation tolerance (up to 4 x10¹² 1 MeV n_{eq} cm⁻² and 400 krad)
- Wafer-scale chips
- Low power consumption 40 mW/cm² (air cooling)
- > 50 μm thick (bending)

STITCHING

- Size of the chip usually limited to a few cm² by the reticle size in the production process
- Split the design on the reticle:

Left End Cap (LEC)

Repeated Sensor Unit (RSU)

Right End Cap (**REC**)

- Endcaps and multiple RSUs can be interconnected to a Segment
- Multiple independent Segments can be diced out together forming a wafer-scale sensor

Wafer-scale stitched MAPS

ENGINEERING RUN 1 (2022)

- > First MAPS wafer-scale stitched sensors
- ➤ Wafer with various dies (" MOSS ", MOST ", "babyMOSS")
- > MOSS: MOnolithic Stitched Sensor
 - Size (14 x 259 mm²):
 - 6.7 million pixels organised in 10 RSU
 - Each RSU subdivided in 8 individual regions

- > Detailed characterisation in:
 - Laboratory
 - Several tests beam at CERN PS and SPS beam lines

- > Detailed characterisation in:
 - Laboratory → functional yield higher than 98%
 - Several tests beam at CERN PS and SPS beam lines.

Before picking and bonding on carrier:

Wafer-probing

In laboratory, 3 main steps:

- Impedance tests between power nets
- Power ramp
- Functional tests

Tests on all 82 sensors from 14 wafers

→ Good performance, uniform behavior, high yield

- > Detailed characterisation in:
 - Laboratory → functional yield higher than 98%
 - Several tests beam at CERN PS and SPS beam lines.

Region 0

Type: 2.5 μ m gap $I_{bias} = 62$ DAC $I_{biasn} = 100$ DAC $I_{db} = 50$ DAC $I_{reset} = 10$ DAC $V_{shift} = 145$ DAC $V_{casn} = 104$ DAC $V_{psub} = -1.2$ V Strobe length = 0.6 μ s $T = 27^{\circ}$ C

- > Detailed characterisation in:
 - Laboratory → functional yield higher than 98%
 - Several tests beam at CERN PS and SPS beam lines.

Region 0

Type: 2.5 μ m gap $I_{bias} = 62$ DAC $I_{biasn} = 100$ DAC $I_{db} = 50$ DAC $I_{reset} = 10$ DAC $V_{shift} = 145$ DAC $V_{casn} = 104$ DAC $V_{psub} = -1.2$ V Strobe length = 0.6 μ s T = 27°C

A PARTIE TABLE

- > Detailed characterisation in:
 - Laboratory → functional yield higher than 98%
 - Several tests beam at CERN PS and SPS beam lines.
 - Non-Ionizing Energy Loss (NIEL) affects mainly the charge collection process

DUT MOSS

Region 0

- > Detailed characterisation in:
 - Laboratory → functional yield higher than 98%
 - Several tests beam at CERN PS and SPS beam lines.
 - Non-Ionizing Energy Loss (NIEL) affects mainly the charge collection process
 - Total lonizing Dose (TID) radiation affects the in-pixel front-end

DUT MOSS

MOSAIX -full functionality prototype ITS3 sensor

ENGINEERING RUN 2 (submitted in July 2025)

- > MOnolithic Stitched Active plXel: incorporate learnings from MLR1, MOSS and MOST testing
- Modular design: each sensor is divided into 3, 4, or 5 segments with 12 RSUs
- \triangleright Pixel pitch: **20.8 x 22.8 \mum²** (9.97 M pixels in 1 segment)
- > Stitched metal lines carry both power and data
- > Sensitive area fraction: 93%
- Several variants of analog front-end for optimization studies

SVOIVA A A A A A A A

Outlook...

- > CHARACTERIZATION OF ER2 MOSAIX CHIPS starting from Dec 2025
- QUALIFICATION MODELS (QMs)
 - Fully integrated, final-grade assemblies including MOSAIX sensors (+ mechanics, cooling, slow control, powering, readout...)
 - Goals: test half-detector performance and serve as reference system for Run 4
- > ENGINEERING RUN 3 final sensor production (2026)
- > ITS3 INSTALLATION in 2028 for Run 4

...and conclusions

ITS3 activities progressing on schedule:

- Bent MAPS: operability proven
- > 65 nm CMOS process: validated
- > Large-area sensors: qualification being finalized
- Mechanical & thermal: validated

ITS3 technology will seed the new ALICE3 tracker, proposed for LHC Run 5

(see D. Colella talk "ALICE upgrades for LHC Run 4 and beyond")

Backup slides

From ITS2 to ITS3

Innermost half-layer: 54 sensors replaced by 1!

ITS2 Layer 0

ITS3 Physics Motivations

ALICE 2 → ALICE 2.1

- Impact parameter resolution reduced by a factor of \sim 2 in low $p_{\rm T}$ region
- Tracking efficiency up to more than 30% higher, in low $p_{\rm T}$ region

Most striking improvements in the study of:

- Low momentum charm and beauty hadrons
- Low-mass dielectrons
- Beauty baryons
- Beauty-stange mesons
- Charm strange and multi-strange baryons
- Light charm hypernuclei

Measurement of Lamba-c (Λc)

In heavy-ion collisions the production of charm and beauty baryons is expected to be significantly enhanced:

- recombination with light-flavour quarks present inside QGP
- hadron-mass-dependent radial collective flow

However current results have limited statistical precision!

The measurement requires very precise tracking and impact parameter resolution

Measurement of Lamba-c (Λc)

Large improvement (wrt ITS2) of significance (factor 4) and S/B ratio (10), thanks to:

- better pointing resolutions → larger rejection of the combinatorial background
- larger efficiency for the signal selection

Precise measurement of $\Lambda c/D$ ratio at low p_T

 Ac production → total cc cross section

BENCHMARK FOR ITS3

ITS3 Performance from simulations

Large improvement for low transverse momenta

The 65 nm CMOS technology

- Tower Partners Semiconductor Co. (TPSCo) 65 nm CMOS imaging process for Monolithic Active Pixel Sensors (MAPS)
- ➤ Chosen for ALICE ITS3 detector and under study by the CERN EP R&D on monolithic pixel sensors

Key advantages:

- High radiation hardness
- Low power consumption
- 5 μm 2D spatial resolution
- Large wafers (Ø 300 mm)

pwell mwell deep pwell mwell deep pwell deep

Charge sharing

MLR1 sensor prototypes

- 6×6 pixel matrix
- Pitch: 10, 15, 20, 25 μm
- Analogue readout of central 4×4 submatrix
- Output buffer in two versions: Source Follower (SF) and Op Amp (OA)
- Goal: explore pixel designs

- 64×32 pixel matrix, 15 μm pitch (3 subvariants: AC, DC and SF)
- 48×32 pixel matrix, 25 μm pitch
- Rolling shutter readout (50 μs integration time)
- Goal: explore pixel matrix uniformity and rolling shutter

DPTS: Digital Pixel Test Structure

- 32×32 pixel matrix, 15 μm pitch
- Asynchronous digital readout
- Time-encoded pixel position
- Time-over-threshold measurements
- Goal: study the in-pixel frontend

STYDIVATE A STATE OF THE STATE

10¹⁵ 1MeV n_{eq} cm⁻² wafer: 22 chip: 7 version: 0

Ireset = 35 pA

 $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 \text{ nA}$ $I_{ab} = 50 \text{ nA}$ $V_{casn} = 200 \text{ mV}$

 $V_{casb} = 190 \text{ mV}$ $V_{pwell} = V_{sub} = -1.2 \text{ M}$ Threshold = 160 e⁻¹

MLR1 – Radiation hardness

MLR1 - Spatial resolution

Spatial resolution and average cluster size Vs threshold and irradiation levels, as measured in testbeams on 15 μ m pitch DPTS:

- \rightarrow The spatial resolution measured slightly better than pixel pitch / $\sqrt{12}$ (no degradation with received dose)
- → Slight systematic decrease of average cluster size with the increasing non-ionising radiation dose

MLR1 – pixel pitch

The detection efficiency increases with increasing pixel pitch

- Relative fraction of pixel border area decreasing with the increasing pixel pitch
- Pixel border only being less efficient due to geometrical sharing of the charge among neighboring pixels

MLR1 – pixel pitch

Spatial resolution and average cluster size VS threshold and pixel pitch, measured with APTS

- More charge sharing → improved resolution
- Considering the ITS3 target pitch size of 20.8 μ m×22.8 μ m, the expected spatial resolution is about **5 \mum** for a threshold of 100 e⁻
- For the ITS3 it is expected to have on average less than 1.5 pixels above threshold for a minimum ionizing
 particle hit

MLR1 – Power consumption

DPTS front end designed to investigate power consumption (ITS3 target < 40 mW/cm²):

- At least a main current I_{bias} of 30 nA is needed
- 16 mW/cm² as measured on 15 μm pixel
- 7.6 mW/cm² if projected to the final ITS3 sensor pixel pitch

MOSS structure

- 10 Repeated Sensor Units (RSU)
 - 2 Half Units (HU) with 4 regions (each with different electronics)
 - TOP regions: 256 x 256 pixels, 22.5 µm pitch
 - BOTTOM regions: 320 x 320 pixels, 18 μm pitch

MOSS tests

MOSS tests - Yield

Wafer-to-wafer variations

MOSS tests - spatial resolution

MOST tests

MOnolithic **S**titched sensor with **T**iming (**MOST**)

- Denser layout and power segmentation
- \geq 25.9 × 0.25 cm²
- > 0.9 million pixels, 18 μm pitch
- ➤ Aimed at testing the transmission quality of high-speed data over the full length of the ITS3

MOST tests

Test of the data transmission across the full length

- Pulsing and readout of different MOST RSUs
- > Data transmission verified:
 - 1)1 Gbit/s
 - 2) over 25.9 cm
 - 3) across 10 stitched RSU

MOSAIX architecture details

LEC:

- power pads
- data/control I/O
- 8 x 10.24 Gb/s serializers
- on -chip ADC for monitoring

12 RSUs:

- pixel matrix: 12 tiles, individually powered and read-out
- 12 variants of analog front front-end (1 per tile) for optimization studies
- Independent operation improves reliability and yields

REC:

power pads
 (for supply redundancy)

MOSAIX powering challenges

Challenges:

- Voltage drops on the on-chip metals of the CMOS stack significant
- Complex segmentation in many independent domains (tiles)

Development strategy

BreadBoard Models (BBMs)

Initial prototypes representing selected features of the final design

Engineering Models (EMs)

 Used for design development; composed of a mix of final-grade and commercial components

Qualification Models (QMs)

 Fully integrated, final-grade assemblies including MOSAIX sensors (final full functional prototype), used for qualification tests

Final Models (FMs)

 Two final half-detectors for installation, plus two spare half-detectors

Full scale EM

Mechanics and cooling solutions

Ultra-light mechanics → material budget record Carbon foam used as support and radiator:

- Carbon (RVC) Duocel® for mechanical support
- Allcomp K9 standard density as cooling radiator

ERG Carbon @Duocel $\rho = 0.045 \text{ kg/dm}^3$ $k = 0.033 \text{ W/m} \cdot \text{K}$

Support

K9 Standard Density $\rho = 0.2-0.26 \text{ kg/dm}^3$ $k = >17 \text{ W/m} \cdot \text{K}$

Support & Cooling

Wind tunnel: cooling test

STUDIUM CARE

ITS3 Breadboard Model 3 for thermal characterisation

- Copper heating traces on silicon in polyimide
- > Temperature variation can be kept <5K

Wind tunnel: cooling test

Wind tunnel: cooling test

ITS3 Breadboard Model 3 for thermal characterisation

- Copper heating traces on silicon in polyimide
- > Temperature variation can be kept <5K

Laser
 measurement
 machine for
 vibration
 analysis

 $(\mu \mathrm{m})$

Wind tunnel: cooling test

ITS3 Breadboard Mode characterisation

- Copper heating trac polyimide
- > Temperature variation

Laser
measurement
machine for
vibration
analysis

Bending

Bending wafer size sensor (using MLR1 wafer)

Bending

Bending

ITS3 Layout

ITS3 assembly tests

FPC and Sensor on jig

First layer assembled

Wire bondings

Detector Service Electronics

ITS3 general parameters

Beampipe inner/outer radius (mm)		16.0/16.5	
IB Layer parameters	Layer 0	Layer 1	Layer 2
Radial position (mm)	19.0	25.2	31.5
Length (sensitive area) (mm)	260	260	260
Pseudo-rapidity coverage a	± 2.5	± 2.3	± 2.0
Active area (cm^2)	305	407	507
Pixel sensors dimensions (mm ²)	266×58.7	266×78.3	266×97.8
Number of pixel sensors / layer	2		
Material budget ($\%X_0$ / layer)	0.07		
Silicon thickness (µm / layer)	≤ 50		
Pixel size (μm^2)	$O(20 \times 22.5)$		
Power density (mW/cm^2)	40		
NIEL $(1 \mathrm{MeV} \mathrm{n_{eq}}\mathrm{cm}^{-2})$	10^{13}		
TID (kGray)	10		

^a The pseudorapidity coverage of the detector layers refers to tracks originating from a collision at the nominal interaction point (z = 0).