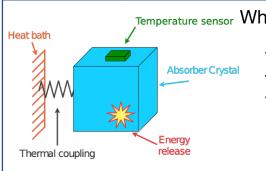


Latest results from the CUORE experiment

I.Nutini (INFN Milano Bicocca)
on behalf of the CUORE collaboration
September 23rd, 2025
European Nuclear Physics Conference 2025

The CUORE experiment



Cryogenic Underground Observatory for Rare Events

Cryogenic experiment at tonne-scale, utilising (nat)TeO₂ cryogenic calorimeters operated at ~10 mK Located at Laboratori Nazionali del Gran Sasso (Italy)

Search for rare events and for physics beyond the Standard Model

Main goal: search for $0v\beta\beta$ decay of ¹³⁰Te ($Q_{\beta\beta} = 2527.51$ keV)

Temperature sensor Why cryogenic calorimeters:

- E_{dep} converted into ΔT (phonons)
- Detector = $\beta\beta$ source
- Large calorimeters (~kg scale)
 - Sensitive from keV to MeV scale
 - Optimal energy resolution ~ 0.1%@MeV

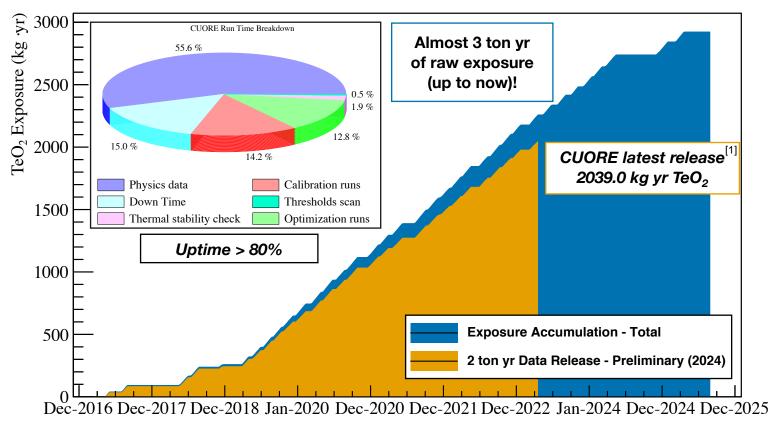
The CUORE challenge

CUORE

Low temperature and low vibrations 988 TeO₂ detectors (~742 kg) operated as calorimeters at ~10 mK stable over time

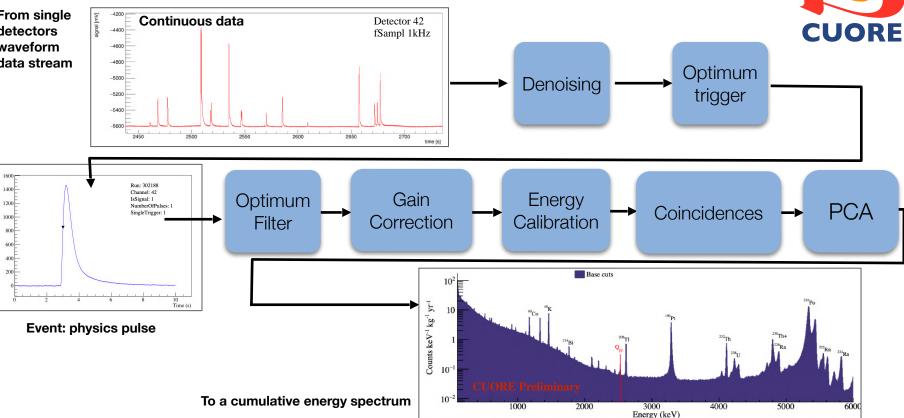
- Multistage cryogen-free cryostat
- Mechanical vibration isolation: passive and active systems

Low background


- Deep underground location @LNGS
- Strict radio-purity controls on materials and assembly
- Passive shields from external and cryostat radioactivity
- Detector: high granularity and selfshielding

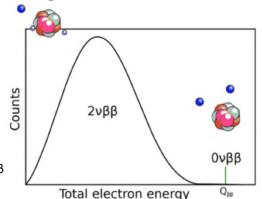
crystals

CUORE data-taking



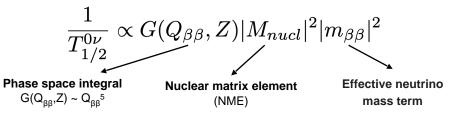
The CUORE data production chain

From single detectors waveform data stream

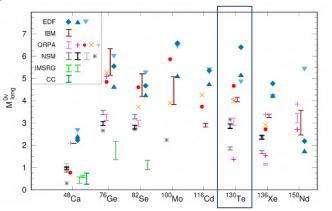

• Beyond Standard Model process ($\Delta L = 2$)

$$(A, Z) \longrightarrow (A, Z + 2) + 2e^{-}$$

• Not yet observed: $T^{1/2}_{0\nu\beta\beta} > 10^{22-26} \text{ yr}$


Impacts of a potential observation of $0v\beta\beta$ decay:

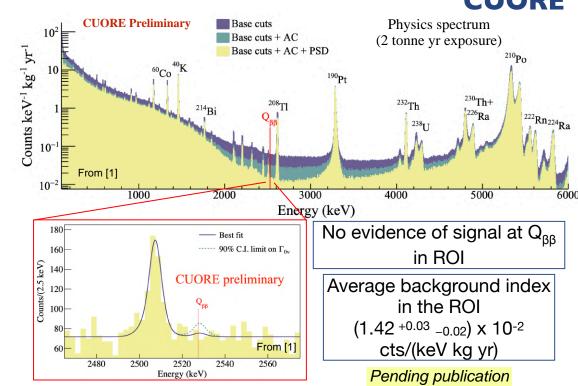
- Existence of Lepton Number violating processes
- Presence of a Majorana term for the neutrino mass, m₆₆



Rev. Mod. Phys. **95**, 025002; https://doi.org/10.1103/RevModPhys.95.0250

From the $0v\beta\beta$ decay rate it is possible to infer the effective v mass

Key role of **NME** and its uncertainties for a precise inference of the effective neutrino mass. Strong connection with nuclear physics efforts into improving the nuclear models for multiple isotopes

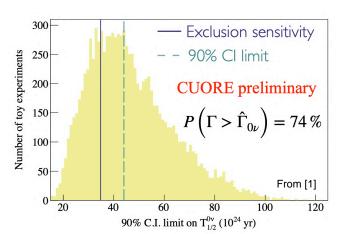

2 ton yr data release

Data from May 2017 to April 2023 Total exposure for $0\nu\beta\beta$ decay search: 2039.0 kg yr TeO_2 , 567.0 kg yr ^{130}Te

Quality cuts for **0vββ search**:

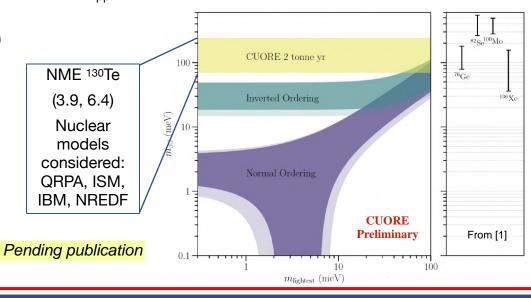
- BaseCuts (trigger, energy reconstruction, pileup rejection)
- Anti-coincidence, AC (only single crystal events)
- Pulse shape discrimination, PSD (only particle-like pulses)

Total efficiency 93.4(2)%


2 ton yr data release

Bayesian fit of the data in the ROI

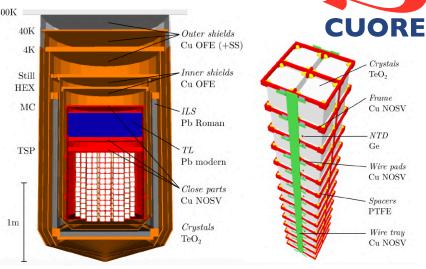
Lower limit on 130 Te $0v\beta\beta$ half life:


$$T_{0v}^{1/2}$$
 (130Te) > 3.5 x 10²⁵ yr (90%C.I.)

Frequentist limit: $T_{1/2} > 3.4 \cdot 10^{25} \text{ yr (90\% C.L.)}$

Limit on the effective neutrino mass, assuming light Majorana-neutrino exchange:

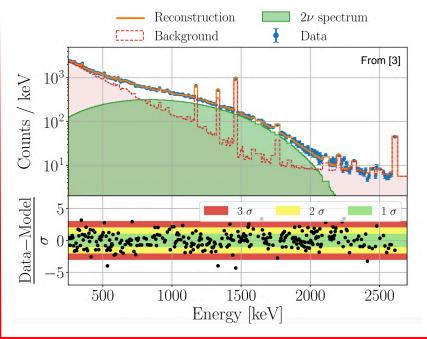
 $m_{\beta\beta} < 70-250 \text{ meV}$



CUORE physics analyses: background model

Reconstruction of the CUORE physics spectrum

- GEANT4 simulation + measured detector response function to produce expected spectra
- Multiple background sources simulated (datadriven), Bayesian MCMC fit
- Exploit coincidences & detector self-shielding to constrain location of sources

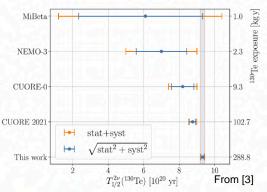


Total exposure for BM analysis: 1038.4 kg yr

- Sensitivity levels down to 10 nBq kg⁻¹ and 0.1 nBq cm⁻² for bulk and surface contamination
- Main contributions to ROI BI: degraded α particles (~90%), multi-Compton of γs and cosmic muons

130Te 2vββ decay: dominant component of the observed single-site physics spectrum between
 1 to 2 MeV

→ Precise 2vββ half-life measurement


Choice of the nuclear model

Single-state dominance (SSD), with leading contribution from 1+ state of intermediate nucleus

- Selected as reference
- Preferred to higher-state dominance (HSD) model

$$T_{2v}^{1/2}$$
 (130Te) = [9.32 +0.05_{-0.04}(stat) +0.07_{-0.07}(syst)] x 10²⁰ yr

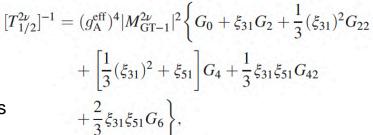
- Statistical uncertainty ~0.5%
- Contribution from nuisance parameters ~0.01%
- Multiple sources of systematic uncertainties < 1%

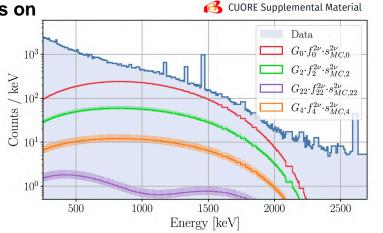
Study of 2vββ spectral shape

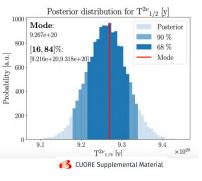
Use of **improved formalism** for $2v\beta\beta$ half-life.

Taylor expansion over lepton energies, introducing **nuclear model refinements**:

- → Addition of subleading nuclear matrix elements
- → Spectral shapes and relative strengths of the


Taylor-expanded terms offer constraints on

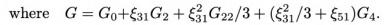

intermediate states and on geff,A


Data reconstruction with multiple shape components for $2\nu\beta\beta$.

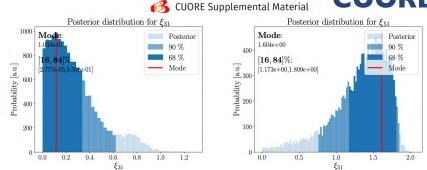
Good fit to CUORE data.

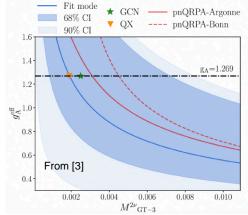
SSD model slightly favoured, half-life consistent $< 1\sigma$

2vββ spectrum fit with improved formalism: results


Considerations on nuclear models (pnQRPA, ISM):

- ξ_{31} consistent with 0. Meets theoretical predictions
- Non zero ξ₅₁
 - Rules out HSD model
 - Far from the expectations. Hp: incomplete theoretical description of the decay, such as minor effects not yet included or potential BSM physics

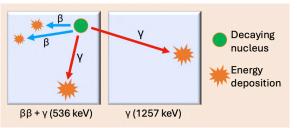

First-ever information from ¹³⁰Te on g_{A,eff}

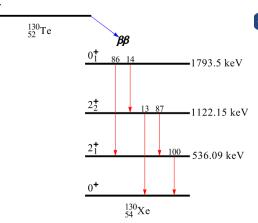

- Mode confirming quenching of g_A
- Good match with theoretical models
- Relatively high uncertainty

$$g_A^{ ext{eff}} = \left[rac{\left[T_{1/2}^{2
uetaeta}
ight]^{-1} \cdot \xi_{31}^2}{M_{GT-3}^2 \cdot G}
ight]^{1/4}$$

Synergy between spectral studies from rare decays and nuclear physics

CUORE physics analyses: ββ ¹³⁰Te decay to excited states


CUORE


- 2vββ decay to the 0+ excited state observed in ¹⁰⁰Mo and ¹⁵⁰Nd, with half lives of the order of few 10²⁰ yr
- $2\nu\beta\beta$ (and $0\nu\beta\beta$) decay of ¹³⁰Te to the first 0+ excited state of ¹³⁰Xe not yet measured.

$$(T_{2v,0+}^{1/2})_{th} = (7.2 - 5630) \times 10^{23} \text{ yr (QRPA, NSM)}$$

Signature of the decay: Cascade of de-excitation ys in coincidence with βs

- multi-site signatures
- background reduction

Input from nuclear physics for ¹³⁰Xe excited states modelling and transition probability

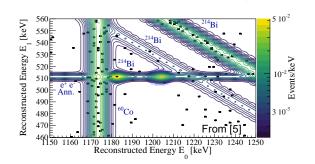
- First CUORE search on 372.5 kg yr TeO₂ No evidence of signal.

$$T_{0v,0+}^{1/2} > 5.9 \times 10^{24} \text{ yr (90\% C.I.)}$$

$$T_{2v,0+}^{1/2} > 1.3 \times 10^{24} \text{ yr (90\% C.I.)}$$

 Current search with 2039 kg yr TeO₂ based on CUORE Background Model
 Sensitivity S_{2v.0+}^{1/2} = 3.7 x 10²⁴ yr

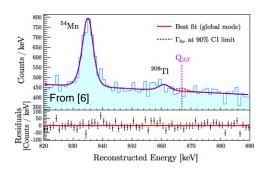
In progress!


CUORE physics analyses

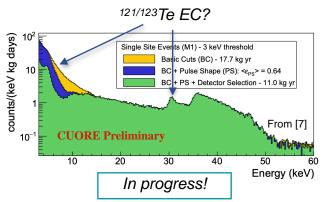
Decays of other Te isotopes

¹²⁰Te 0vβ+EC decay

 $Q_{\beta\beta}$ = 1714.8 keV, natural abundance: 0.09% Clear signature from e+e-annihilation and ¹²⁰Sn de-excitation via X-ray/Auger electrons emission T_{0v} ^{1/2} (¹²⁰Te) > 2.9 × 10²² yr (90%C.I.)


M2 (
$$\beta$$
+ + X + γ_{511} , γ_{511}) : (1203.8, 511) keV

¹²⁸Te 0vββ decay


 $Q_{\beta\beta}$ = 866.7 keV, natural abundance: 31.74% T_{0v} ^{1/2} (128Te) > 3.6 × 10²⁴ yr (90%C.I.) Improved limit of over a factor 30 wrt to previous direct search results, and exceeded the results

from geochemical experiments

Low energy spectrum

- Specific low-energy variables & event-level cuts to optimise sensitivity at keV-scale
- Investigation of spectral features potentially related to ¹²¹Te,¹²³Te,^{125m}Te decays (not yet measured)

CUORE

CUORE: what's next

Continue data taking until meeting goal ~ 3 ton yr TeO₂ (1 ton yr ¹³⁰Te)

Estimate end of data taking in mid-2026

Large statistics to perform high sensitivity searches in several channels (ββ decay, dark matter, exotic phenomena, ...)

CUORE Phase-II

Upgrade of the cryogenic system to improve cooling power and reduce vibrational noise

Plan to resume data-taking in 2027

Lower thresholds high sensitivity low energy studies (axions, WIMPS, ...)

CUPID (CUORE Upgrade with Particle Identification)

Scintillating cryogenic calorimeters to overcome CUORE-sensitivity-limiting a background

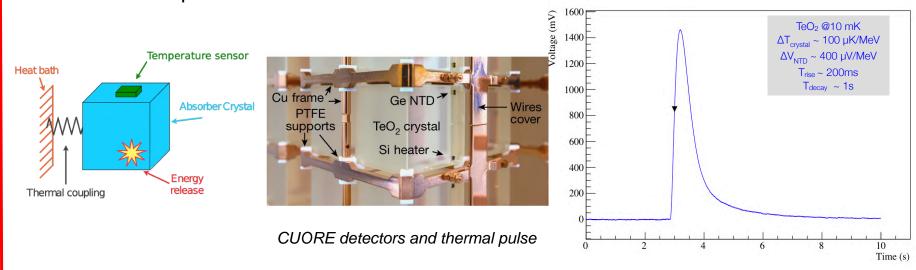
- $\beta\beta$ decay candidate: ¹³⁰Te (2527 keV) \rightarrow ¹⁰⁰Mo (3034 keV)
- 1596 Li₂ 100 MoO₄ scintillating crystals paired with Ge-light detectors
- Bkg goal in ROI ~ 10-4 cts/(keV kg yr)
- Same cryogenic infrastructure

CUORE

Conclusions

- CUORE demonstrates the feasibility of a tonne-scale experiment employing cryogenic calorimeters at ~10 mK, for the search of the 0vββ decay and rare events
- CUORE data-taking is proceeding with > 80% uptime. A raw exposure of almost 3 ton yr achieved as of today!
- CUORE has a rich science program of searches for rare decays of different Te isotopes, low energy studies and multi-crystal studies.
- The CUORE rare decays searches and results have strong synergies with the nuclear physics community
- CUORE paves the road to the CUPID project (CUORE Upgrade with Particle IDentification) for next generation tonne-scale cryogenic calorimeters for 0vββ decay and rare event searches

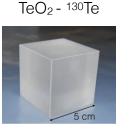
Thank you on behalf of the CUORE Collaboration

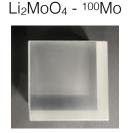

Backup

0vββ searches with cryogenic calorimeters: how

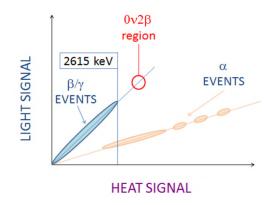
Cryogenic calorimeters

Conversion of energy deposit into phonons, measuring the heating of the crystal/absorber, which has to be operated at ~10 mK.

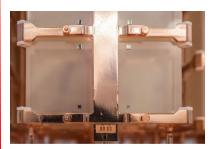



Crystals with masses of ~ tens-hundreds g read by high impedance thermistors are slow detectors (~1ms-1s), still suitable for rare event physics searches

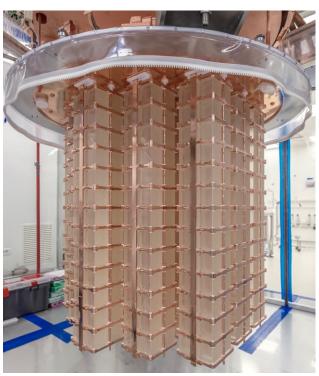
0vββ searches with cryogenic calorimeters: why



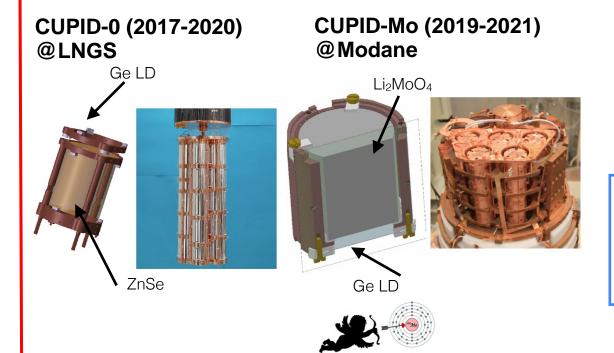
- ββ source embedded into the detector: high detection efficiency, ε~1
- Wide choice of absorber materials: possibility to exploit many ββ candidates
- Crystals of masses ~ 0.5kg with reproducible radio purity levels and detector performance: large active mass, up to ton-scale
- High energy resolution detectors (FWHM/E \sim 0.1-0.3% at $Q_{\beta\beta}$): measurement of the sum energy of the two emitted electrons
- Particle ID possibile for scintillating crystals: α background rejection
- Large dynamics: from keV to MeV



0vββ searches with cryogenic calorimeters: where are we?


CUORE (2017-ongoing) @LNGS

CUORE 1TY - Nature (2022)

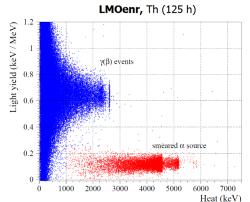


CUORE demonstrated the feasibility of a tonne-scale experiment employing cryogenic calorimeters, for the search of the 0vββ decay and rare events

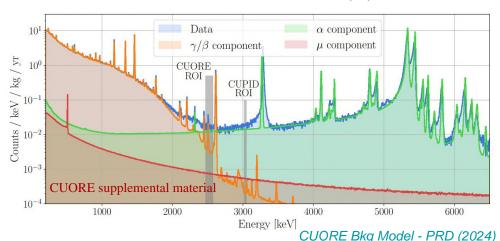
Talk CUORE results @ TAUP2025

0vββ searches with cryogenic calorimeters: where are we?

cupided and cupide


The path towards CUPID

CUPID: CUORE Upgrade with Particle Identification


Exploit ¹⁰⁰Mo as ββ candidate

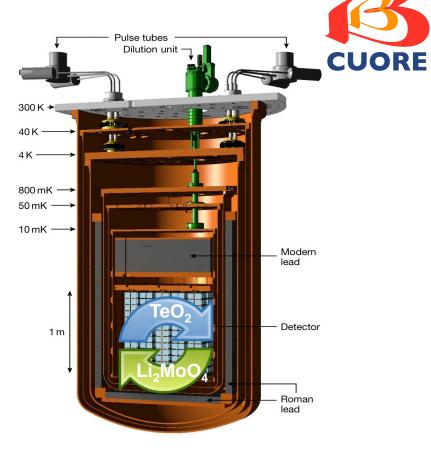
- → Utilise Li₂MoO₄ scintillating crystals for particle ID: high reduction of α background
- \rightarrow Higher Q-value (Q_{ββ} = 3034 keV), most β/γ backgrounds reduced
- → Better phase space ad NME compared to ¹³⁰Te

CUORE background in the 100 Mo region, once α and μ are removed, is close to 10^{-4} cts/(keV kg yr)

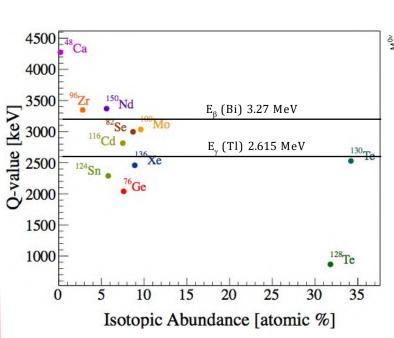
The CUPID Experiment

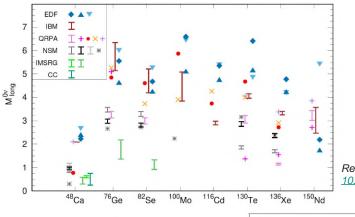
CUPID: CUORE Upgrade with Particle Identification

Replace CUORE TeO₂ detector with an array of Li₂¹⁰⁰MoO₄ scintillating crystals

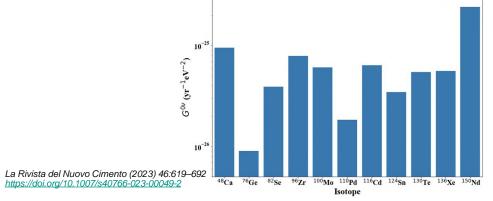

New detector array:

- 1596 Li₂MoO₄ scintillating crystals (280 g each)
- 1700 light detectors → scintillation signal read-out
- Mo enrichment > 95% in ¹⁰⁰Mo


Additional needs:

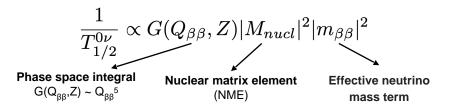

- Upgrade the CUORE cryostat for a ~1600 double read-out array
- Improve external n-shield & add a μ-veto

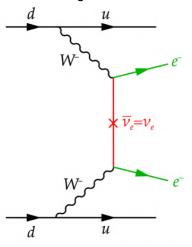
https://arxiv.org/pdf/2503.02894 (Accepted for publication by EPJC)



Ovββ searches: candidate isotopes

Rev. Mod. Phys. **95**, 025002; https://doi.org/ 10.1103/RevModPhys.95.025002


0vββ decay and inference on neutrino mass



The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

The parent nucleus emits a pair of virtual W bosons. The W exchange a Majorana neutrino to produce the outgoing electrons. The exchanged neutrino can be seen as emitted (in association with an electron) with almost total positive helicity. For a massive Majorana neutrino, it has a small, O(m/E), negative helicity component which is absorbed in the other vertex by the Standard Model electroweak current.

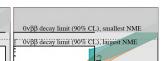
From the decay rate it is possible to infer the effective neutrino mass

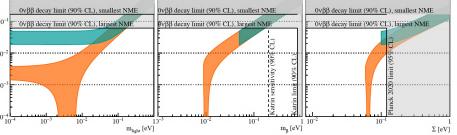
Ovββ decay and inference on neutrino mass

The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

$$\frac{1}{T_{1/2}^{0\nu}} \propto G(Q_{\beta\beta}, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2$$

Effective neutrino mass term $|m_{gg}|^2$


Neutrino mass matrix Mv can be decomposed as $M_{\nu} = U \, \mathrm{diag}(\mathrm{m}_1,\mathrm{m}_2,\mathrm{m}_3) \, U^t$ where m_i>0 are the masses of the neutrinos and U is the PMNS mixing matrix.


Define the effective Majorana mass m_{gg} where ϕ_i are called Majorana phases and

cannot be probed by oscillation experiments. m_{gg} is the ee-element of the mass matrix $|(M_v)_{ee}|$

> 0vββ is directly connected to neutrino oscillations phenomenology, and that it also provides direct information on the absolute neutrino mass scale, as cosmology and decay experiments do.

$$m_{\beta\beta} = \left| \sum_{i=1}^{3} |U_{\rm ei}^2| \ e^{i\varphi_i} \ m_i \right|$$

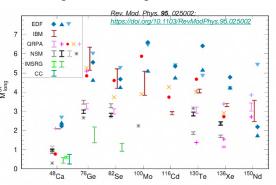
0vββ decay and inference on neutrino mass

The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

$$\frac{1}{T_{1/2}^{0\nu}} \propto G(Q_{\beta\beta}, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2$$

Nuclear Matrix Elements

Factoring out the hadron coupling gA wrt to just the **nuclear many-body** $|M_{nucl}|^2=g_A^4|M_{light}^{0
u}|^2$ part and to light neutrino exchange


All nuclear methods used to study $0\nu\beta\beta$ decay make a significant effort to describe with high quality the structure of the initial and final nuclei and the relative long and short-term interactions among nucleons.

Models: Shell model, QRPA, EDF theory, IBM, Ab-initio methods

The variation of the NME about a factor three for a given isotope, highlights the uncertainties introduced by the approximate solutions of the nuclear many-body problem.

Current strong effort to improve the nuclear models for multiple isotopes are quantify the NMEs theoretical uncertainties

$$M_{light}^{0\nu}=M_{long}^{0\nu}+M_{short}^{0\nu}$$

0vββ decay and inference on neutrino mass

The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

$$\frac{1}{T_{1/2}^{0\nu}} \propto G(Q_{\beta\beta}, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2$$

Nuclear Matrix Elements

Factoring out the **hadron coupling gA** wrt to just the nuclear many-body $|M_{nucl}|^2=g_A^4|M_{light}^{0
u}|^2$ part and to light neutrino exchange

The "gA quenching" is a potential source of uncertainty in $0\nu\beta\beta$ -decay NMEs.

Most calculations systematically overestimate β -decay Gamow–Teller matrix elements. This implies the need of a correction, by quenching the value of the axial coupling g_A (g_A ' = q g_A with q ~0.7-0.8).

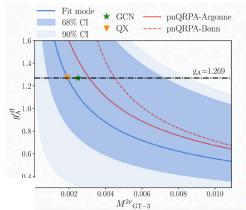
Very recently decay β -decay has been studied with the ab initio methods. These calculations suggest that the overprediction of matrix elements is more likely related to the GT β -decay operator than to gA.

Model	M0v	SRC	Reference	Link	Authors
QRPA-Jy (pnQRPA)	4.00	CD-Bonn	PRC 91, 024613 (2015)	http://journals.aps.org/prc/abstract/10.1103/PhysRevC.91.024613	Suhonen, Hyvärinen
NREDF	6.405	(shape+pair)	PRL 111, 142501 (2013)	http://dx.doi.org/10.1103/PhysRevLett.111.142501	Vaquero, Rodriguez
	5.13	(shape)			
ISM	1.79	Argonne	PRC C 93, 024308 (2016)	http://dx.doi.org/10.1103/PhysRevC.93.024308	Horoi, Neacsu
	1.93	CD-Bonn			
ISM	2.76	Argonne	J. Phys. G 45, 014003 (2018)	https://doi.org/10.1088/1361-6471/aa9bd4	Menéndez
	2.96	CD-Bonn			
QRPA	3.939	Arg. (t_1/2)	PRC 98, 064325 (2018)	https://doi.org/10.1103/PhysRevC.98.064325	Šimkovic, Smetana, Vogel
	4.673	Arg. (SU4)			
QRPA deformed	2.9	Argonne	PRC 97, 045503 (2018)	https://doi.org/10.1103/PhysRevC.97.045503	Fang, Faessler, Šimkovic
	3.22	CD-Bonn			
ISM	3.16	(effective op.)	PRC 101, 044315 (2020)	https://doi.org/10.1103/PhysRevC.101.044315	Coraggio, Gargano, Itaco, Mancino, Nowacki
	3.27	(bare operator)			
IBM-2	4.154	Arg. (pos. M_T)	PRD 102, 095016 (2020)	https://doi.org/10.1103/PhysRevD.102.095016	Deppisch, Graf, lachello, Kotila
CDFT	4.89	Argonne	PRC 95, 024305 (2017)	https://doi.org/10.1103/PhysRevC.95.024305	Song, Yao, Ring, Mer

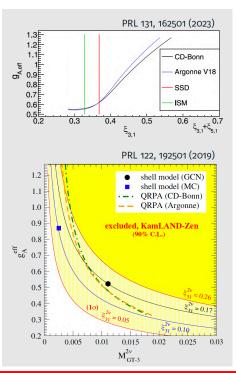
NMEs and Phase space factors for ¹³⁰Te

G0v (1E-15)	error	Reference	Link	Authors
14.22	0.9954	PRC 85, 034316 (2012)	http://dx.doi.org/10.1103/ PhysRevC.85.034316	lachello, Kotila
14.1		PRC 88, 037303 (2013)	http://dx.doi.org/10.1103/ PhysRevC.88.037303	Stoica, Mirea
14.2547		PRC 92, 055502 (2015)	http://dx.doi.org/10.1103/ PhysRevC.92.055502	Stefanik, Dvornicky
14.24		Front. Phys. 7, 12 (2019)	https://doi.org/10.3389/ fphy.2019.00012	Stoica, Mirea

2vββ spectrum fit with improved formalism: results


First-ever information from ¹³⁰Te on g_A

- Relatively high uncertainty
- Smaller S/N wrt to similar studies on ¹⁰⁰Mo and ¹³⁶Xe
- Advanced background model + high collected statistics
- Mode confirming quenching of gA
- Good match with theoretical models


$$g_A^{ ext{eff}} = \left[rac{\left[T_{1/2}^{2
uetaeta}
ight]^{-1} \cdot \xi_{31}^2}{M_{GT-3}^2 \cdot G}
ight]^{1/4}$$

where $G = G_0 + \xi_{31}G_2 + \xi_{31}^2G_{22}/3 + (\xi_{31}^2/3 + \xi_{51})G_4$.

g_{A,eff} effective value of axial coupling constant in nuclear medium

- CUORE data. For each Markov-chain MC step of the fit and for $M_{2v,GT-3}$ in the range 0–0.01, we obtain a posterior distribution for $g_{\text{eff},A}$, from which we extract 68% CI and 90% CI.
- Predictions from two nuclear models, ISM and pnQRPA. ISM has two different interactions, QX ($g_A = 0.76$) and GCN5082 ($g_A = 0.48$)
- gA free neutron value of 1.269

