European Nuclear Physics Conference 2025

Contribution ID: 143

Type: Oral Presentation

High-Resolution Gamma-Ray Spectroscopy of ¹³⁶Ba: Implications for Neutrinoless Double Beta Decay

Neutrinoless double beta decay $(0\nu\beta\beta)$ is a rare nuclear process predicted by beyond-Standard Model theories, offering crucial insights into the nature of neutrinos and lepton number violation. A confirmed observation of $0\nu\beta\beta$ would establish the Majorana nature of neutrinos and provide constraints on their absolute mass scale. Among candidate isotopes, the decay of ¹³⁶Xe to ¹³⁶Ba is extensively studied in large-scale experiments such as EXO, KamLAND-Zen, nEXO, and PandaX. However, to date, experiments have only set lower limits on the decay lifetimes [1].

A significant challenge remains in the precise determination of nuclear matrix elements (NMEs), which introduce uncertainties in extracting neutrino properties from measured decay rates. Theoretical predictions of NMEs vary considerably [2], highlighting the need for improved nuclear structure data.

This study investigates the nuclear structure of 136 Ba, the daughter nucleus of 136 Xe, through high-resolution gamma-ray spectroscopy using the FIPPS array at ILL. The focus is on low-spin states in 136 Ba populated via the 135 Ba(n, $\gamma)^{136}$ Ba reaction, with particular emphasis on the characterization of low-spin 0^+ states. These states play a fundamental role in $0\nu\beta\beta$ decay transitions but remain incompletely understood. The level scheme of 136 Ba has been studied through 136 Cs β decay and 135 Ba(n, $\gamma)$ reaction experiments.

The level scheme of ^{136}Ba has been studied through ^{136}Cs β decay and $^{135}Ba(n, \gamma)$ reaction experiments. Although several (n, γ) studies have been conducted, the only published data dates back to 1969 [3]. More recently, a study of the $^{138}Ba(p, t)^{136}Ba$ reaction [4] identified several previously unknown 0^+ states in ^{136}Ba . The high statistics of this experiment will allow for a significant expansion of the existing data set.

The experimental setup consisted of 16 HPGe clover detectors with anti-Compton shields, achieving an efficiency of 3.5% at 1.4 MeV and an energy resolution of ~2 keV at 1.3 MeV. The experiment employed a thermal neutron beam from the ILL reactor with an intensity of ~10⁷ n/s/cm² [5]. The results will highlight newly identified transitions and spin assignments for states up to 5 MeV in excitation energy. The coincidence method was used to assign new decay lines by analyzing $\gamma\gamma$ matrices, while spin assignments were determined through angular correlation analysis of coincident γ rays, referencing existing literature on tentative spin values and mixing ratios.

Additionally, the findings will be compared with theoretical calculations to provide further insights into the nuclear structure of 136 Ba. Lifetime measurements will be conducted to reduce uncertainties and provide new data. The vibrational and mixed-symmetry properties of 136 Ba (*N*=80) will also be explored to enhance the understanding of its collective dynamics. These results aim to reduce NME uncertainties, advance knowledge of $0\nu\beta\beta$, and contribute to broader nuclear structure studies.

References:

[1] A. Gando et al. (KamLAND-Zen Collaboration), Phys. Rev. Lett. 117, 082503 (2016).

[2] J. Engel and J. Menéndez, Rep. Prog. Phys. 80, 046301 (2017).

- [3] W. Gelletly et al., Phys. Rev. 181, 1682 (1969).
- [4] B. M. Rebeiro et al., Phys. Lett. B 809, 135702 (2020).

[5] C. Michelagnoli et al., EPJ Web Conf. 193 (2018).

Author: BARDAK, Jelena

Co-authors: MICHELAGNOLI, Caterina (Institut Laue-Langevin); Dr HENRICH, Corinna (Technical University of Darmstadt); Dr PETERS, Erin E (University of Kentucky, College of Arts and Sciences); COLOMBI, Giacomo; Dr HOMM, Ilja (Technical University of Darmstadt); Dr WIMMER, Kathrin (GSI); DOMENICHETTI,

Lorenzo (ILL); Dr SCHECK, Marcus (School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley, UK); Dr RUDIGER, Matthias (University of Surrey, United Kingdom); Dr JOVANCEVIC, Nikola (Faculty of Sciences, University of Novi Sad); Dr YATES, Steven W. (University of Kentucky, College of Arts and Sciences); Dr KRÖLL, Thorsten (Technical University of Darmstadt); Dr KÖSTER, Ulli (Institut Laue-Langevin, Grenoble)

Presenter: BARDAK, Jelena

Session Classification: Parallel session

Track Classification: Nuclear Structure, Spectroscopy and Dynamics