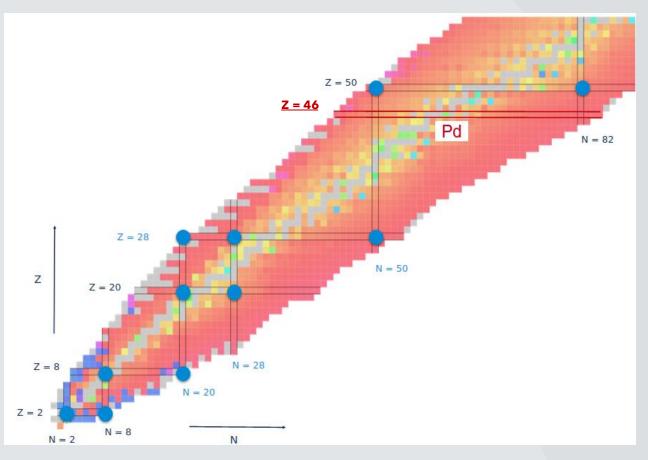
#### Naomi Marchini

#### University of Florence - INFN Florence section

# Searching for intruder bands in <sup>106</sup>Pd via Coulomb Excitation

AGATA+SPIDER Setup

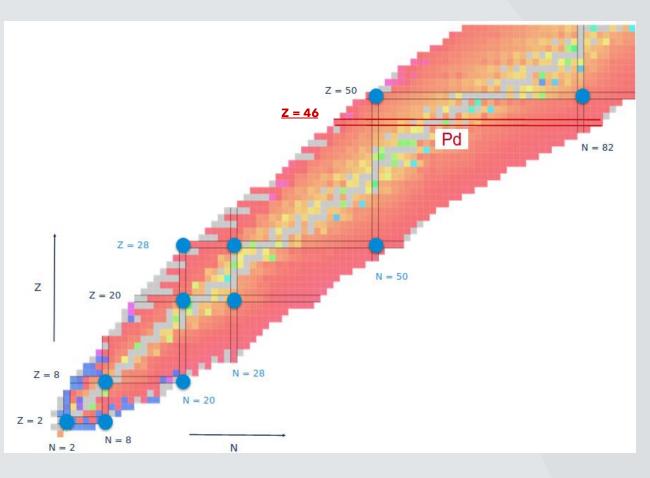
## Even-Even Palladium isotopes



Different interpretations of their level schemes:

A. Giannatiempo, A. Nannini, and P. Sona, Phys. Rev. C 58, 3316 (1998) provided a description of these nuclei as pertaining to a transitional region from the U(5) limit (vibrational) to the O(6) limit (γ-soft) of this model.

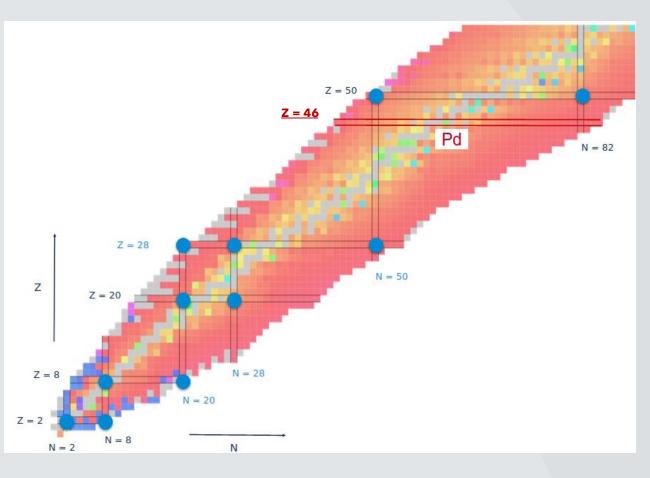
## Even-Even Palladium isotopes



Different interpretations of their level schemes:

- A. Giannatiempo, A. Nannini, and P. Sona, Phys. Rev. C 58, 3316 (1998) provided a description of these nuclei as pertaining to a transitional region from the U(5) limit (vibrational) to the O(6) limit (γ-soft) of this model.
- K. Heyde and J. Wood, Rev. Mod. Phys. 83, 1467 (2011) interprets these states as associated with shape-mixing and shape-coexistence phenomena.

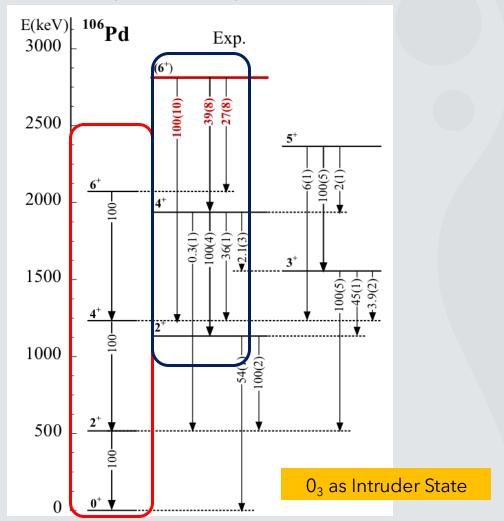
## Even-Even Palladium isotopes



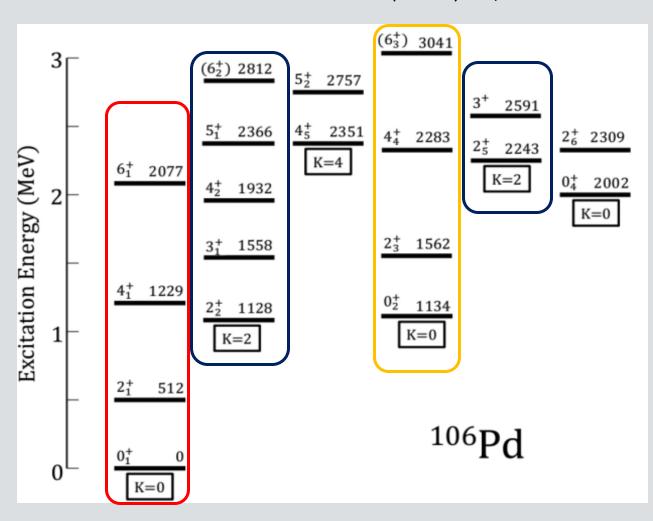
Different interpretations of their level schemes:

- A. Giannatiempo, A. Nannini, and P. Sona, Phys. Rev. C 58, 3316 (1998) provided a description of these nuclei as pertaining to a transitional region from the U(5) limit (vibrational) to the O(6) limit (γ-soft) of this model.
- K. Heyde and J. Wood, Rev. Mod. Phys. 83, 1467 (2011) interprets these states as associated with shape-mixing and shape-coexistence phenomena.
- P. E. Garrett, M. Zielinska, and E. Clement, Prog. Part. Nucl. Phys. 124, 103931 (2022) supports this interpretation by a systematic study of the even-even isotopes of Mo, Ru, Pd, Cd, and Te.

A. Giannatiempo et al. Phys. Rev. C (2018) 98, 034305

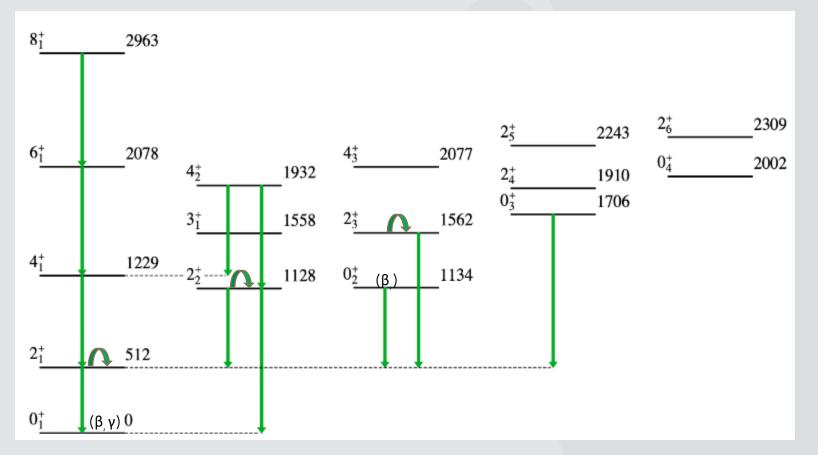


F. M. Prados-Estévez et al. PRC (2017) 95, 034328



## The 106Pd isotope – Previous Exp. - Coulex

L. Svensson, et al., Nucl. Phys. A 584, 547 (1995)



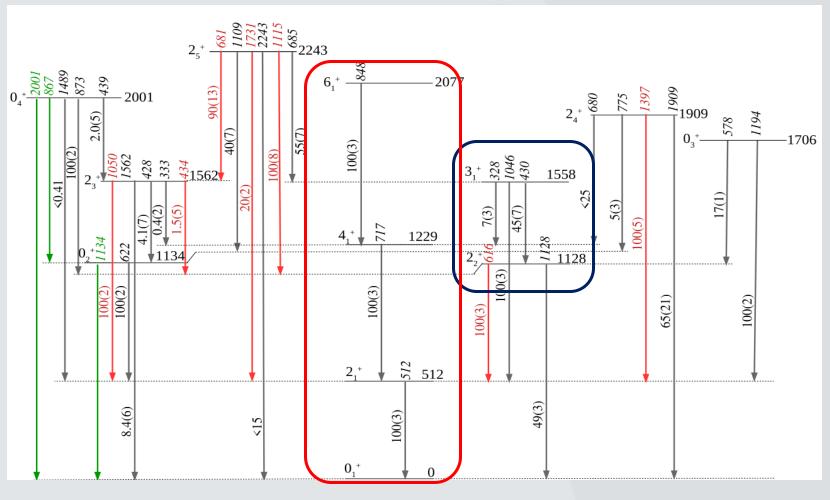
The setup consisted of four circular Si-detectors and one annular Si-detector coupled to only two Ge detectors

Coulomb Excitation performed years ago:

- $0_1^+$ : Determination of  $\beta$  and  $\gamma$  quadrupole invariants
- $0_2^+$ : Determination of  $\beta$  quadrupole invariant
- Quadrupole moments of the  $2_{1,2,3}$ +

## The 106Pd isotope - Previous Exp. - ICE

N. Marchini et al. Phys. Rev. C 105, 054304 (2022)

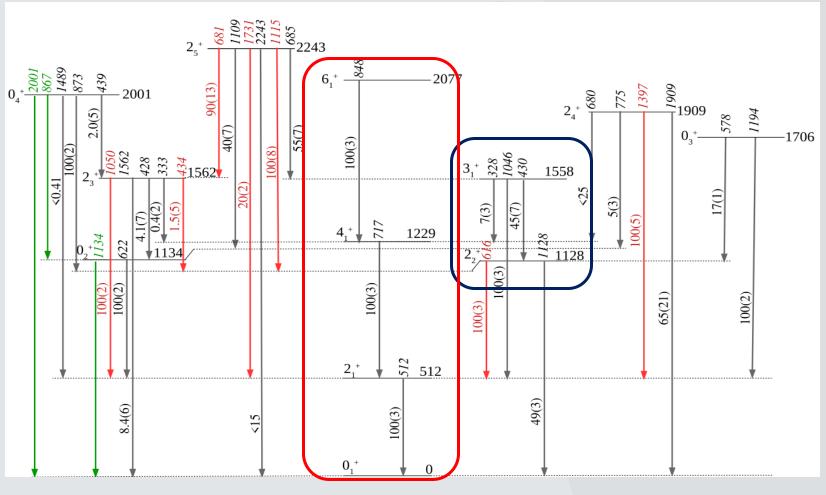


Internal Conversion Electron spectroscopy performed:

- $\rho^2$ (E0) between low-lying 2+ and 0+ states deduced
- Confirmation of transitions from the 2<sub>4</sub><sup>+</sup> state observed for the first time in F. M. Prados-Estévez et al.
   PRC (2017) 95, 034328 paper

## The 106Pd isotope – Previous Exp. - ICE

N. Marchini et al. Phys. Rev. C 105, 054304 (2022)

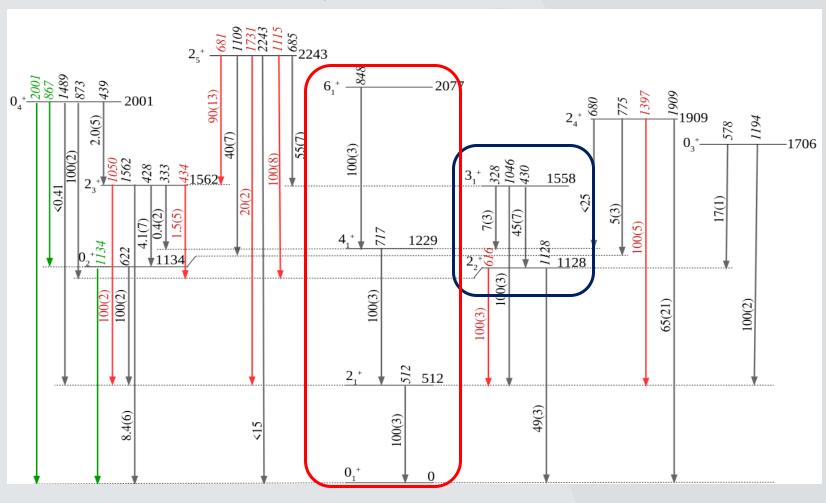


IBM-2 calculations performed: (parameters from Giannatiempo et al. Phys. Rev. C 98, 034305 (2018))

- $0_2^+$  and  $2_3^+$  states well reproduced by the IBM model
- $0_3$ <sup>+</sup> state suggested as intruder bandhead

# The 106Pd isotope – Previous Exp. - ICE

N. Marchini et al. Phys. Rev. C 105, 054304 (2022)



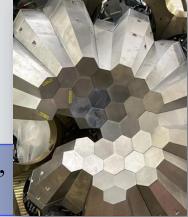
The experimental  $\rho^2(E0; 0^+_2 \rightarrow 0^+_1)$  value has been compared to that calculated in a simple two-state mixing model and the coexistence of different shape has been suggested

Shape coexistence scenario 
$$(\beta_1 = 0.29, \gamma_1 = 20^\circ, \beta_2 = 0.21, \gamma_2 = 45^\circ)$$

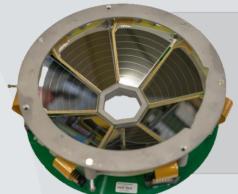


- Beam: 60Ni 175 MeV 1 pnA
- Target: self-supporting <sup>106</sup>Pd 1mg/cm<sup>2</sup>





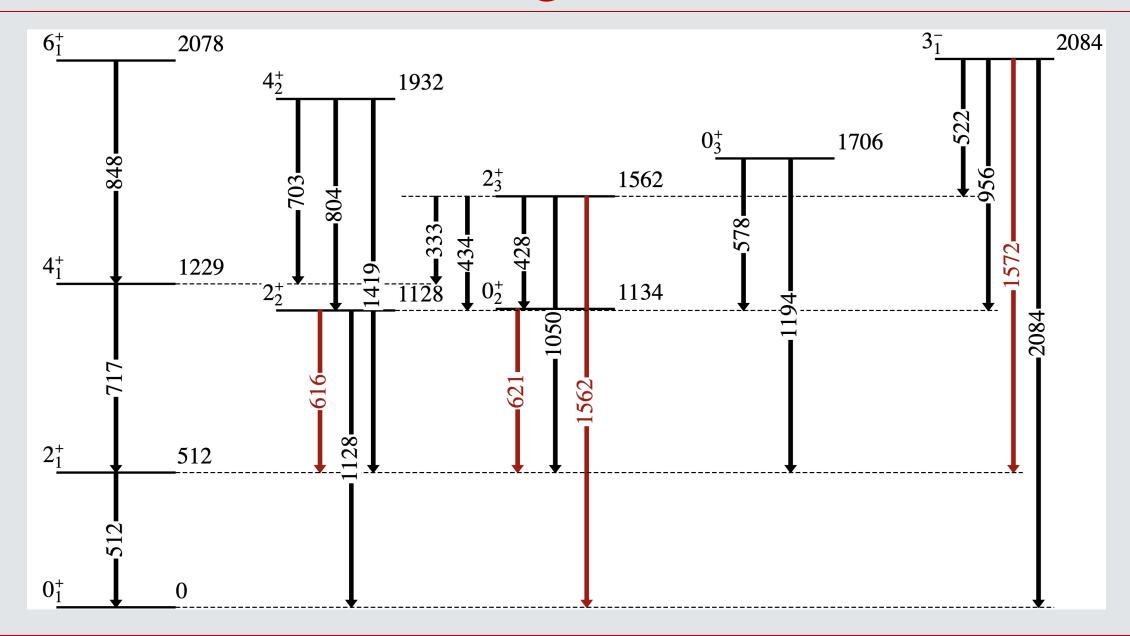
**AGATA** array (10 ATCs), close-up position.



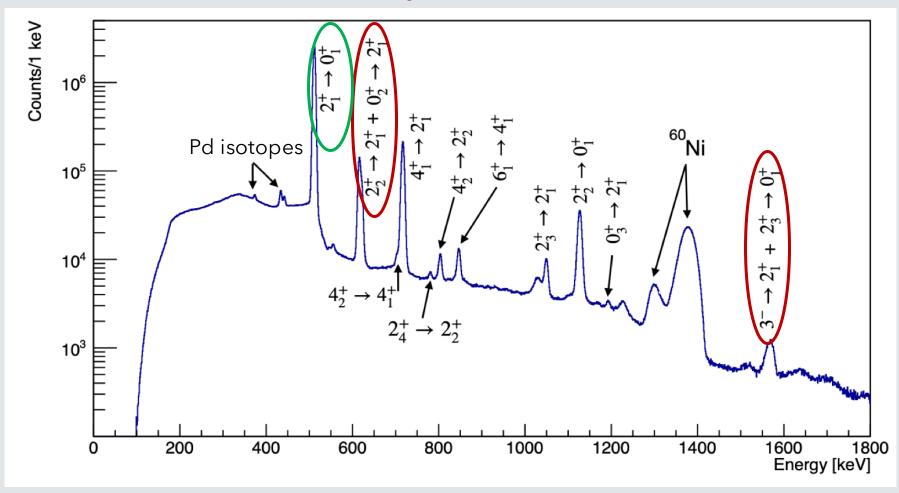
**SPIDER** modular array of Si detectors segmented into 8 annular strips (junction side).

 $\Theta_{\text{Lab}} = 124^{\circ} - 161^{\circ} \text{(detection of backscattered } ^{60}\text{Ni ions)}$ 





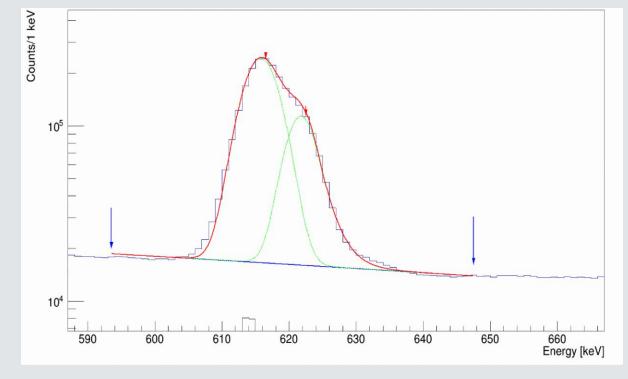
# Preliminary (half statistics)



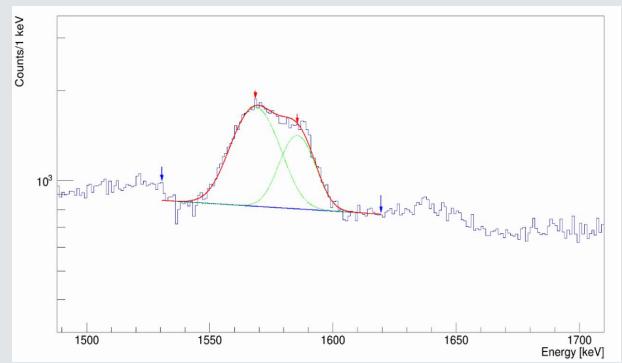
FWHM @512 keV = 5.9 keV

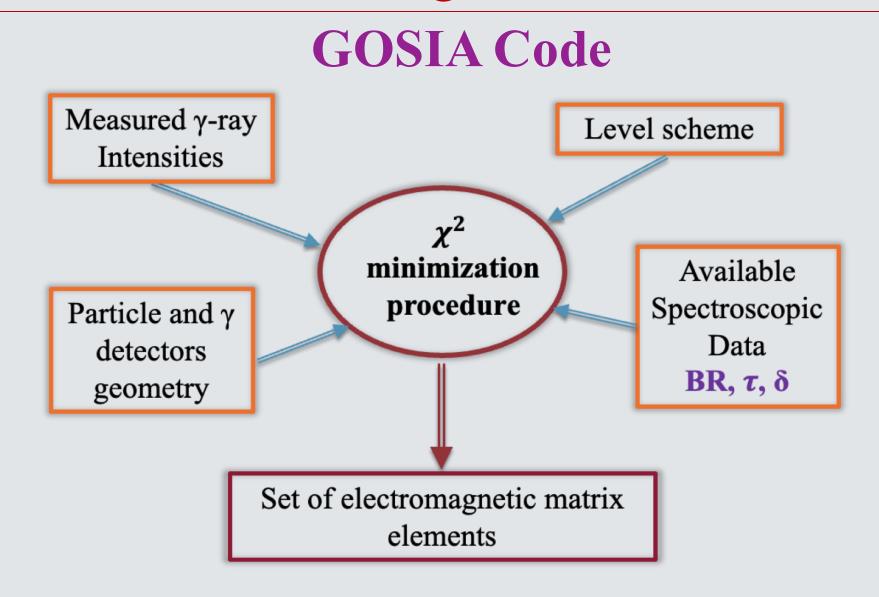
# Preliminary (half statistics)

Doublet for  $2_2^+ \rightarrow 2_1^+$  and  $0_2^+ \rightarrow 2_1^+$ 

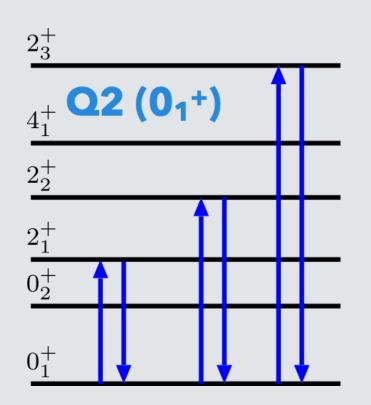


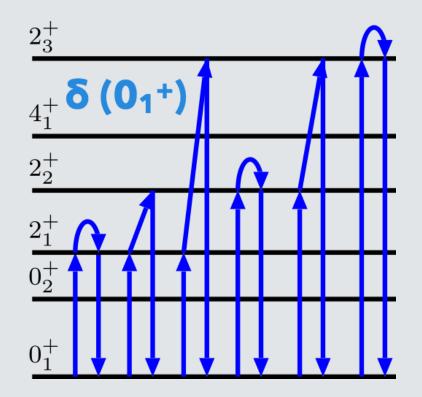
Doublet for  $3^- \rightarrow 2_1^+$  and  $2_3^+ \rightarrow 0_1^+$ 

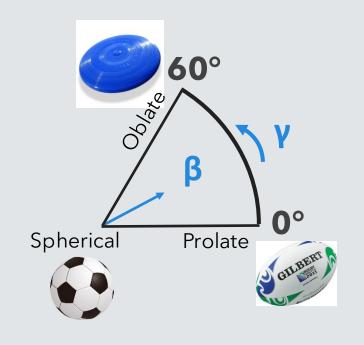




# **Deformation parameters**



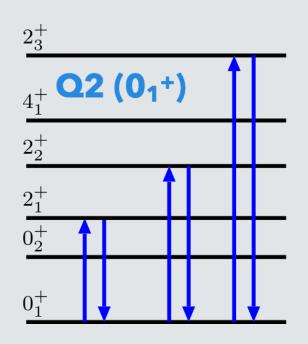


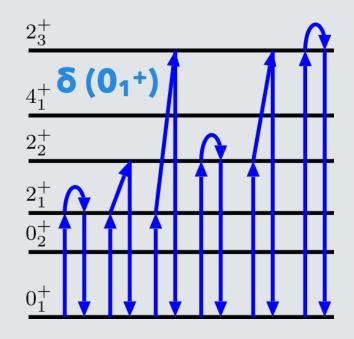


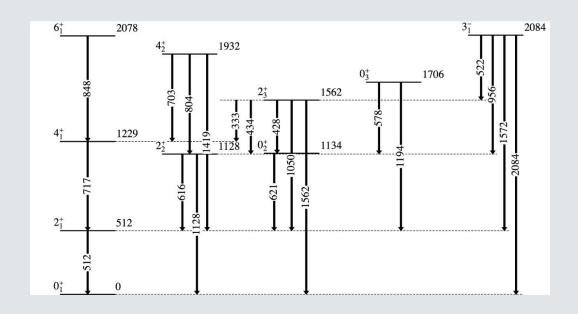
$$\langle J_n | Q^2 | J_n \rangle = \frac{\sqrt{5} \left(-1\right)^{2J_n}}{\sqrt{2J_n + 1}} \sum_i M_{ni} M_{in} \left\{ \begin{matrix} 2 & 2 & 0 \\ J_n & J_n & J_i \end{matrix} \right\} \qquad - \sqrt{\frac{35}{2}} \frac{(-1)^{2J_n}}{2J_n + 1} \sum_{ij} M_{ni} M_{ij} M_{jn} \left\{ \begin{matrix} 2 & 2 & 2 \\ J_n & J_j & J_i \end{matrix} \right\}$$

$$\langle J_n | Q^3 \cos 3\delta | J_n \rangle = -\sqrt{\frac{35}{2}} \frac{(-1)^{2J_n}}{2J_n + 1} \sum_{ij} M_{ni} M_{ij} M_{jn} \begin{cases} 2 & 2 & 2 \\ J_n & J_j & J_i \end{cases}$$

# **Deformation parameters**







$$\langle J_n|Q^2|J_n
angle = rac{\sqrt{5}\left(-1
ight)^{2J_n}}{\sqrt{2J_n+1}}\sum_i M_{ni}M_{in} \left\{egin{matrix} 2 & 2 & 0 \ J_n & J_n & J_i \end{matrix}
ight\} \qquad -\sqrt{rac{35}{2}}rac{(-1)^{2J_n}}{2J_n+1}\sum_{i,i} M_{ni}M_{ij}M_{jn} \left\{egin{matrix} 2 & 2 & 2 \ J_n & J_j & J_i \end{matrix}
ight\} = -\sqrt{rac{35}{2}}rac{(-1)^{2J_n}}{2J_n+1}\sum_{i,j} M_{ni}M_{ij}M_{jn} \left\{egin{matrix} 2 & 2 & 2 \ J_n & J_j & J_i \end{matrix}
ight\} = -\sqrt{rac{35}{2}}rac{(-1)^{2J_n}}{2J_n+1}\sum_{i,j} M_{ni}M_{ij}M_{jn} \left\{egin{matrix} 2 & 2 & 2 \ J_n & J_j & J_i \end{matrix}
ight\} = -\sqrt{rac{35}{2}}rac{(-1)^{2J_n}}{2J_n+1}\sum_{i,j} M_{ni}M_{ij}M_{jn} \left\{egin{matrix} 2 & 2 & 2 \ J_n & J_j & J_i \end{matrix}
ight\} = -\sqrt{rac{35}{2}}rac{(-1)^{2J_n}}{2J_n+1}\sum_{i,j} M_{ni}M_{ij}M_{jn} \left\{egin{matrix} 2 & 2 & 2 \ J_n & J_j & J_i \end{matrix}
ight\} = -\sqrt{rac{35}{2}}rac{(-1)^{2J_n}}{2J_n+1}\sum_{i,j} M_{ni}M_{ij}M_{ij}M_{jn} \left\{egin{matrix} 2 & 2 & 2 \ J_n & J_j & J_i \end{matrix}
ight\} = -\sqrt{rac{35}{2}}rac{(-1)^{2J_n}}{2J_n+1}\sum_{i,j} M_{ni}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij}M_{ij$$

$$\langle J_n | Q^3 \cos 3\delta | J_n \rangle =$$

$$-\sqrt{\frac{35}{2}} \frac{(-1)^{2J_n}}{2J_n + 1} \sum_{ij} M_{ni} M_{ij} M_{jn} \begin{Bmatrix} 2 & 2 & 2 \\ J_n & J_j & J_i \end{Bmatrix}$$

# Preliminary – Deformation parameters Master Thesis A. Fini

$$\langle Q^2 \rangle = q_0^2 \langle \beta^2 \rangle$$
$$\langle Q^3 \cos 3\delta \rangle = q_0^3 \langle \beta^3 \cos 3\gamma \rangle$$

L. Svensson et al. Nucl. Phys A, 584(547), 1995.

# Preliminary – Deformation parameters Master Thesis A. Fini

Stato
 
$$Q^2 [e^2b^2]$$
 $\cos 3\delta$ 
 $\delta^{\circ} (\gamma^{\circ})$ 
 $\beta$ 
 $Q^2_{Sven} [e^2b^2]$ 
 $\delta^{\circ}_{Sven}$ 
 $0^+_1$ 
 $0.68(2)$ 
 $0.47(4)$ 
 $20.7(9)$ 
 $0.233(3)$ 
 $0.63(3)$ 
 $20(2)$ 
 $0^+_2$ 
 $1.00(2)$ 
 ??
 ??
  $0.282(3)$ 
 $0.87(4)$ 

$$\langle Q^2 \rangle = q_0^2 \langle \beta^2 \rangle$$
$$\langle Q^3 \cos 3\delta \rangle = q_0^3 \langle \beta^3 \cos 3\gamma \rangle$$

# Preliminary – Deformation parameters Master Thesis A. Fini

Stato
 
$$Q^2 [e^2b^2]$$
 $\cos 3\delta$ 
 $\delta^{\circ} (\gamma^{\circ})$ 
 $\beta$ 
 $Q^2_{Sven} [e^2b^2]$ 
 $\delta^{\circ}_{Sven}$ 
 $0^+_1$ 
 $0.68(2)$ 
 $0.47(4)$ 
 $20.7(9)$ 
 $0.233(3)$ 
 $0.63(3)$ 
 $20(2)$ 
 $0^+_2$ 
 $1.00(2)$ 
 ??
  $??$ 
 $0.282(3)$ 
 $0.87(4)$ 
 $0^+_3$ 
 $>0.05$ 

$$\langle Q^2 \rangle = q_0^2 \langle \beta^2 \rangle$$
$$\langle Q^3 \cos 3\delta \rangle = q_0^3 \langle \beta^3 \cos 3\gamma \rangle$$

# Thank You for your Attention

#### TANDEM ACCELERATOR

Searching for intruder bands in <sup>106</sup>Pd via Coulomb excitation

#### AGATA + SPIDER

Spokespersons: N. Marchini, A. Nannini, D. Kalaydjieva, M. Rocchini

N. Marchini<sup>1,2</sup>, A. Nannini<sup>2</sup>, D. Kalaydjieva<sup>3</sup>, M. Rocchini<sup>2</sup>, M. Balogh<sup>4</sup>, G. Benzoni<sup>5</sup>,
D. Brugnara<sup>4</sup>, G. Colucci<sup>6</sup>, D. T. Doherty<sup>7</sup>, A. Ertoprak<sup>8</sup>, C. Fahlander<sup>9</sup>, F. Galtarossa<sup>10</sup>,
P. E. Garrett<sup>11</sup>, A. Goasduff<sup>4</sup>, A. Gottardo<sup>4</sup>, K. Hadyńska-Klęk<sup>6</sup>, G. Jaworski<sup>6</sup>,
M. Komorowska<sup>6</sup>, W. Korten<sup>12</sup>, M. Matejska-Minda<sup>13</sup>, D. Mengoni<sup>10,14</sup>, P. Napiorkowski<sup>6</sup>,
G. Pasqualato<sup>3</sup>, I. Pietka<sup>15</sup>, R. M. Perez-Vidal<sup>16</sup>, L. Prochniak<sup>6</sup>, T. Rodríguez<sup>17</sup>,
M. Siciliano<sup>8</sup>, J. Srebrny<sup>6</sup>, K. Stoychev<sup>3</sup>, J. J. Valiente-Dobón<sup>4</sup>, K. Wrzosek-Lipska<sup>6</sup>,
M. Zielińska<sup>12</sup>

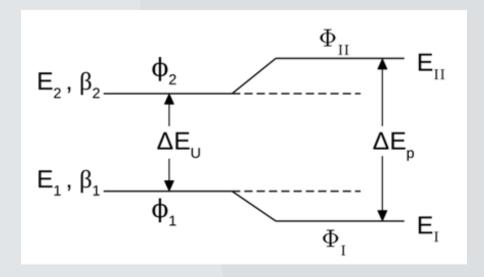
<sup>1</sup> Università degli Studi di Firenze, Firenze, Italy. <sup>2</sup> INFN Sezione di Firenze, Firenze, Italy. <sup>3</sup> IJCLab, IN2P3/CNRS, Universite Paris-Saclay, Orsay, France. <sup>4</sup> INFN Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy. <sup>5</sup> INFN Sezione di Milano, Milano, Italy. <sup>6</sup> Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland. <sup>7</sup> University of Surrey, Guildford, UK. <sup>8</sup> Argonne National Laboratory, Argonne, USA. <sup>9</sup> University of Lund, Lund, Sweden. <sup>1</sup>0 INFN Sezione di Padova, Padova, Italy. <sup>11</sup> University of Guelph, Guelph, Canada. <sup>12</sup> IRFU, CEA Saclay, Université Paris-Saclay, France. <sup>13</sup> IFJ-PAN, Kraków, Poland. <sup>14</sup> Università degli Studi di Padova, Padova, Italy. <sup>15</sup> University of Warsaw, Warsaw, Poland. <sup>16</sup> IFIC, CSIC-Universidad de Valencia, Valencia, Spain. <sup>17</sup> Universidad Complutense de Madrid, Madrid, Spain.



N. Marchini et al. Phys. Rev. C 105, 054304 (2022)

#### Two Level Mixing model

$$\rho^{2}(0_{2}^{+} \to 0_{1}^{+}) = (\frac{3Z}{4\pi})^{2}a^{2}(1 - a^{2})[(\beta_{1}^{2} - \beta_{2}^{2}) + \frac{5\sqrt{5}}{21\sqrt{\pi}}(\beta_{1}^{3}\cos 3\gamma_{1} - \beta_{2}^{3}\cos 3\gamma_{2})]^{2}$$



N. Marchini et al. Phys. Rev. C 105, 054304 (2022)

#### Two Level Mixing model

$$\rho^{2}(0_{2}^{+} \to 0_{1}^{+}) = (\frac{3Z}{4\pi})^{2}a^{2}(1 - a^{2})[(\beta_{1}^{2} - \beta_{2}^{2}) + \frac{5\sqrt{5}}{21\sqrt{\pi}}(\beta_{1}^{3}\cos 3\gamma_{1} - \beta_{2}^{3}\cos 3\gamma_{2})]^{2}$$

Second Order in β E. Svensson et al. In: Nuclear Physics A, 584, 547 (1995)

$$\beta^{2}(0_{1}) = a^{2}\beta_{1}^{2} + b^{2}\beta_{2}^{2}$$
$$\beta^{2}(0_{2}) = b^{2}\beta_{1}^{2} - a^{2}\beta_{2}^{2}$$

**Small Mixing** 

N. Marchini et al. Phys. Rev. C 105, 054304 (2022)

#### Two Level Mixing model

$$\rho^{2}(0_{2}^{+} \to 0_{1}^{+}) = (\frac{3Z}{4\pi})^{2}a^{2}(1 - a^{2})[(\beta_{1}^{2} - \beta_{2}^{2}) + \frac{5\sqrt{5}}{21\sqrt{\pi}}(\beta_{1}^{3}\cos 3\gamma_{1} - \beta_{2}^{3}\cos 3\gamma_{2})]^{2}$$

 $\beta_1, \beta_2$  and  $\gamma_1$  are extracted in Coulex exp. E. Svensson et al. In: Nuclear Physics A, 584, 547 (1995)

> Small Mixing Assumption

Shape coexistence scenario

$$(\beta_1 = 0.29, \gamma_1 = 20^\circ, \beta_2 = 0.21, \gamma_2 = 45^\circ)$$

#### **IBM-2 Calculations**

Focusing on the E0 transitions, in the IBM-2 model the E0 strength is defined as:

$$\rho^{2}(E0; J_{i}^{+} \to J_{f}^{+}) = \frac{Z^{2}}{e^{2}R^{4}} |\beta_{0\nu}\langle J_{f}|\hat{T}_{\nu}(E0)|J_{i}\rangle + \beta_{0\pi}\langle J_{f}|\hat{T}_{\pi}(E0)|J_{i}\rangle|^{2}$$

$$\beta_{0\pi} = 0.009 \text{ efm}^{2}$$

$$0.015$$

$$0.015$$

$$0.010$$

$$0.005$$

$$0.000$$

$$0.186 0.188 0.190 0.192 0.194 0.196 0.198 0.200$$

$$\beta_{0\nu}$$

#### **IBM-2 Calculations**

Focusing on the E0 transitions, in the IBM-2 model the E0 strength is defined as:

$$\rho^{2}(E0; J_{i}^{+} \to J_{f}^{+}) = \frac{Z^{2}}{e^{2}R^{4}} |\beta_{0\nu}\langle J_{f}|\hat{T}_{\nu}(E0)|J_{i}\rangle + \beta_{0\pi}\langle J_{f}|\hat{T}_{\pi}(E0)|J_{i}\rangle|^{2}$$

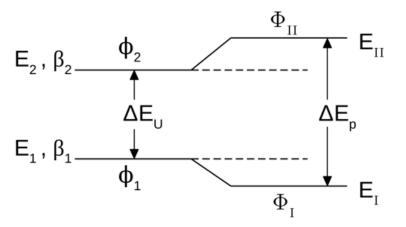
| Nuclide             | $J_i^\pi \longrightarrow J_f^\pi$                                                 | $E_{\gamma} [\text{keV}]$ | $\rho_{exp}^2 \cdot 10^3$ |   | $\rho_{calc}^2 \cdot 10^3$ |
|---------------------|-----------------------------------------------------------------------------------|---------------------------|---------------------------|---|----------------------------|
| $^{104}\mathrm{Pd}$ | $0_2^+ \longrightarrow 0_1^+$                                                     | 1334                      | 11(2)                     | * | 10                         |
| $^{104}\mathrm{Pd}$ | $2_2^+ \longrightarrow 2_1^+$                                                     | 786                       | 5(4)                      | * | 1                          |
| $^{104}\mathrm{Pd}$ | $4_2^+ \longrightarrow 4_1^+$                                                     | 759                       | < 90                      |   | 0.5                        |
| $^{106}$ Pd         | $0_2^+ \longrightarrow 0_1^+$                                                     | 1134                      | 17(4)                     | * | 16                         |
| $^{106}\mathrm{Pd}$ | $0_4^+ \longrightarrow 0_1^+$                                                     | 2001                      | < 19                      |   | 0.3                        |
| $^{106}\mathrm{Pd}$ | $0_4^+ \longrightarrow 0_2^+$                                                     | 867                       | < 90                      |   | 4                          |
| $^{106}\mathrm{Pd}$ | $2_2^+ \longrightarrow 2_1^+$                                                     | 616                       | 5(8)                      |   | 1                          |
| $^{106}\mathrm{Pd}$ | $2_3^+ \longrightarrow 2_1^+$                                                     | 1050                      | 26(11)                    | * | 28                         |
| $^{106}\mathrm{Pd}$ | $2_4^+ \longrightarrow 2_1^+$                                                     | 1398                      | $21_{-21}^{+10}$          |   | 0.1                        |
|                     |                                                                                   |                           | $18^{+10}_{-18}$          |   |                            |
| $^{106}\mathrm{Pd}$ | $2_5^+ \longrightarrow 2_2^+$                                                     | 1115                      | $96^{+43}_{-61}$          |   | 18                         |
| $^{100}\mathrm{Ru}$ | $0_2^+ \longrightarrow 0_1^+$                                                     | 1130                      | 10.3(18)                  | * | 11.4                       |
| $^{102}\mathrm{Ru}$ | $0_2^{\stackrel{+}{\rightarrow}} \longrightarrow 0_1^{\stackrel{+}{\rightarrow}}$ | 944                       | 14(3)                     | * | 17                         |

#### **IBM-2 Calculations**

Focusing on the E0 transitions, in the IBM-2 model the E0 strength is defined as:

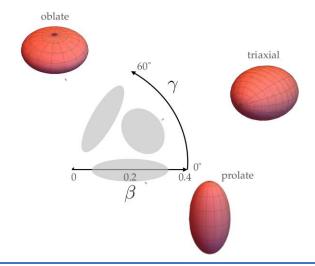
$$\rho^{2}(E0; J_{i}^{+} \to J_{f}^{+}) = \frac{Z^{2}}{e^{2}R^{4}} |\beta_{0\nu}\langle J_{f}|\hat{T}_{\nu}(E0)|J_{i}\rangle + \beta_{0\pi}\langle J_{f}|\hat{T}_{\pi}(E0)|J_{i}\rangle|^{2}$$

|                                  | Nuclide             | $J_i^{\pi} \longrightarrow J_f^{\pi}$                         | $E_{\gamma} \; [\mathrm{keV}]$ | $ ho_{exp}^2 \cdot 10^3$ |   | $\rho_{calc}^2 \cdot 10^3$ |  |  |  |  |
|----------------------------------|---------------------|---------------------------------------------------------------|--------------------------------|--------------------------|---|----------------------------|--|--|--|--|
|                                  | 104pd               | $0_+ \longrightarrow 0_+$                                     | 1334                           | 11(9)                    | * | 10                         |  |  |  |  |
| 0 <sub>3</sub> as Intruder State |                     |                                                               |                                |                          |   |                            |  |  |  |  |
|                                  | $^{106}$ Pd         | $0_2^+ \longrightarrow 0_1^+$                                 | 1134                           | 17(4)                    | * | 16                         |  |  |  |  |
|                                  | $^{106}\mathrm{Pd}$ | $0_4^+ \longrightarrow 0_1^+$                                 | 2001                           | < 19                     |   | 0.3                        |  |  |  |  |
|                                  | $^{106}\mathrm{Pd}$ | $0_4^+ \longrightarrow 0_2^+$                                 | 867                            | < 90                     |   | 4                          |  |  |  |  |
|                                  | $^{106}\mathrm{Pd}$ | $2_2^+ \longrightarrow 2_1^+$                                 | 616                            | 5(8)                     |   | 1                          |  |  |  |  |
|                                  | $^{106}\mathrm{Pd}$ | $2_3^{\stackrel{-}{+}} \longrightarrow 2_1^{\stackrel{-}{+}}$ | 1050                           | 26(11)                   | * | 28                         |  |  |  |  |
|                                  | $^{106}\mathrm{Pd}$ | $2_4^+ \longrightarrow 2_1^+$                                 | 1398                           | $21^{+10}_{-21}$         |   | 0.1                        |  |  |  |  |
|                                  |                     |                                                               |                                | $18^{+10}_{-18}$         |   |                            |  |  |  |  |
|                                  | $^{106}\mathrm{Pd}$ | $2_5^+ \longrightarrow 2_2^+$                                 | 1115                           | $96^{+43}_{-61}$         |   | 18                         |  |  |  |  |
|                                  | $^{100}\mathrm{Ru}$ | $0_2^+ \longrightarrow 0_1^+$                                 | 1130                           | 10.3(18)                 | * | 11.4                       |  |  |  |  |
|                                  | $^{102}\mathrm{Ru}$ | $0_2^{\stackrel{-}{+}} \longrightarrow 0_1^{\stackrel{-}{+}}$ | 944                            | 14(3)                    | * | 17                         |  |  |  |  |



$$\rho^{2}(0_{2}^{+} \to 0_{1}^{+}) = (\frac{3Z}{4\pi})^{2}a^{2}(1 - a^{2})[(\beta_{1}^{2} - \beta_{2}^{2}) + \frac{5\sqrt{5}}{21\sqrt{\pi}}(\beta_{1}^{3}\cos 3\gamma_{1} - \beta_{2}^{3}\cos 3\gamma_{2})]^{2}$$

A. S. Davydov et al., Nucl. Phys. 27, 134 (1961)



As a first step, only the terms up to the second order in  $\beta$  have been considered. In this approximation the expression for the E0 strength becomes:

$$\rho^2(0_2^+ \to 0_1^+) = (\frac{3Z}{4\pi})^2 a^2 (1 - a^2) |(\beta_1^2 - \beta_2^2)|^2 = 17$$

 $\beta$  unmixed could be linked with the  $\beta(0_1)$  and  $\beta(0_2)$  thank to the Quadrupole Sum Rules

$$\beta^{2}(0_{1}) = \frac{1}{k_{0}^{2}} \frac{1}{5} \sum_{m} \langle 0_{1} | |E2| | 2_{m} \rangle \langle 2_{m} | |E2| | 0_{1} \rangle$$

$$\beta^{2}(0_{1}) = \frac{1}{k_{0}^{2}} \frac{1}{5} \left[ a^{2} \sum_{m} \langle 1 | |E2| | 2_{m} \rangle \langle 2_{m} | |E2| | 1 \rangle \right] + ab \sum_{m} \langle 1 | |E2| | 2_{m} \rangle \langle 2_{m} | |E2| | 2 \rangle \\ + ba \sum_{m} \langle 2 | |E2| | 2_{m} \rangle \langle 2_{m} | |E2| | 1 \rangle \\ + b^{2} \sum_{m} \langle 2 | |E2| | 2_{m} \rangle \langle 2_{m} | |E2| | 2 \rangle \right]$$

$$\beta^{2}(0_{1}) = a^{2} \beta_{1}^{2} + b^{2} \beta_{2}^{2}$$

$$\beta^{2}(0_{2}) = b^{2} \beta_{1}^{2} - a^{2} \beta_{2}^{2}$$

As a first step, only the terms up to the second order in  $\beta$  have been considered. In this approximation the expression for the E0 strength becomes:

$$\rho^2(0_2^+ \to 0_1^+) = (\frac{3Z}{4\pi})^2 a^2 (1 - a^2) |(\beta_1^2 - \beta_2^2)|^2 = 17$$

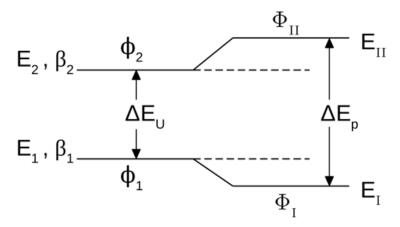
 $\beta(0_1)$  and  $\beta(0_2)$  are extracted in E. Svensson et al. In: Nuclear Physics A, 584, 547 (1995)

$$\beta^2(0_1) = a^2 \beta_1^2 + b^2 \beta_2^2 = 0.47$$

$$\beta^2(0_2) = b^2 \beta_1^2 - a^2 \beta_2^2 = 0.51$$



 $a^2 = 0.1$  Small Mixing



$$\rho^{2}(0_{2}^{+} \to 0_{1}^{+}) = (\frac{3Z}{4\pi})^{2}a^{2}(1 - a^{2})[(\beta_{1}^{2} - \beta_{2}^{2}) + \frac{5\sqrt{5}}{21\sqrt{\pi}}(\beta_{1}^{3}\cos 3\gamma_{1} - \beta_{2}^{3}\cos 3\gamma_{2})]^{2}$$

$$\beta^{2}(0_{1}) = a^{2}\beta_{1}^{2} + b^{2}\beta_{2}^{2}$$
$$\beta^{2}(0_{2}) = b^{2}\beta_{1}^{2} - a^{2}\beta_{2}^{2}$$

Case of Small Mixing  $(a^2 = 0.1)$ :

Assumption : Deformation of the  $0_1^+$  and the  $0_2^+$  states are similar to those of the  $|1\rangle$  and  $|2\rangle$  one

#### Two-Level Mixing – Small Mixing

$$\rho^{2}(0_{2}^{+} \to 0_{1}^{+}) = (\frac{3Z}{4\pi})^{2}a^{2}(1 - a^{2})[(\beta_{1}^{2} - \beta_{2}^{2}) + \frac{5\sqrt{5}}{21\sqrt{\pi}}(\beta_{1}^{3}\cos 3\gamma_{1} - \beta_{2}^{3}\cos 3\gamma_{2})]^{2}$$

 $\beta_1,\beta_2$  and  $\gamma_1$  are extracted in E. Svensson et al. In: Nuclear Physics A, 584, 547 (1995)

