A Diagrammatic Monte Carlo Approach for Nuclear Structure and Reactions

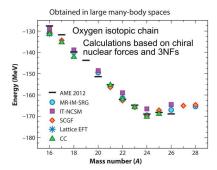
Stefano Brolli^{1,2}, Carlo Barbieri^{1,2}, Enrico Vigezzi²

¹Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, Milan, Italy.

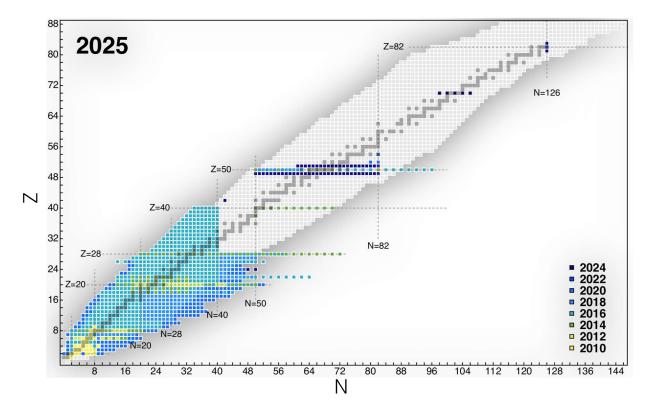
²INFN, Sezione di Milano, Milan, Italy.

AB INITIO STRUCTURE CALCULATIONS

- Medium-light mass nuclei (and a few heavy ones) are well described.
- Many-body methods (SCGF, NCSM, MBPT, IMSRG, CC, ...) agree on ground state structure.
- Most of the uncertainty comes from the Hamiltonian.
- More recently: push for heavy and deformed nuclei.



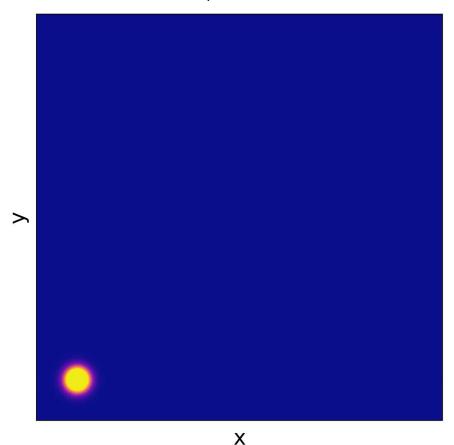
Hebeler et al., Annu. Rev. Nucl. Part. Sci. (2015)



Hergert, A Guided Tour of ab initio Nuclear Many-Body Theory, Front. Phys. 8 (2020)

SELF-CONSISTENT GREEN'S FUNCTION

 $iG_{\alpha\beta}(t,t')\stackrel{\text{\tiny def}}{=} \langle \Psi_0^A|Tc_{\alpha}(t)c_{\beta}^{\dagger}(t')|\Psi_0^A\rangle$



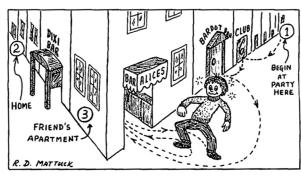
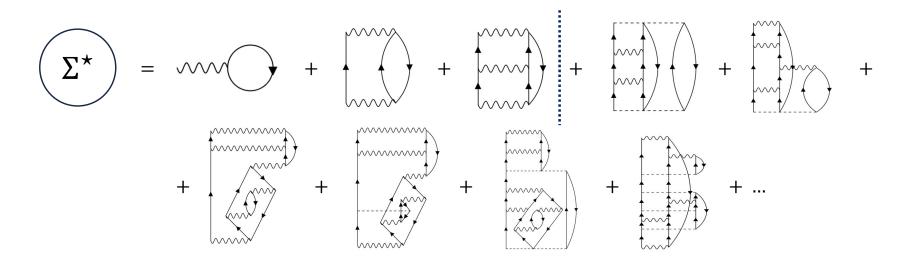


Fig. 1.1 Propagation of Drunken Man

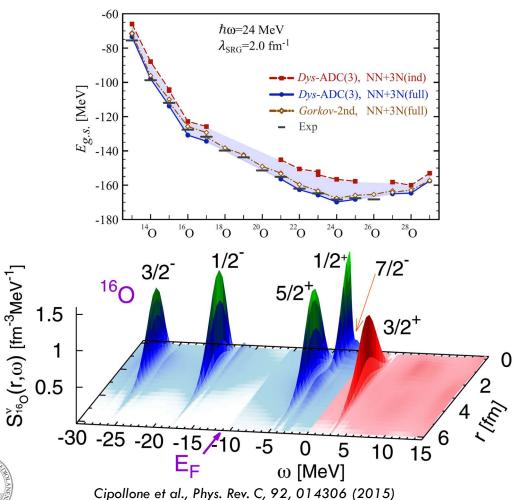
Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem (1992)

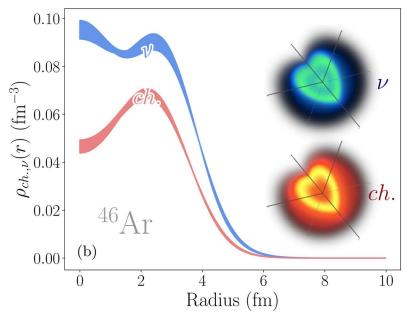
DYSON EQUATION

$$G_{\alpha\beta}(\omega) = G_{\alpha\beta}^{(0)}(\omega) + G_{\alpha\gamma}^{(0)}(\omega) \Sigma_{\gamma\delta}^{\star}(\omega) G_{\delta\beta}(\omega)$$
 Irreducible self-energy Unperturbed propagator



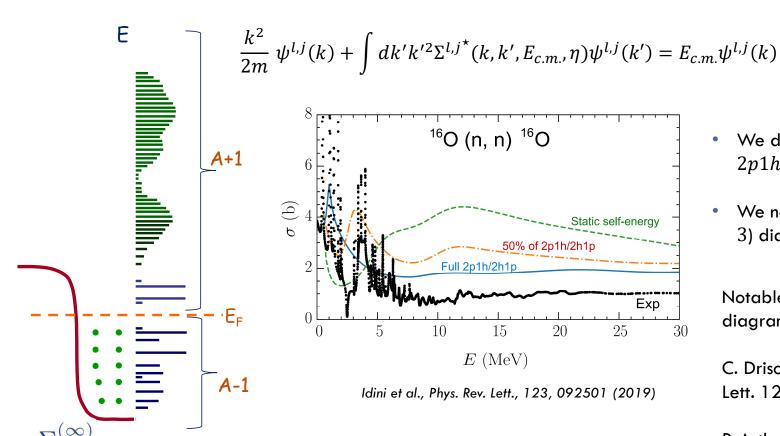
STRUCTURE INFORMATION





Brugnara et al., arXiv: 2506.23228v2 (2025)

OPTICAL POTENTIAL



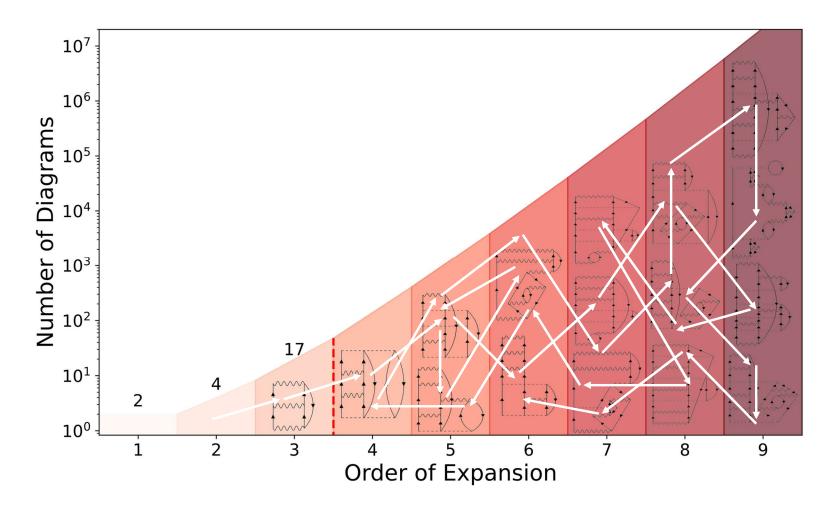
- We do not include ISCs beyond 2p1h.
- We need to include high-order (>> 3) diagrams.

Notable work towards high-order diagrams:

C. Drischler et al., Phys. Rev. Lett. 122, 042501 (2019)

P. Arthuis et al., Comp. Phys. Comm. 240, 202 (2019)

SAMPLING THE DIAGRAMMATIC SPACE



DIAGRAMMATIC MONTE CARLO

- Developed for condensed matter systems.
- It can sum up (very) high-order Feynman diagrams of the self-energy expansion¹.
- Applied for infinite systems at finite temperature (e.g. unitary Fermi gas).

How does it work?

- Each diagram is assigned a weight.
- This creates a probability distribution w over the space of diagrams.
- A Markov chain with tuned Metropolis-Hastings update ratios reproduces the PDF w.
- The Markov chain "moves" with updates to the topology and quantum numbers of the diagrams.

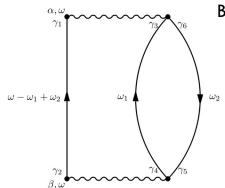
Can it work for nuclear systems?

1. DiagMC included diagrams up to order 9 for the unitary Fermi gas, see K. Van Houcke et al., Phys. Rev. B., 99, 035140 (2019)

A BIT OF MATHEMATICAL MACHINERY

$$\Sigma_{\alpha\beta}^{\star}(\omega) = \sum_{n} \Sigma_{\alpha\beta}^{n} B_{n}(\omega)$$

$$\Sigma_{\alpha\beta}^{n} = \int d\omega \, B_n(\omega) \Sigma_{\alpha\beta}^{\star}(\omega)$$



Basis functions

Topology

$$C = (\mathcal{T}; \gamma_1, ..., \gamma_n; \omega_1, ..., \omega_m)$$

Internal single-particle quantum numbers

Internal frequencies

Diagrams of the self-energy expansion Normal

Normalization factor

$$\Sigma_{\alpha\beta}^{n} = \int d\omega \int dC \, B_{n}(\omega) D_{\alpha\beta}(\omega, C) 1_{\mathcal{T} \in S_{\Sigma}} = Z_{\alpha\beta} \int d\omega \int dC \, B_{n}(\omega) \frac{|D_{\alpha\beta}(\omega, C)|}{Z_{\alpha\beta}} e^{iarg[D_{\alpha\beta}(\omega, C)]} 1_{\mathcal{T} \in S_{\Sigma}}$$

$$= Z_{\alpha\beta} \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} B_{n}(\omega_{j}) e^{iarg[D_{\alpha\beta}(\omega_{j}, C_{j})]} 1_{\mathcal{T}_{j} \in S_{\Sigma}} \qquad w_{\alpha\beta}(\omega, C), \text{ probability distribution function}$$

RICHARDSON MODEL

$$H^{(D)} = \sum_{p=1}^{D} \sum_{s=\uparrow,\downarrow} (p-1) c_{ps}^{\dagger} c_{ps} - \frac{g}{2} \sum_{p,q=1}^{D} c_{p\uparrow}^{\dagger} c_{p\downarrow}^{\dagger} c_{q\downarrow} c_{q\uparrow}$$

$$p = D$$
 \vdots

$$p = \frac{D}{2} + 1 - \dots$$

$$p = \frac{D}{2}$$

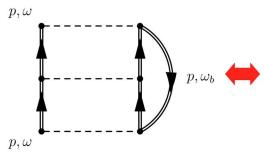
$$\vdots$$

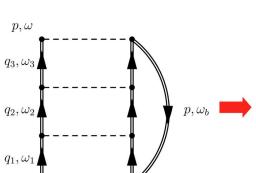
$$p = 2$$

$$\propto -\frac{g}{2}$$

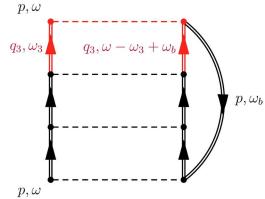
$$\propto -\frac{g}{2}$$

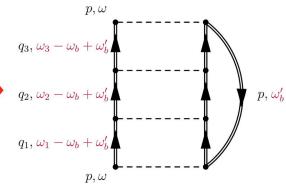
$$p=1$$



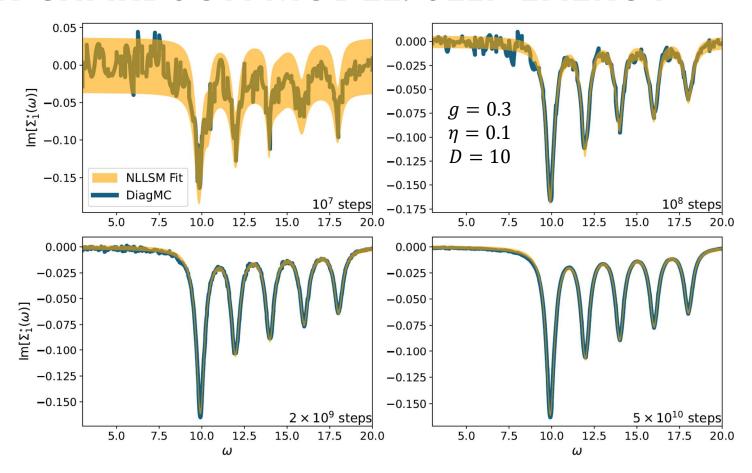


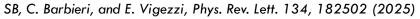
 p, ω



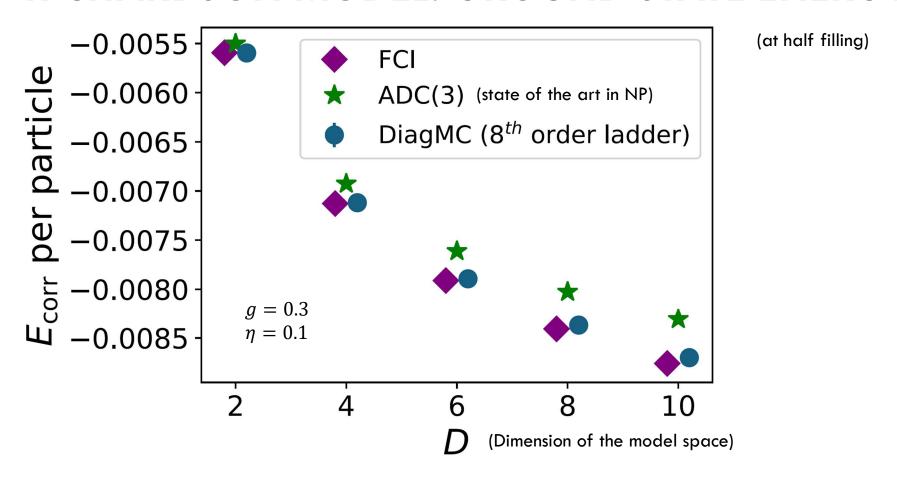


RICHARDSON MODEL: SELF-ENERGY



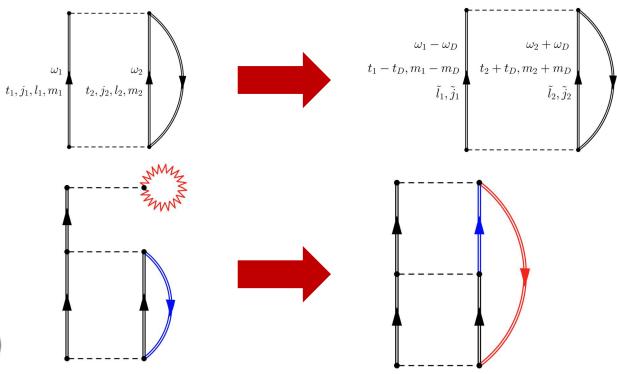


RICHARDSON MODEL: GROUND STATE ENERGY

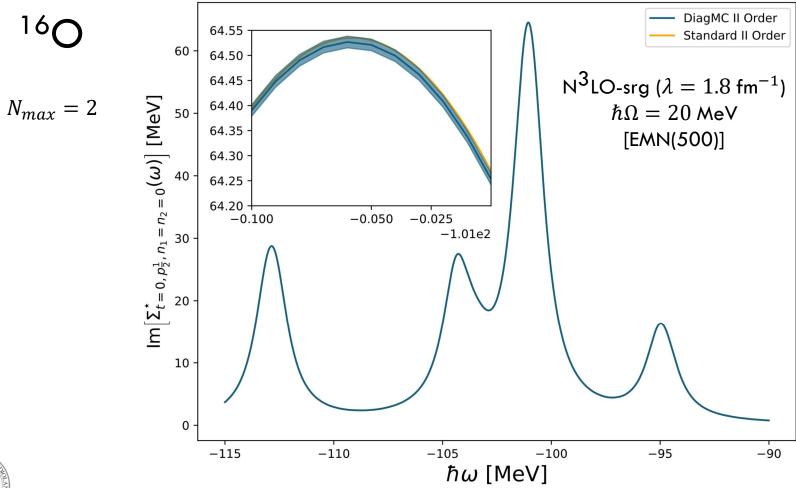


CHIRAL POTENTIALS

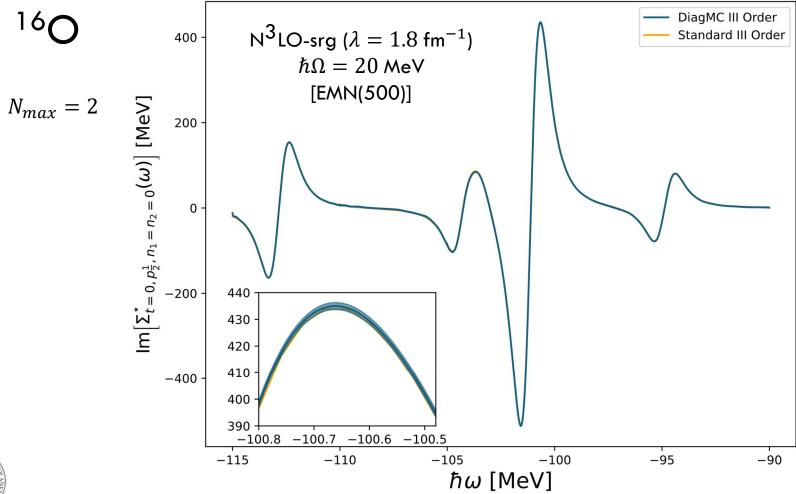
- To our knowledge DiagMC calculations with such difficult potentials have never been attempted.
- They require a much more complicated updating scheme that can keep track of all the conservation laws at each vertex.



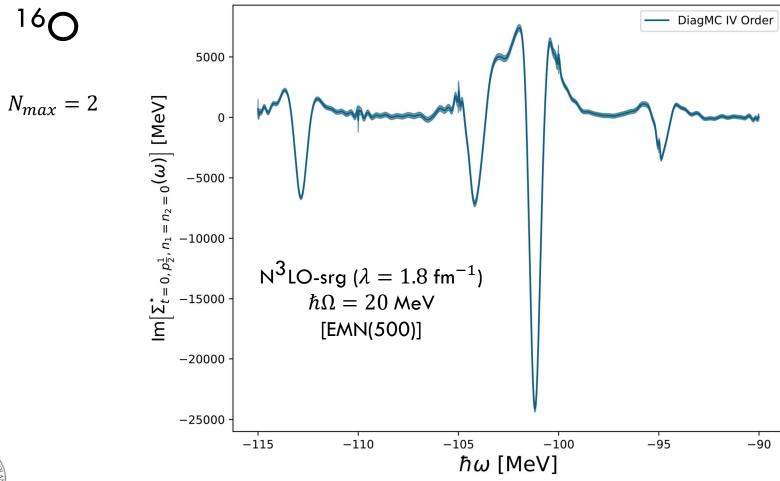
SECOND ORDER RESULTS



THIRD ORDER RESULTS



FOURTH ORDER RESULTS



RECOVERING CAUSALITY

Resummation techniques (Borel resummation)

Already used in solid state physics

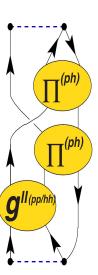
ADC-like schemes natively retain causality

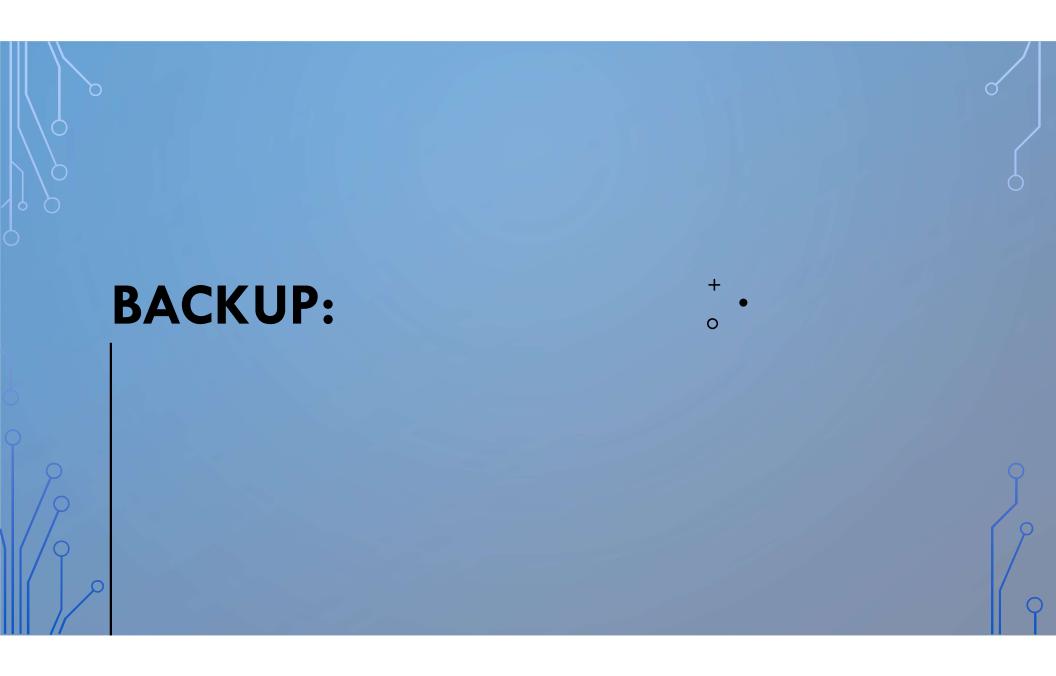
State of the art techniques in nuclear physics, never integrated with DiagMC

Particle-vibration couplings

$$\Sigma_{\alpha\beta}^{\star}(\omega) = \Sigma_{\alpha\beta}^{(\infty)} + M_{\alpha,r}^{\dagger} \frac{1}{\omega - [E^{>} + C]_{r,r'} + i\eta} M_{r',\beta} + N_{\alpha,s} \frac{1}{\omega - [E^{<} + D]_{s,s'} - i\eta} N_{s',\beta}^{\dagger}$$

Mean field





DEALING WITH $Z_{\alpha\beta}$

$$\Sigma_{\alpha\beta}^{n} = Z_{\alpha\beta} \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} B_{n}(\omega_{j}) e^{i a r g [D_{\alpha\beta}(\omega_{j}, C_{j})]} 1_{\mathcal{T}_{j} \in S_{\Sigma}}$$

$$= \int d\omega \int dC |D_{\alpha\beta}(\omega)|$$

If the weight of a subset S_N of diagrams is known ($Z_{N\alpha\beta}$), we can use the number of times S_N is visited (\mathcal{N}) to compute the normalization.

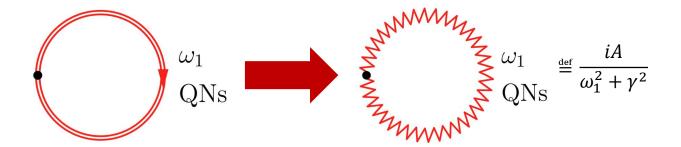
$$\lim_{N\to\infty}\frac{\mathcal{N}}{N}=\frac{Z_{N\alpha\beta}}{Z_{\alpha\beta}}$$

$$\Sigma_{\alpha\beta}^{n} = Z_{N_{\alpha\beta}} \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} B_{n}(\omega_{j}) e^{iarg[D_{\alpha\beta}(\omega_{j},C_{j})]} 1_{\mathcal{T}_{j} \in S_{\Sigma}}$$

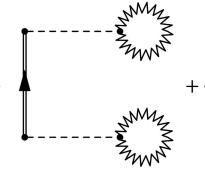
NORMALIZATION SECTOR

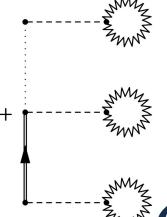
Self-closing propagators need convergence factors $e^{i\omega_1\eta}$.

They can be included automatically at all orders by using a HF reference propagator.



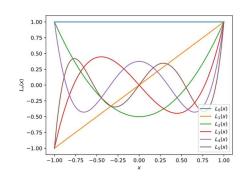
We choose as normalization sector:





BASIS FUNCTIONS

$$\Sigma_{\alpha\beta}^{n} = Z_{N_{\alpha\beta}} \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} B_{n}(\omega_{j}) e^{i \arg[D_{\alpha\beta}(\omega_{j}, C_{j})]} 1_{\mathcal{T}_{j} \in S_{\Sigma}}$$



 $B_n(x)$ are normalized Legendre polynomials.

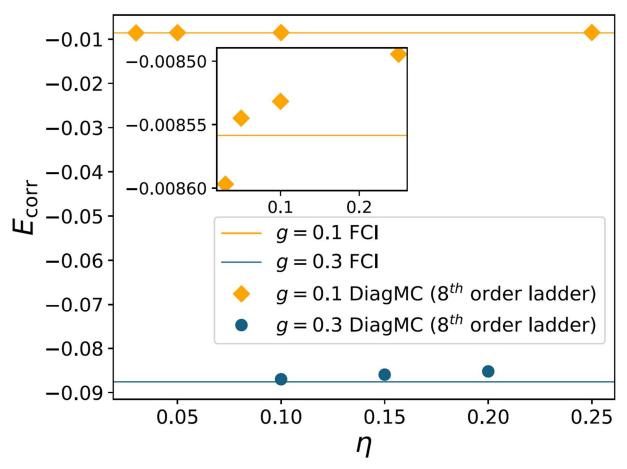
Recursion formulas are used to generate higher order $\Sigma^n_{lphaeta}$ during the sampling.

$$A_j \stackrel{\text{\tiny def}}{=} e^{i \arg[D_{\alpha\beta}(\omega_j, C_j)]} 1_{\mathcal{T}_j \in \mathcal{S}_{\Sigma}}$$

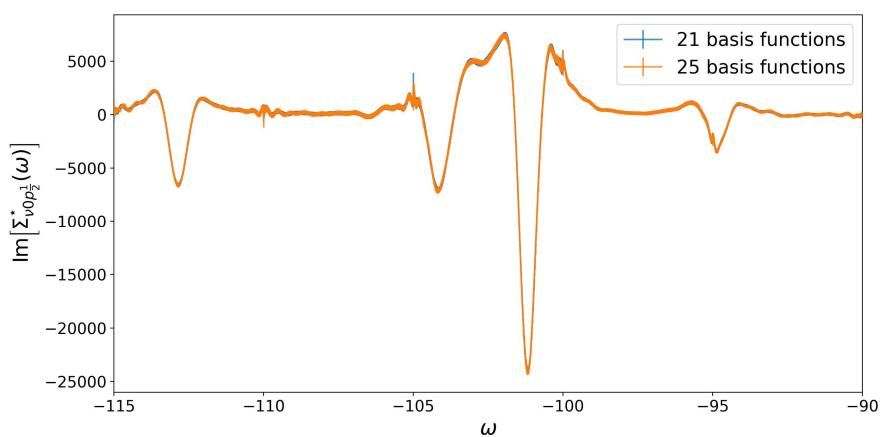
$$(n+1)A_jB_{n+1}(\omega_j) = (2n+1)\omega_jA_jB_n(\omega_j) - nB_{n-1}(\omega_j)$$

- Now we expand up to order ~ 25 with bins of size 5 MeV.
- Currently exploring higher orders and other basis functions. Maybe other polynomial basis (e.g. Chebyshev) have better performance.

RICHARDSON MODEL: FINITE REGULATOR ERROR



NUMBER OF BASIS FUNCTIONS



HOW PERTURBATION THEORY BREAKS CAUSALITY

$$\Sigma_{\alpha\beta}^{\star}(\omega) = \Sigma_{\alpha\beta}^{(\infty)} + M_{\alpha,r}^{\dagger} \frac{1}{\omega - [E^{>} + C]_{r,r'} + i\eta} M_{r',\beta} + N_{\alpha,s} \frac{1}{\omega - [E^{<} + D]_{s,s'} - i\eta} N_{s',\beta}^{\dagger}$$

At third order, the terms that break causality have the form:

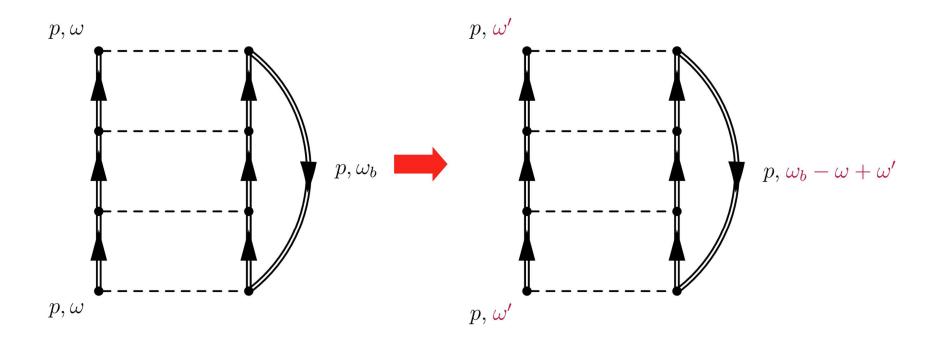
$$(M^I)^{\dagger}_{\alpha r} \frac{1}{\omega - E_r^{>} + i\eta} C_{r,r'}^I \frac{1}{\omega - E_{r'}^{>} + i\eta} M_{r',\beta}^I$$

ADC(n) builds the following expression from the PT results by matching terms

$$(M^I)^{\dagger}_{\alpha r} \frac{1}{\omega - [E^{>} + C^I]_{r \, r'} + i\eta} M^I_{r',\beta}$$

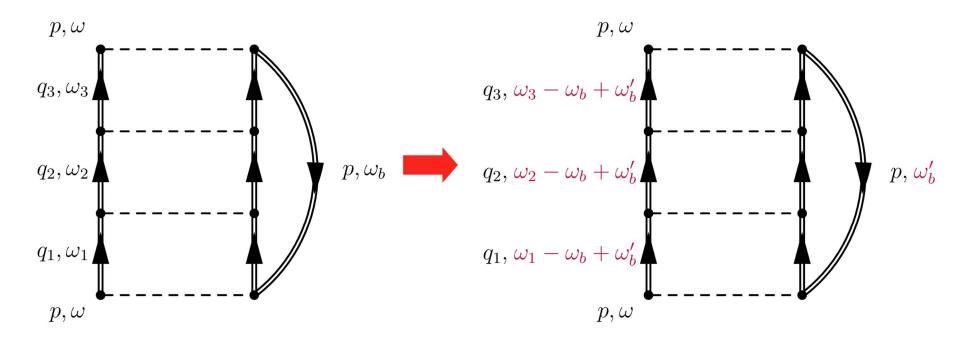
UPDATES OF THE RICHARDSON MODEL

CHANGE ω



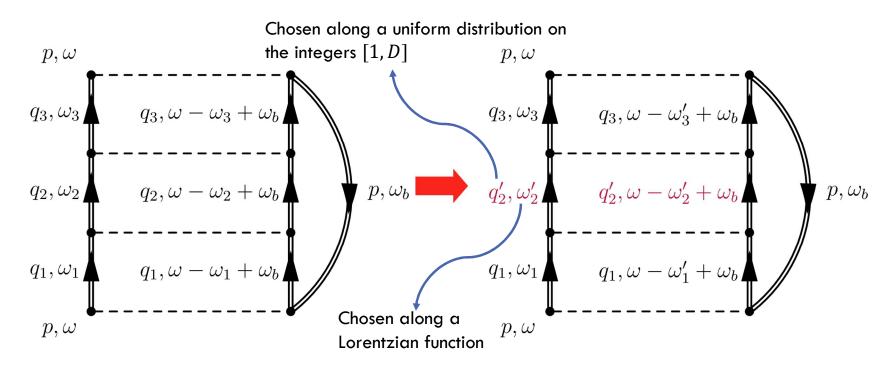
$$q_{C\omega} = \frac{|G_p(\omega_b - \omega + \omega')|}{|G_p(\omega_b)|}$$

CHANGE INTERNAL FREQUENCIES



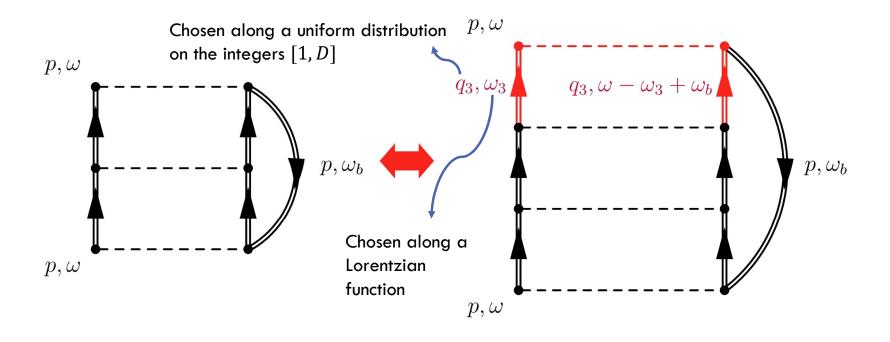
$$q_{\omega int} = \frac{L(\omega_b)}{L(\omega_b')} \frac{|G_p(\omega_b')|}{|G_p(\omega_b)|} \prod_{j=1}^{order} \frac{|G_{q_j}(\omega_j - \omega_b + \omega_b')|}{|G_{q_j}(\omega_j)|}$$

CHANGE SP QUANTUM NUMBERS AND FREQUENCIES



$$q_{q,\omega} = \frac{L(\omega_2)}{L(\omega_2')} \frac{|G_{q_2'}(\omega_2')G_{q_2'}(\omega - \omega_2' + \omega_b)|}{|G_{q_2}(\omega_2)G_{q_2}(\omega - \omega_2 + \omega_b)|}$$

ADD/REMOVE RUNG



$$q_{Add} = \frac{|g|}{4\pi} \frac{D}{L(\omega_3)} \left| G_{q_3}(\omega_3) G_{q_3}(\omega - \omega_3 + \omega_b) \right|$$

$$q_{Rem} = \frac{1}{q_{Add}}$$

