Bayesian inference on nuclear data and neutron star observations for the nuclear equation of state

European Nuclear Physics conference, Caen, France 22nd-26th September Pietro Klausner 22/9/2025

Collaborators

Gianluca Colò (University of Milano)

Xavier Roca-Maza (University of Milano & University of Barcelona)

Enrico Vigezzi (I.N.F.N.)

Francesca Gulminelli (University of Normandie-Caen & L.P.C. Caen)

Anthea Fantina (GANIL)

Marco Antonelli (L.P.C. Caen)

Structure of the presentation

Bayesian inference on nuclear data and neutron star observations for the nuclear equation of state

- First Part: constraints on EoS from nuclear experiments¹
 - Bayesian inference
 - Skyrme Interaction
- Second Part: constraints on EoS from Neutron Stars observations²
 - Second Bayesian inference

Structure of the presentation

Bayesian inference on nuclear data and neutron star observations for the nuclear equation of state

- First Part: constraints on EoS from nuclear experiments¹
 - Bayesian inference
 - Skyrme Interaction
- Second Part: constraints on EoS from Neutron Stars observations²
 - Second Bayesian inference

Bayes' theorem

$$p(x,y) \to p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Given a set of experimental data X and the parameters heta of our model M

$$p(\theta | X) = \frac{p(X | \theta)p(\theta)}{p(X)}$$

Bayes' theorem

$$p(x,y) \to p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Given a set of experimental data X and the parameters heta of our model M

Prior distribution

$$p(\theta | X) = \frac{p(X | \theta)p(\theta)}{p(X)}$$

Assumption on the model before considering experimental evidences

Bayes' theorem

$$p(x,y) \to p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

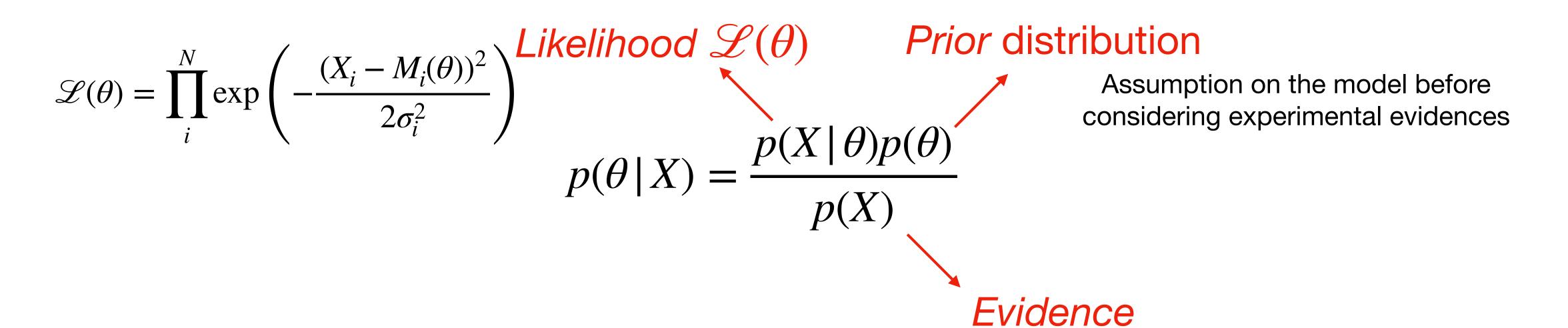
Given a set of experimental data X and the parameters heta of our model M

$$\mathcal{L}(\theta) = \prod_{i}^{N} \exp\left(-\frac{(X_{i} - M_{i}(\theta))^{2}}{2\sigma_{i}^{2}}\right) \overset{\text{Likelihood}}{\underbrace{\sum_{i}^{N} \frac{\mathcal{L}(\theta)}{2\sigma_{i}^{2}}}} \overset{\text{Likelihood}}{\underbrace{\sum_{i}^{N} \frac{\mathcal{L}(\theta)}{2\sigma_{i}^{2}}}} \overset{\text{Assumption on the model before considering experimental evidences}}{p(\theta \mid X)} = \frac{p(X \mid \theta)p(\theta)}{p(X)}$$

Bayes' theorem

$$p(x,y) \to p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Given a set of experimental data X and the parameters heta of our model M



Normalization factor for comparing different models; it does not depend on $\boldsymbol{\theta}$

Bayes' theorem

$$p(x,y) \to p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Given a set of experimental data X and the parameters heta of our model M

$$\mathcal{L}(\theta) = \prod_{i}^{N} \exp\left(-\frac{(X_{i} - M_{i}(\theta))^{2}}{2\sigma_{i}^{2}}\right) \overset{\text{Likelihood }}{\sum} \frac{\mathcal{L}(\theta)}{p(X)} \overset{\text{Prior distribution}}{\sum} \overset{\text{Assumption on the model before considering experimental evidences}}{p(\theta \mid X) = \frac{p(X \mid \theta)p(\theta)}{p(X)}}$$

Probability distribution of model parameters; cannot be' computed analytically (MC sampling techniques)

Posterior distribution

Normalization factor for comparing different models; it does not depend on θ

Evidence

Parameters of the model and prior

Parameters (θ)

$$n_{sat}, E_{sat}, K_{sat}, E_{sym}, L_{sym}$$

 G_0, G_1

 W_0, v_0

 $m_0^*/m, m_1^*/m$

0 = isoscalar; 1 = isovector

Nuclear matter parameters

Surface term parameters

Spin-orbit parameter and pairing strength

Effective masses

1-to-1 correspondence with usual Skyrme parameters¹!

Parameters of the model and prior

Parameters (θ)

 $n_{sat}, E_{sat}, K_{sat}, E_{sym}, L_{sym}$

 G_0, G_1

 W_0, v_0

 $m_0^*/m, m_1^*/m$

0 = isoscalar; 1 = isovector

Nuclear matter parameters

Surface term parameters

Spin-orbit parameter and pairing strength

Effective masses

1-to-1 correspondence with usual Skyrme parameters¹!

Prior distribution $p(\theta)$

	Units	Lower	Upper
	UIIItS	limit	limit
$\overline{n_{sat}}$	$[fm^{-3}]$	0.150	0.175
E_{sat}	[MeV]	-16.50	-15.50
K_{sat}	[MeV]	180.00	260.00
E_{sym}	[MeV]	24.00	40.00
L_{sym}	[MeV]	-20.00	120.00
G_0	[MeV fm ⁵]	90.00	170.00
G_1	[MeV fm ⁵]	-90.00	70.00
W_0	[MeV fm ⁵]	60.00	190.00
m_0^* / m	[-]	0.70	1.10
m_1^*/m	[-]	0.60	0.90
v_0	[MeV fm ³]	150	350

$$\mathcal{L}(\theta) = \prod_{i}^{N} \exp\left(-\frac{(X_{i} - M_{i}(\theta))^{2}}{2\sigma_{i}^{2}}\right)$$

$$\mathcal{L}(\theta) = \prod_{i}^{N} \exp\left(-\frac{(X_{i} - M_{i}(\theta))^{2}}{2\sigma_{i}^{2}}\right)$$

Ground-state properties			
	$B.E. [\mathrm{MeV}]$	$R_{ m ch} \ [{ m fm}]$	$\Delta E_{\rm SO} \ [{ m MeV}]$
-208Pb	$1636.4 \pm 2.0^*$	$5.50 \pm 0.05^*$	$2.02 \pm 0.50^*$
$^{48}\mathrm{Ca}$	$416.0\pm2.0^{*}$	$3.48\pm0.05^*$	$1.72 \pm 0.50^*$
$^{68}\mathrm{Ni}$	$590.4 \pm 2.0^*$	_	_
$^{132}\mathrm{Sn}$	$1102.8\pm2.0^{\!*}$	4.71 ± 0.05	_
$^{90}\mathrm{Zr}$	$783.9\pm2.0^{*}$	4.27 ± 0.05	_

	Data from	ı open shell nu	ıclei
	$B.E. [\mathrm{MeV}]$	R_{ch} [fm]	$\Delta_n [{ m MeV}]$
50 Ca	$427.5\pm2.0^*$	$3.52 \pm 0.05^*$	-
$^{46}\mathrm{Ca}$	$398.8 \pm 2.0^*$	_	_
$^{44}\mathrm{Ca}$	$381.0\pm2.0^*$	_	_
$^{42}\mathrm{Ca}$	$361.9\pm2.0^*$	_	_
$^{120}\mathrm{Sn}$	$1020.5\pm2.0^*$	$4.65\pm0.05^*$	$1.3 \pm 0.2^*$
$^{112}\mathrm{Sn}$	$953.5\pm2.0^*$	_	_
$^{124}\mathrm{Sn}$	$1050.0 \pm 2.0^*$	_	_

B.E.: Binding Energy;

 R_{ch} : Charge radius

 ΔE_{SO} : Spin-orbit splitting

 Δ_n : Neutron pairing gap

*Theoretical error

$$\mathcal{L}(\theta) = \prod_{i}^{N} \exp\left(-\frac{(X_{i} - M_{i}(\theta))^{2}}{2\sigma_{i}^{2}}\right)$$

Ground-state properties			
	$B.E. [\mathrm{MeV}]$	$R_{\mathrm{ch}} \; [\mathrm{fm}]$	$\Delta E_{\mathrm{SO}} \ [\mathrm{MeV}]$
²⁰⁸ Pb	$1636.4 \pm 2.0^*$	$5.50 \pm 0.05^*$	$2.02 \pm 0.50^*$
$^{48}\mathrm{Ca}$	$416.0\pm2.0^{*}$	$3.48\pm0.05^*$	$1.72\pm0.50^*$
$^{68}\mathrm{Ni}$	$590.4\pm2.0^{*}$	_	_
$^{132}\mathrm{Sn}$	$1102.8\pm2.0^{\!*}$	4.71 ± 0.05	_
$^{90}\mathrm{Zr}$	$783.9\pm2.0^{*}$	4.27 ± 0.05	_

	Data from	open shell nu	clei
	$B.E. [\mathrm{MeV}]$	$R_{ch} [\mathrm{fm}]$	$\Delta_n [{ m MeV}]$
50 Ca	$427.5\pm2.0^*$	$3.52 \pm 0.05^*$	-
$^{46}\mathrm{Ca}$	$398.8\pm2.0^*$	_	_
$^{44}\mathrm{Ca}$	$381.0\pm2.0^*$	_	_
$^{42}\mathrm{Ca}$	$361.9\pm2.0^*$	_	_
$^{120}\mathrm{Sn}$	$1020.5\pm2.0^*$	$4.65\pm0.05^*$	$1.3 \pm 0.2^*$
$^{112}\mathrm{Sn}$	$953.5\pm2.0^*$	_	_
$^{124}\mathrm{Sn}$	$1050.0 \pm 2.0^*$	_	_

Isoscalar resonances		
	$E_{\rm GMR}^{\rm IS} \ [{ m MeV}]$	$E_{\rm GQR}^{\rm IS} \ [{ m MeV}]$
208 Pb	$13.5 \pm 0.5^*$	$10.9 \pm 0.5^{*}$
$^{90}\mathrm{Zr}$	$\boldsymbol{18.7 \pm 0.5}^*$	_

B.E.: Binding Energy;

 R_{ch} : Charge radius

 Δ_n : Neutron pairing gap

 E_{GMR}^{IS} : IsoScalar Giant monopole resonance

excitation energy (constrained)

 ΔE_{SO} : Spin-orbit splitting E_{GOR}^{IS} : IsoScalar Giant quadrupole resonance

excitation energy (centroid)

*Theoretical error

$$\mathcal{L}(\theta) = \prod_{i}^{N} \exp\left(-\frac{(X_{i} - M_{i}(\theta))^{2}}{2\sigma_{i}^{2}}\right)$$

Ground-state properties			
	$B.E. [\mathrm{MeV}]$	$R_{ m ch} \ [{ m fm}]$	$\Delta E_{\rm SO} \ [{ m MeV}]$
-208Pb	$1636.4 \pm 2.0^*$	$5.50 \pm 0.05^*$	$2.02 \pm 0.50^*$
$^{48}\mathrm{Ca}$	$416.0\pm2.0^{*}$	$3.48\pm0.05^*$	$1.72 \pm 0.50^*$
$^{68}\mathrm{Ni}$	$590.4 \pm 2.0^*$	_	_
$^{132}\mathrm{Sn}$	$1102.8\pm2.0^{\!*}$	4.71 ± 0.05	_
$^{90}\mathrm{Zr}$	$783.9\pm2.0^{*}$	4.27 ± 0.05	_

	Data from open shell nuclei		
	$B.E. [\mathrm{MeV}]$	$R_{ch} [\mathrm{fm}]$	$\Delta_n \; [{ m MeV}]$
50 Ca	$427.5 \pm 2.0^*$	$3.52 \pm 0.05^*$	-
$^{46}\mathrm{Ca}$	$398.8 \pm 2.0^*$	_	_
$^{44}\mathrm{Ca}$	$381.0 \pm 2.0^*$	_	_
$^{42}\mathrm{Ca}$	$361.9\pm2.0^*$	_	_
$^{120}\mathrm{Sn}$	$1020.5\pm2.0^*$	$4.65 \pm 0.05^*$	$1.3 \pm 0.2^*$
$^{112}\mathrm{Sn}$	$953.5\pm2.0^*$	-	-
$^{124}\mathrm{Sn}$	$1050.0 \pm 2.0^*$	-	_

Isoscalar resonances		
	$E_{\rm GMR}^{\rm IS} \; [{ m MeV}]$	$E_{\rm GQR}^{\rm IS} \ [{ m MeV}]$
-208Pb	$13.5 \pm 0.5^*$	$10.9 \pm 0.5^*$
$^{90}\mathrm{Zr}$	$\boldsymbol{18.7 \pm 0.5}^*$	_

	Isovector properties		
	$\alpha_{\rm D} \ [{\rm fm^3}]$	$m(1) [{ m MeV fm^2}]$	$\overline{A_{\mathrm{PV}} \; (\mathrm{ppb})}$
208 Pb	19.60 ± 0.60	961 ± 22	${\bf 528 \pm 18}$
$^{48}\mathrm{Ca}$	2.07 ± 0.22	-	2550 ± 113

B.E.: Binding Energy;

 R_{ch} : Charge radius

 ΔE_{SO} : Spin-orbit splitting

 Δ_n : Neutron pairing gap

 E_{GMR}^{IS} : IsoScalar Giant monopole resonance excitation energy (constrained)

 E_{GOR}^{IS} : IsoScalar Giant quadrupole resonance excitation energy (centroid)

 α_D : Nuclear polarizability

m(1): EWSR of IVGDR

 A_{PV} : Parity violating asymmetry

*Theoretical error

¹ X. Roca-Maza, D H. Jakubassa-Amundsen Phys. Rev. Lett. 134, 192501 (2025) 4

$$p(\theta | X) = \frac{p(X | \theta)p(\theta)}{p(X)} \longrightarrow$$

Metropolis-Hastings algorithm: MCMC, explores parameter space focusing on zones with high \mathscr{L}

$$p(\theta | X) = \frac{p(X | \theta)p(\theta)}{p(X)} \longrightarrow \text{MCMC}$$

Metropolis-Hastings algorithm: MCMC, explores parameter space focusing on zones with high \mathscr{L}

$$\mathcal{L}(\theta) = \prod_{i}^{N} \exp\left(-\frac{(X_i - M_i(\theta))^2}{2\sigma_i^2}\right)$$

"hfbcs-qrpa1" code to compute observables from parameters $(M(\theta))$

$$p(\theta \mid X) = \frac{p(X \mid \theta)p(\theta)}{p(X)} \longrightarrow$$

 $p(\theta \mid X) = \frac{p(X \mid \theta)p(\theta)}{p(X)} \longrightarrow \frac{\text{Metropolis-Hastings algorithm:}}{\text{MCMC, explores parameter space}}$ focusing on zones with high \mathscr{L}

$$\mathcal{L}(\theta) = \prod_{i}^{N} \exp\left(-\frac{(X_i - M_i(\theta))^2}{2\sigma_i^2}\right)$$

"hfbcs-qrpa1" code to compute observables from parameters $(M(\theta))$

Computing all the observables \longrightarrow ~ 2 hours!

$$p(\theta \mid X) = \frac{p(X \mid \theta)p(\theta)}{p(X)} \longrightarrow$$

 $p(\theta | X) = \frac{p(X | \theta)p(\theta)}{p(X)} \longrightarrow \frac{\text{Metropolis-Hastings algorithm:}}{\text{MCMC, explores parameter space}}$ focusing on zones with high \mathscr{L}

$$\mathcal{L}(\theta) = \prod_{i}^{N} \exp\left(-\frac{(X_i - M_i(\theta))^2}{2\sigma_i^2}\right)$$

 $\mathcal{L}(\theta) = \prod_{i}^{N} \exp\left(-\frac{(X_i - M_i(\theta))^2}{2\sigma_i^2}\right)$ "hfbcs-qrpa1" code to compute observables from parameters $(M(\theta))$

Computing all the observables \longrightarrow ~ 2 hours!

MH algorithm $\longrightarrow 10^{6-7}$ model evaluations!

$$p(\theta \mid X) = \frac{p(X \mid \theta)p(\theta)}{p(X)} \longrightarrow$$

Metropolis-Hastings algorithm: MCMC, explores parameter space focusing on zones with high \mathscr{L}

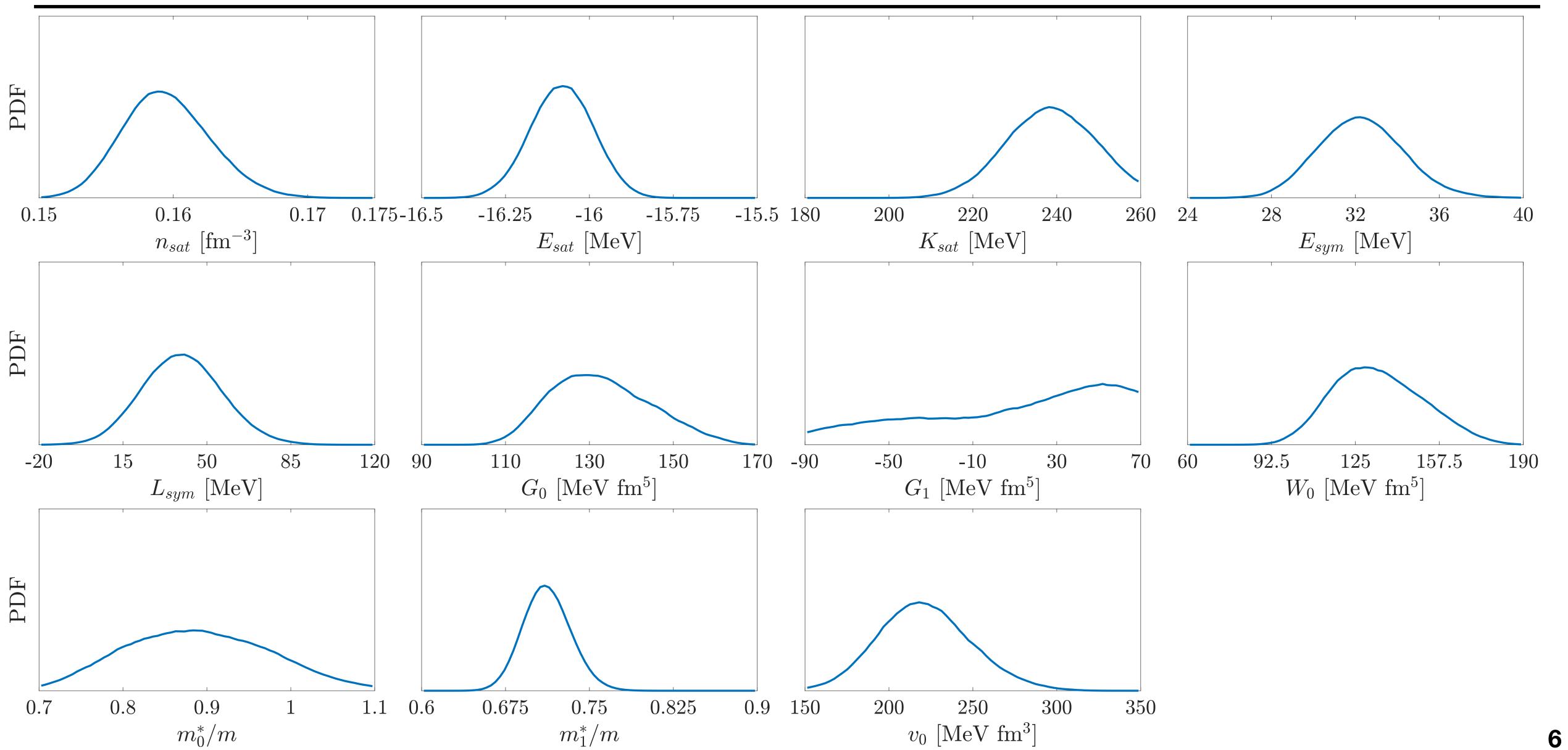
$$\mathcal{L}(\theta) = \prod_{i}^{N} \exp\left(-\frac{(X_i - M_i(\theta))^2}{2\sigma_i^2}\right)$$

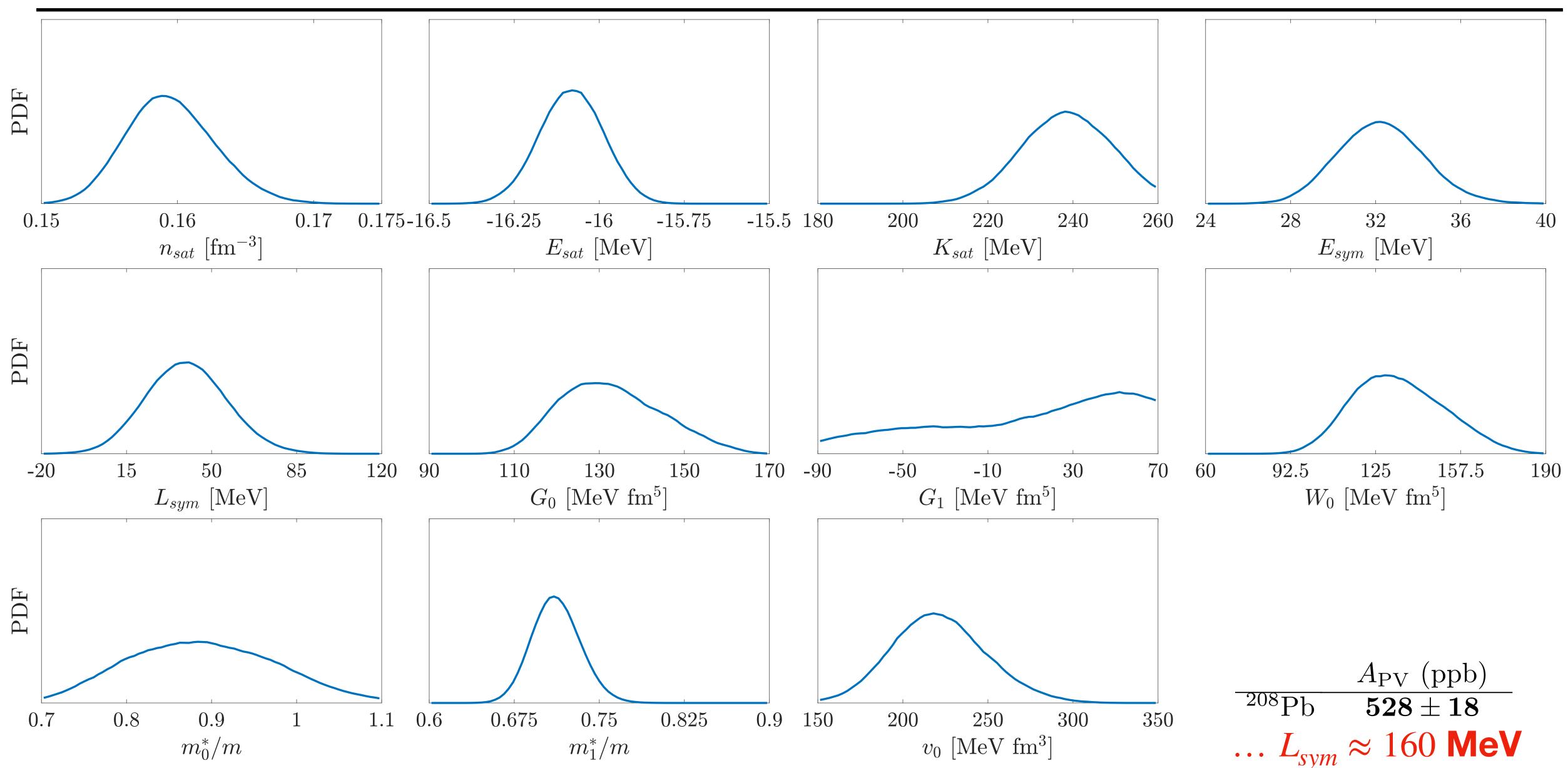
"hfbcs-qrpa1" code to compute observables from parameters $(M(\theta))$

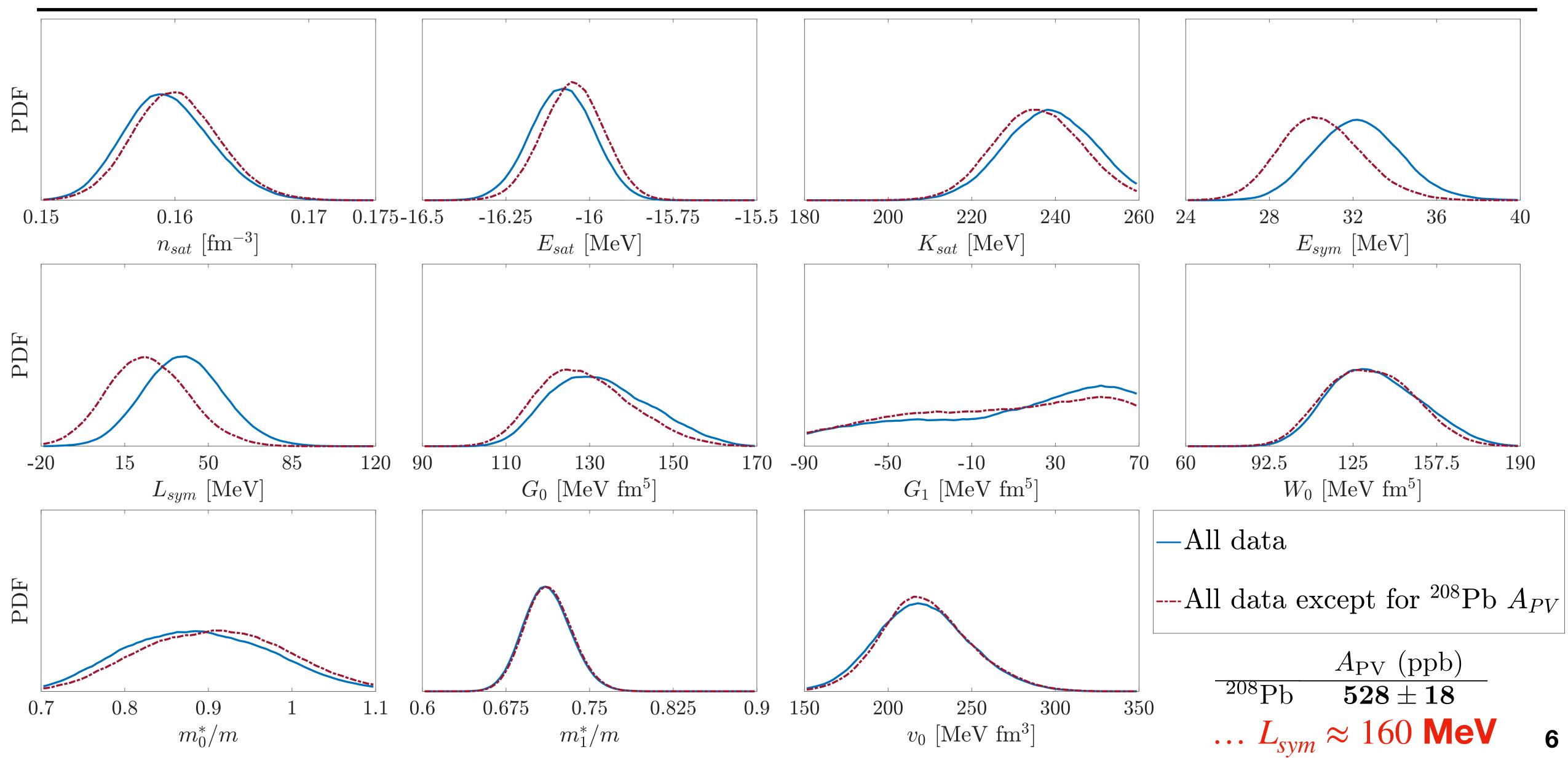
Computing all the observables \longrightarrow ~ 2 hours! MH algorithm \longrightarrow 10^{6-7} model evaluations!

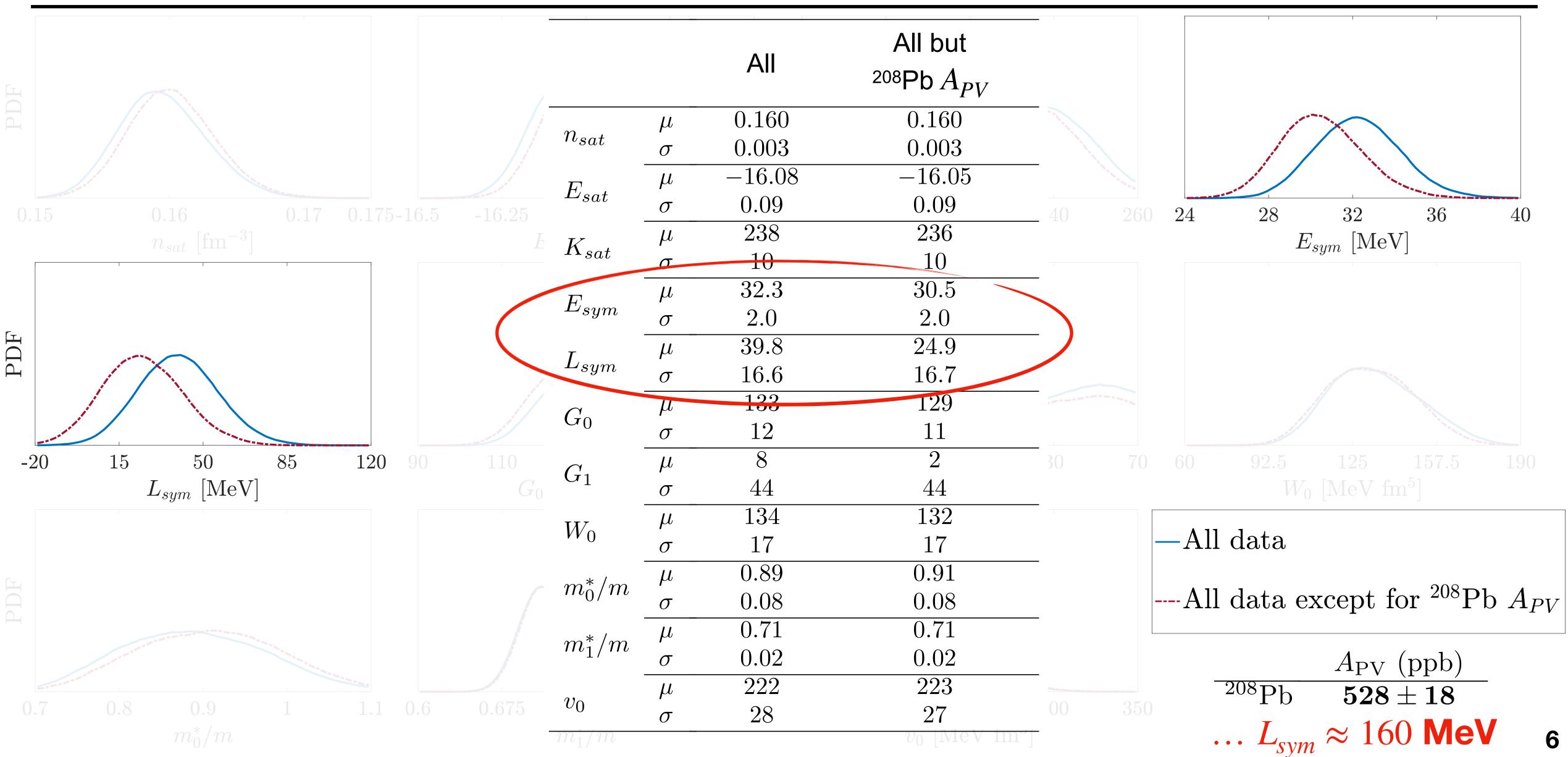
2 h. x 10'000'000 points...

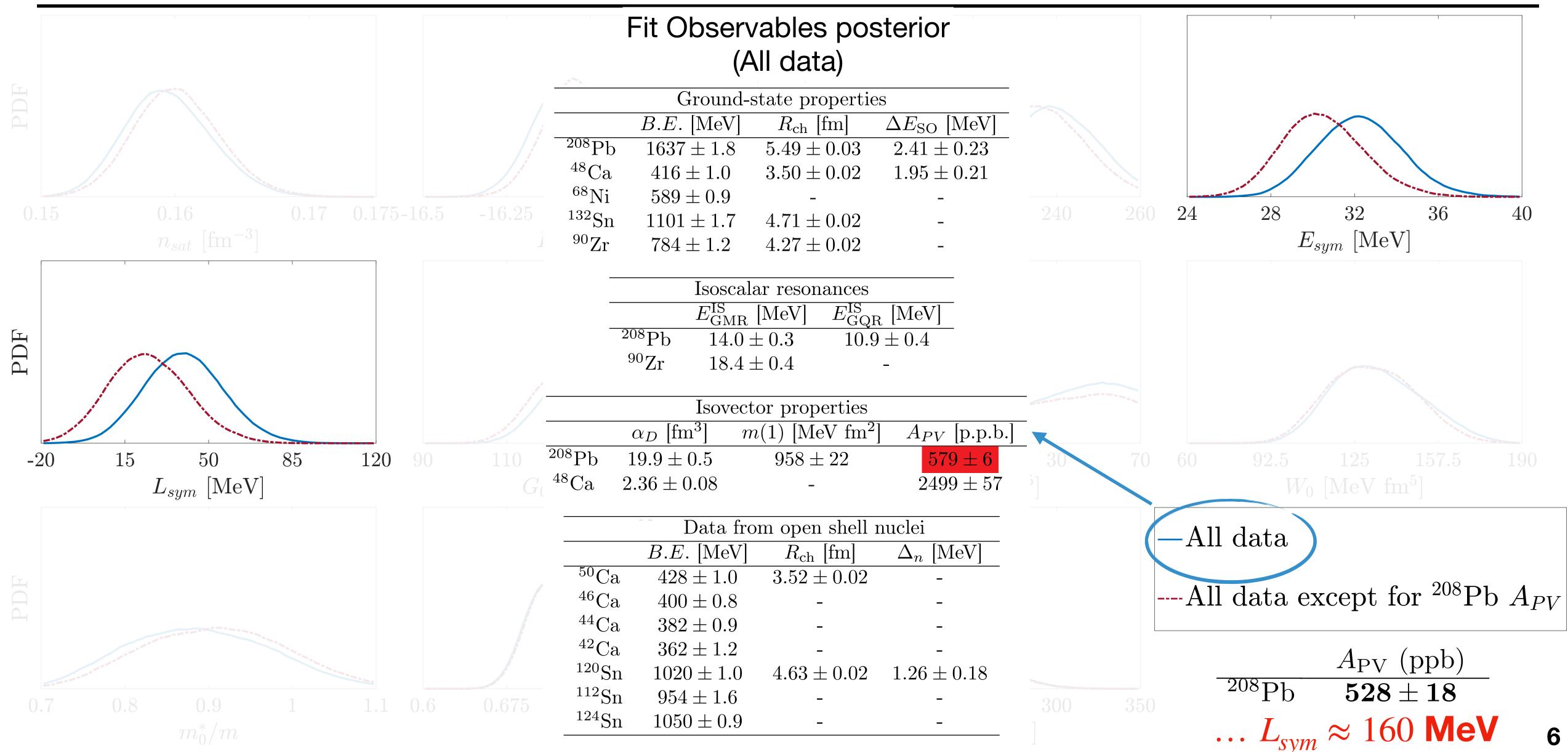
MADAI package¹ (Emulator for Bayesian inference)











Structure of the presentation

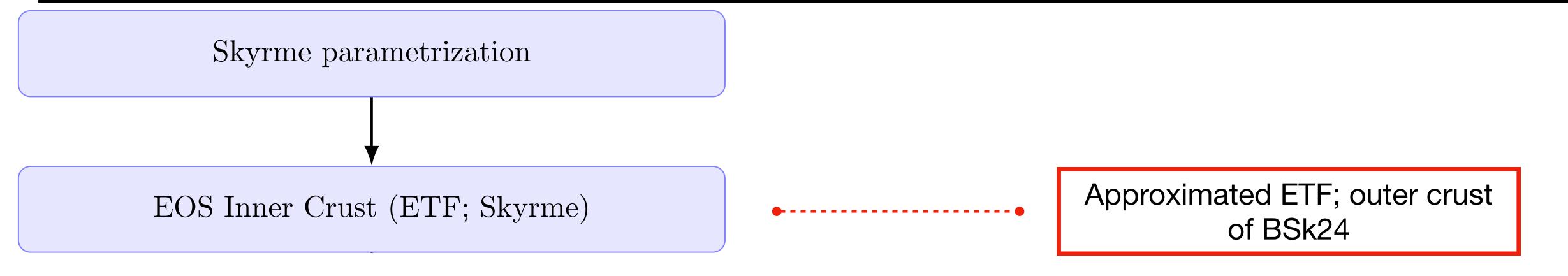
Bayesian inference on nuclear data and neutron star observations for the nuclear equation of state

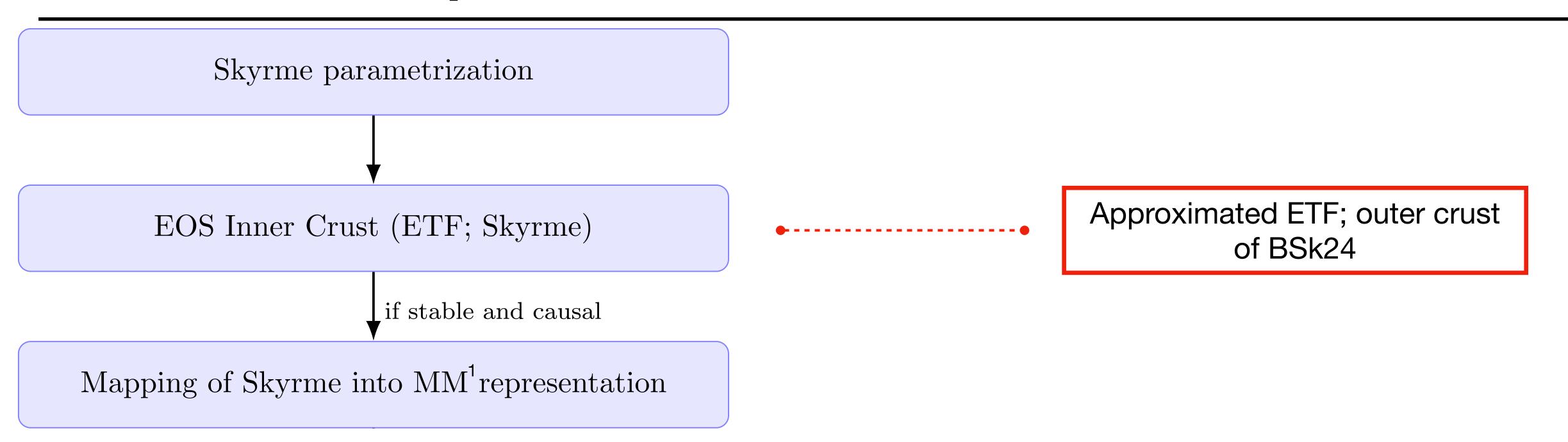
- First Part: constraints on EoS from nuclear experiments¹
 - Bayesian inference
 - Skyrme Interaction
- Second Part: constraints on EoS from Neutron Stars observations²
 - Second Bayesian inference

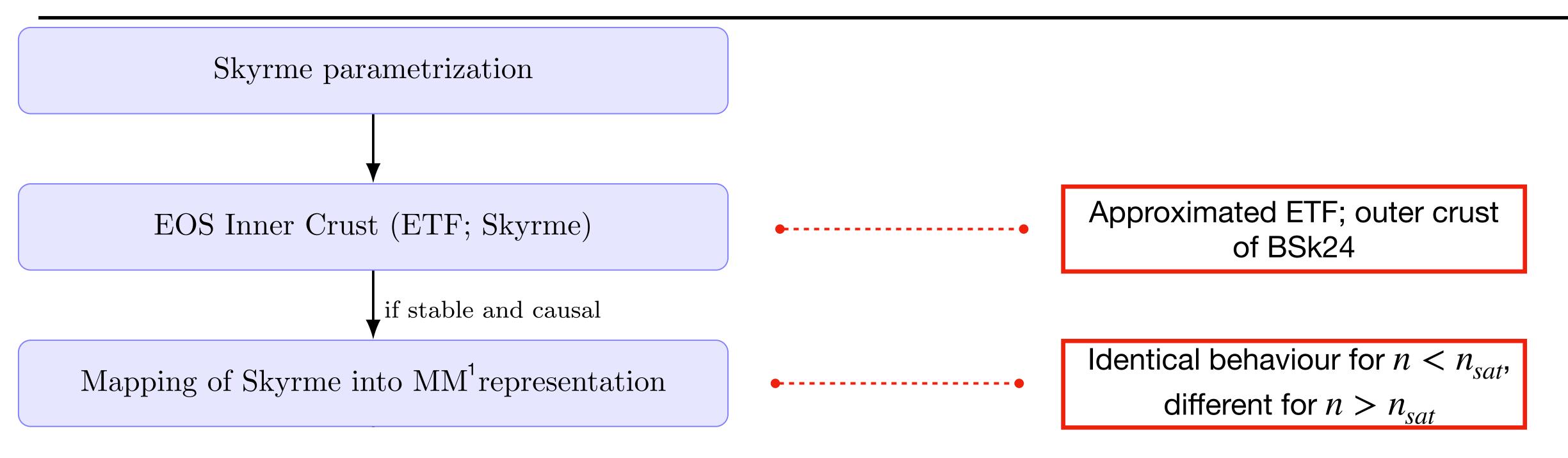
Skyrme parametrization

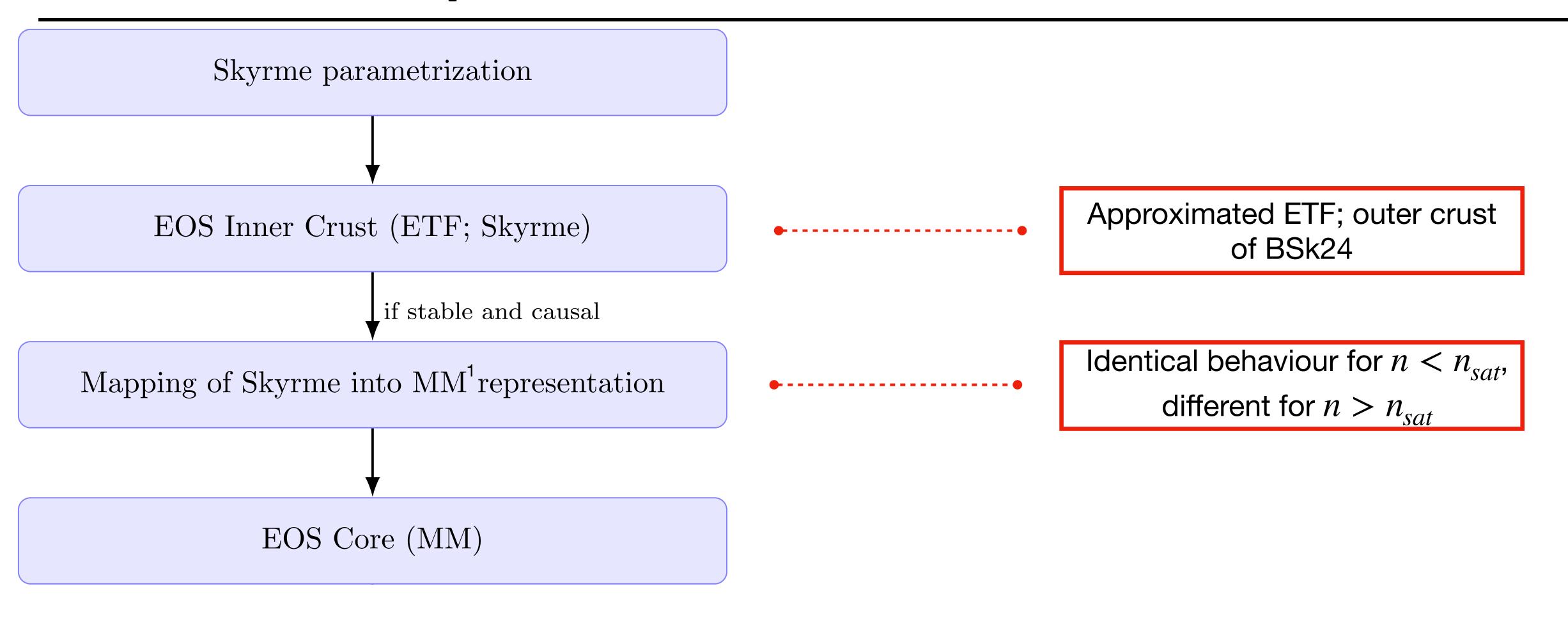
Skyrme parametrization

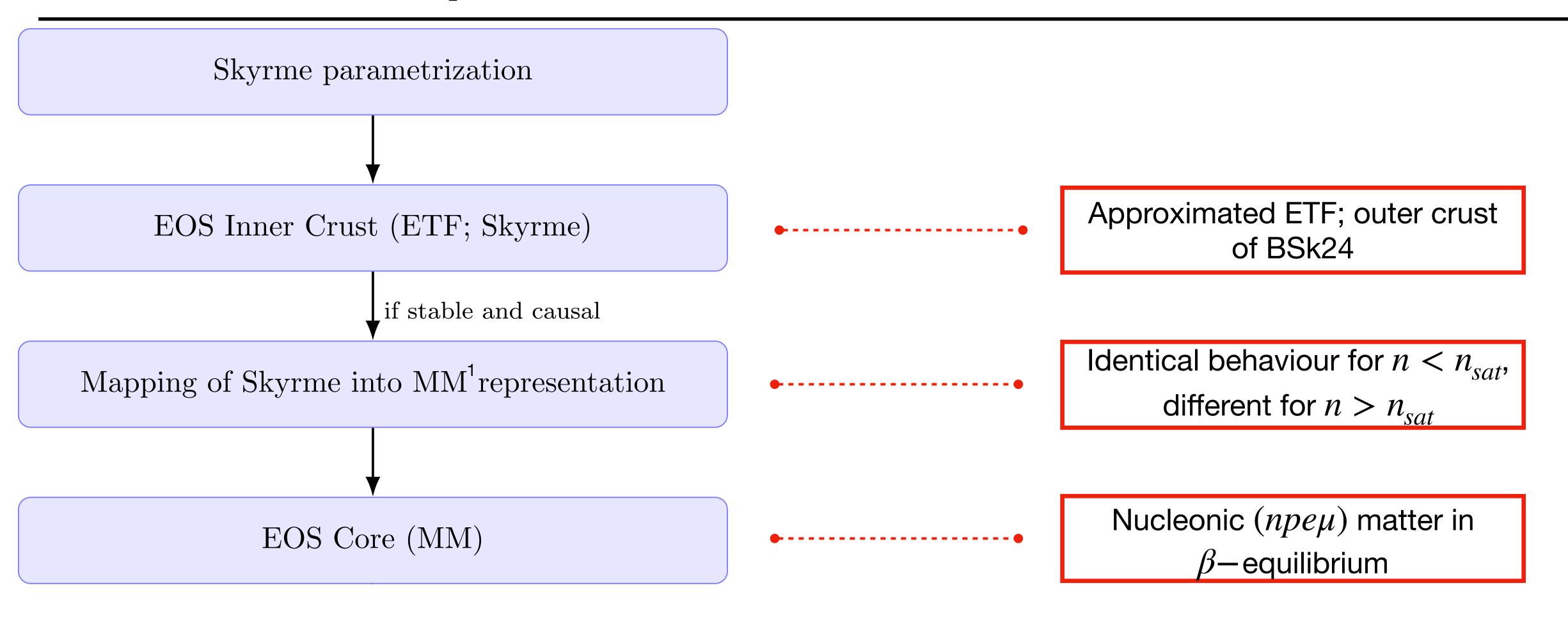
EOS Inner Crust (ETF; Skyrme)

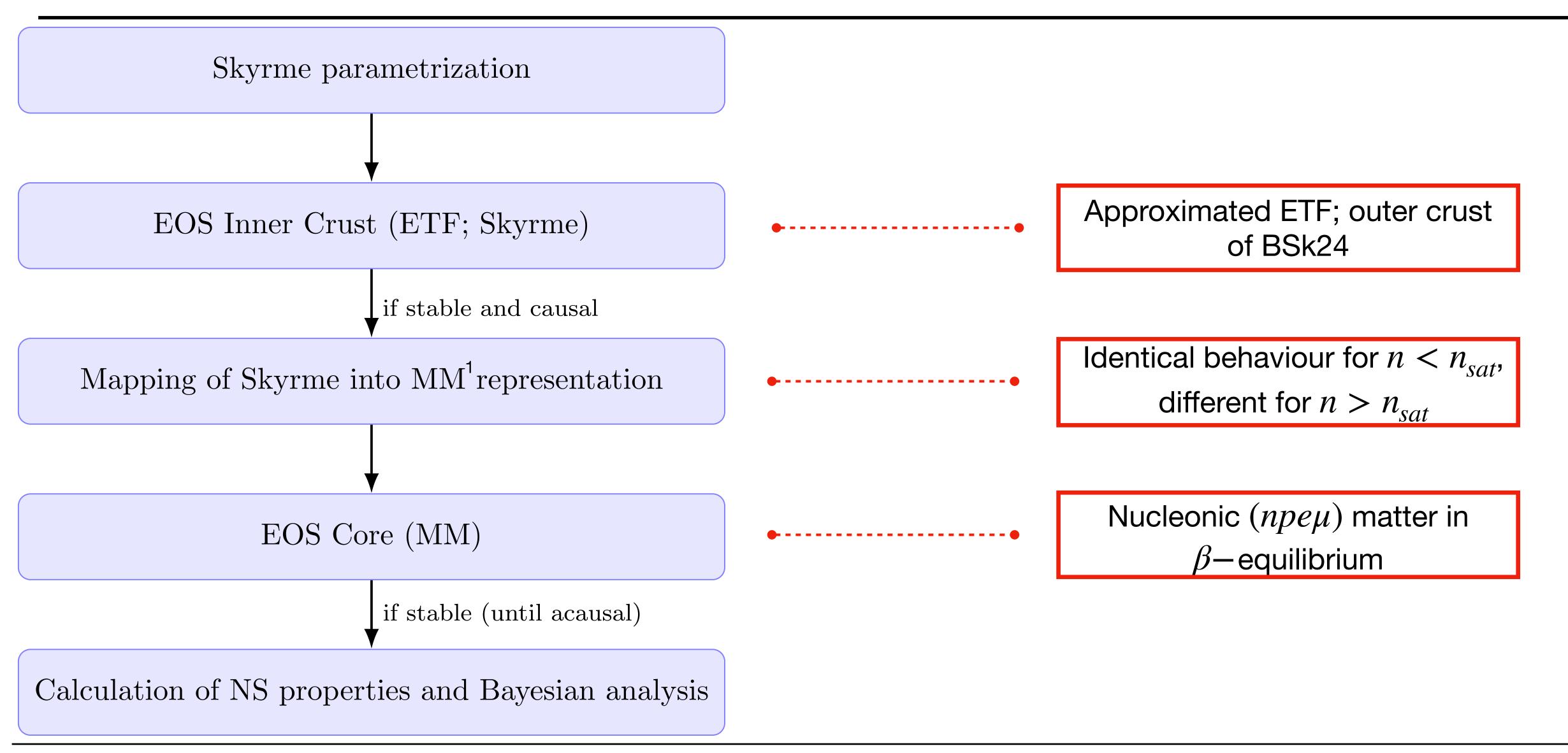












¹Margueron et al., Phys. Rev. C **97**, 025805 (2018)

Bayesian setup: prior and constraints

Prior distribution

$\overline{E_{sat}}$	[MeV]	*
n_{sat}	$[fm^{-3}]$	*
K_{sat}	[MeV]	*
Q_{sat}	$[\mathrm{MeV}]$	[-2000, 2000]
Z_{sat}	[MeV]	[-3000, 3000]
E_{sym}	$[\mathrm{MeV}]$	*
L_{sym}	$[\mathrm{MeV}]$	*
Q_{sym}	[MeV]	[-4000, 4000]
Z_{sym}	[MeV]	[-5000, 5000]
m_{IS}^*		*
$m_{IV}^{ar{st}}$	[-]	*
$\overline{w0}$	[MeV fm ⁵]	*
G_0	$[\mathrm{MeV}\ \mathrm{fm}^5]$	*
G_1	$[\mathrm{MeV}\ \mathrm{fm}^5]$	*

Bayesian setup: prior and constraints

Prior distribution

_		
$\overline{E_{sat}}$	[MeV]	*
n_{sat}	$[\mathrm{fm}^{-3}]$	*
K_{sat}	$[\mathrm{MeV}]$	*
Q_{sat}	$[\mathrm{MeV}]$	[-2000, 2000]
Z_{sat}	$[\mathrm{MeV}]$	[-3000, 3000]
E_{sym}	$[\mathrm{MeV}]$	*
L_{sym}	$[\mathrm{MeV}]$	*
_	$[\mathrm{MeV}]$	[-4000, 4000]
	$[\mathrm{MeV}]$	[-5000, 5000]
m_{IS}^*	[-]	*
m_{IV}^*	[-]	*
$\overline{w0}$	$\lceil \text{MeV fm}^5 \rceil$	*
G_0	$[\mathrm{MeV}\ \mathrm{fm}^5]$	*
G_1	$[\mathrm{MeV}\ \mathrm{fm}^5]$	*

Observational constraints

Maximum mass of Neutron Star $(\mathcal{L}_{\text{J0348}})$;

Tidal deformability results $(\mathcal{L}_{\text{LVC}})$;

NICER mission mass-radius measurements $(\mathcal{L}_{\text{NICER}})$; χ -EFT computations of PNM at low density (\mathcal{L}_{γ}) .

Bayesian setup: prior and constraints

Prior distribution

E_{sat}	[MeV]	*
n_{sat}	$[fm^{-3}]$	*
K_{sat}	[MeV]	*
Q_{sat}	$[\mathrm{MeV}]$	[-2000, 2000]
Z_{sat}	$[\mathrm{MeV}]$	[-3000, 3000]
E_{sym}	$[\mathrm{MeV}]$	*
L_{sym}	$[\mathrm{MeV}]$	*
Q_{sym}	$[\mathrm{MeV}]$	[-4000, 4000]
Z_{sym}	$[\mathrm{MeV}]$	[-5000, 5000]
m_{IS}^*	[-]	*
m_{IV}^*	[-]	*
$\overline{w0}$	$\lceil \mathrm{MeV~fm^5} \rceil$	*
G_0	$[\mathrm{MeV}\ \mathrm{fm}^5]$	*
G_1	$[\mathrm{MeV}\ \mathrm{fm}^5]$	*

Observational constraints

Maximum mass of Neutron Star $(\mathcal{L}_{\text{J0348}})$; Tidal deformability results $(\mathcal{L}_{\text{LVC}})$; NICER mission mass-radius measurements $(\mathcal{L}_{\text{NICER}})$;

 $\chi-{\sf EFT}$ computations of PNM at low density (\mathscr{L}_χ) .

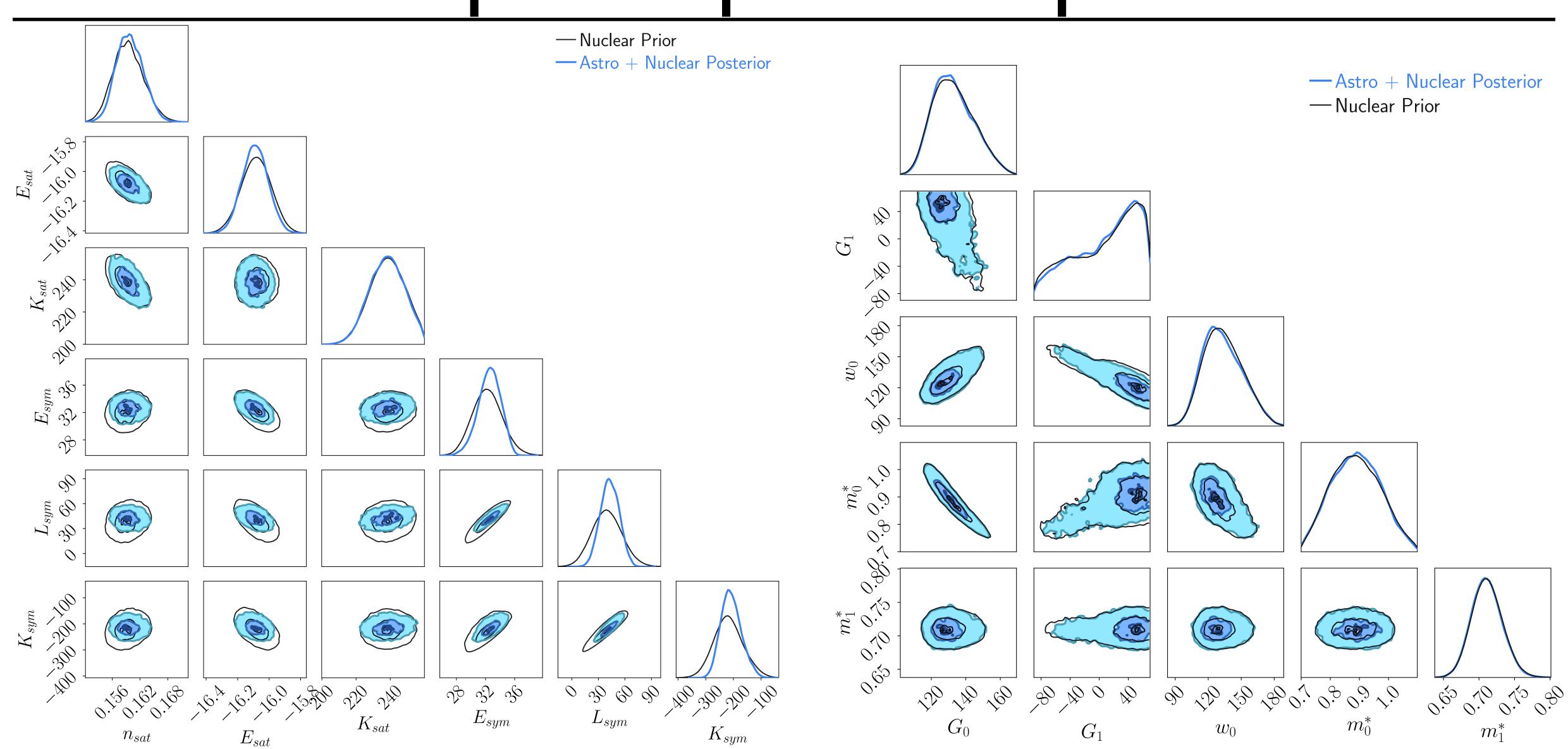
Prior distribution:

10⁵ extractions from nuclear posterior

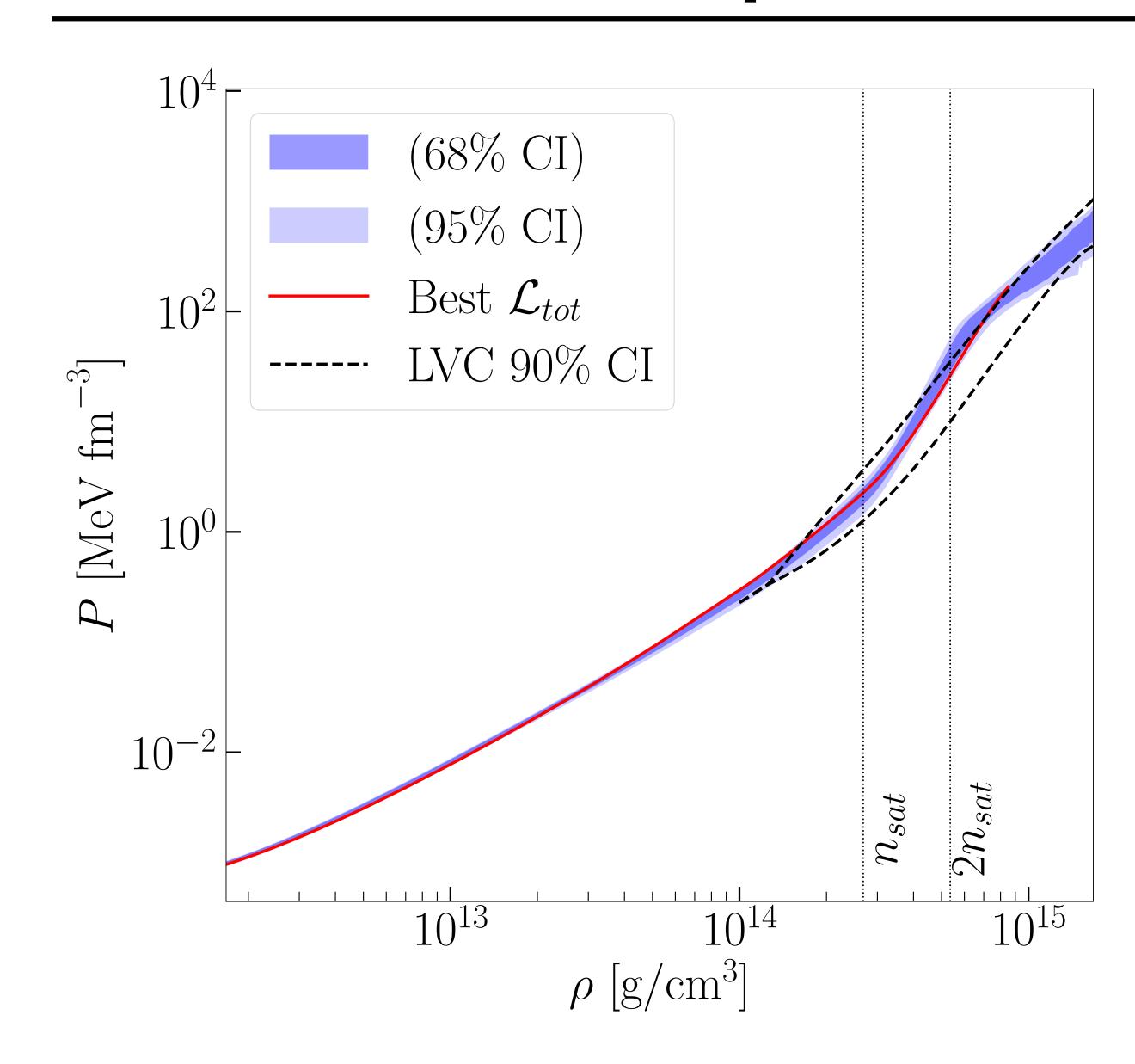
Posterior distribution:

Prior distribution weighted with

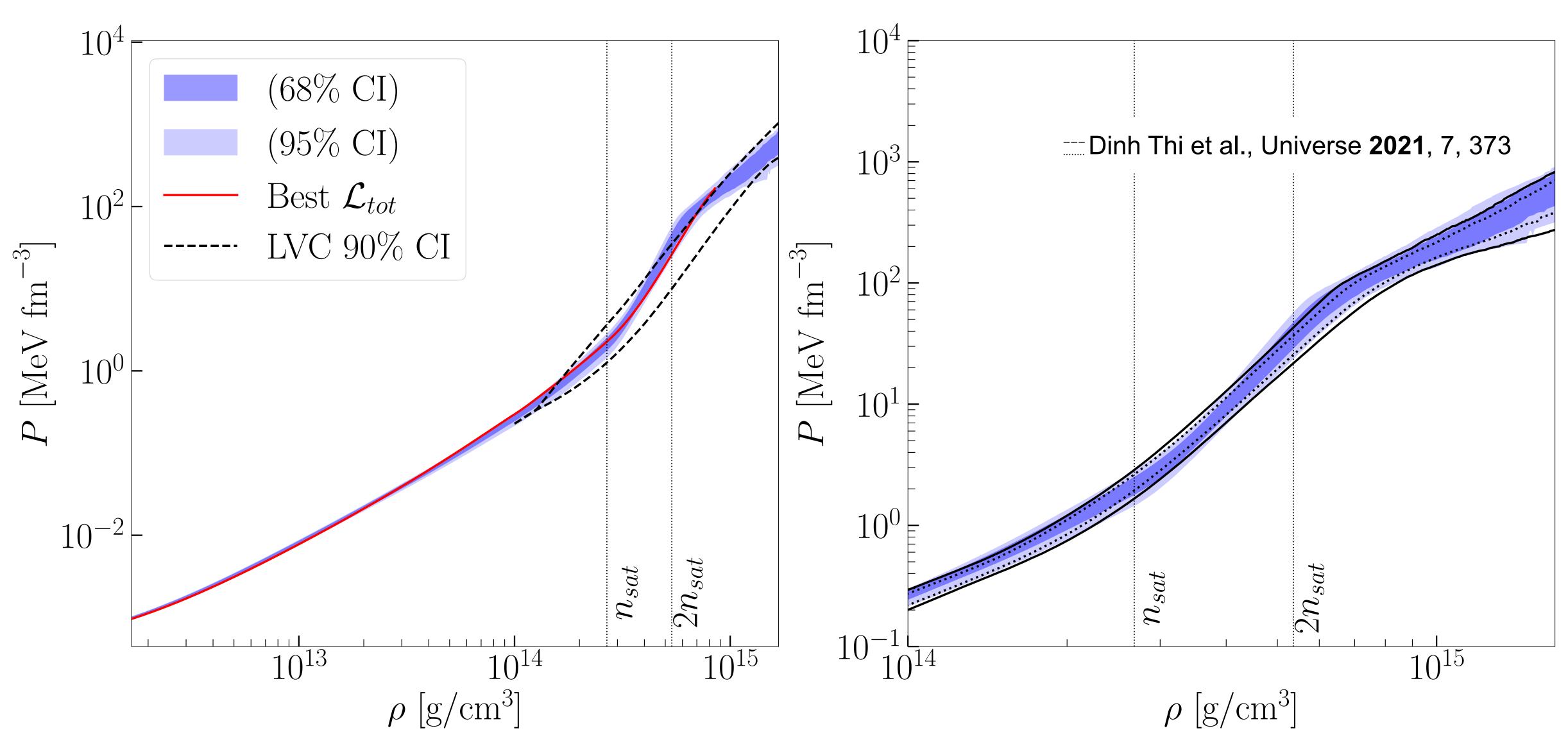
Corner plots: prior vs posterior



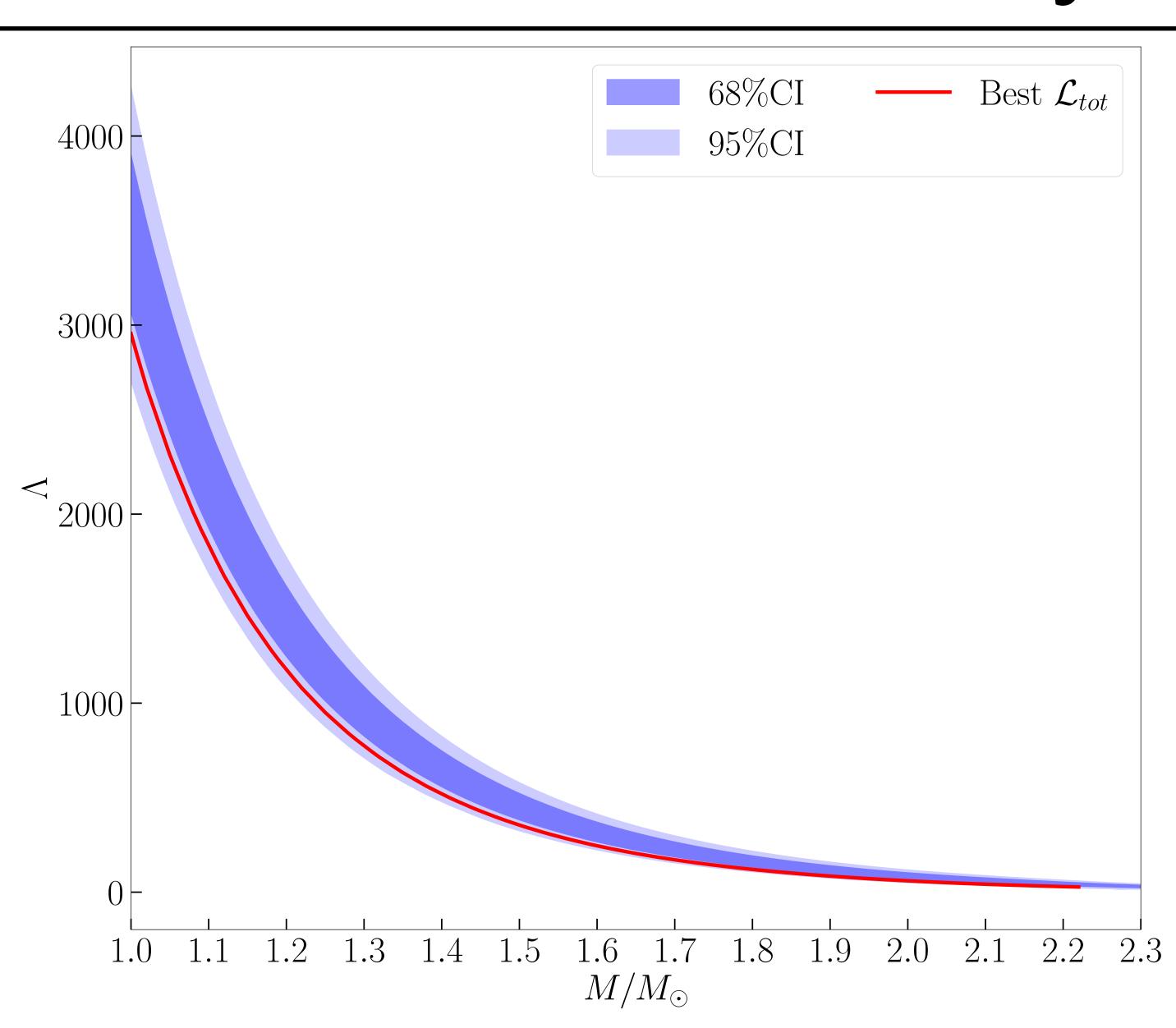
Equation of State



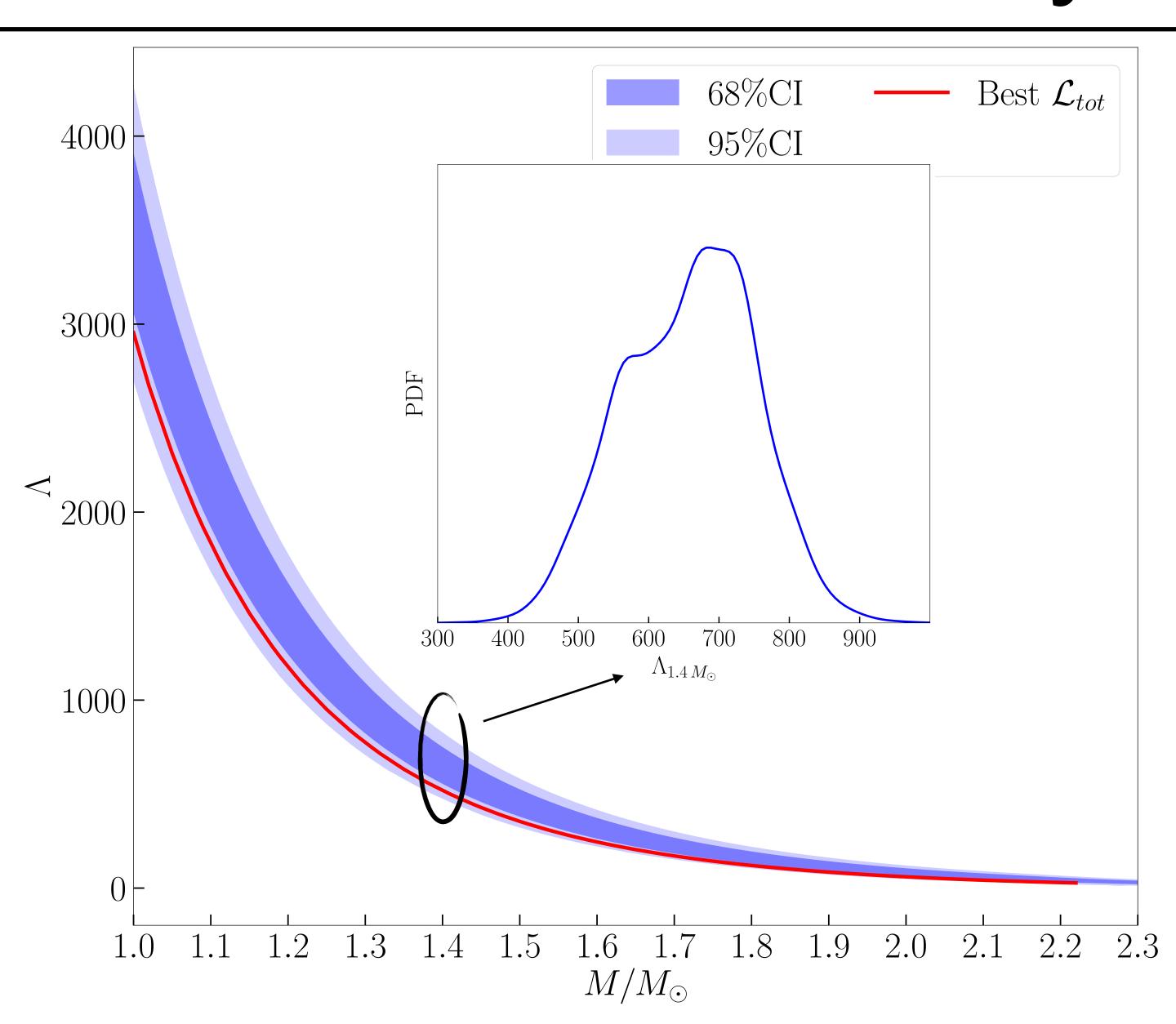
Equation of State



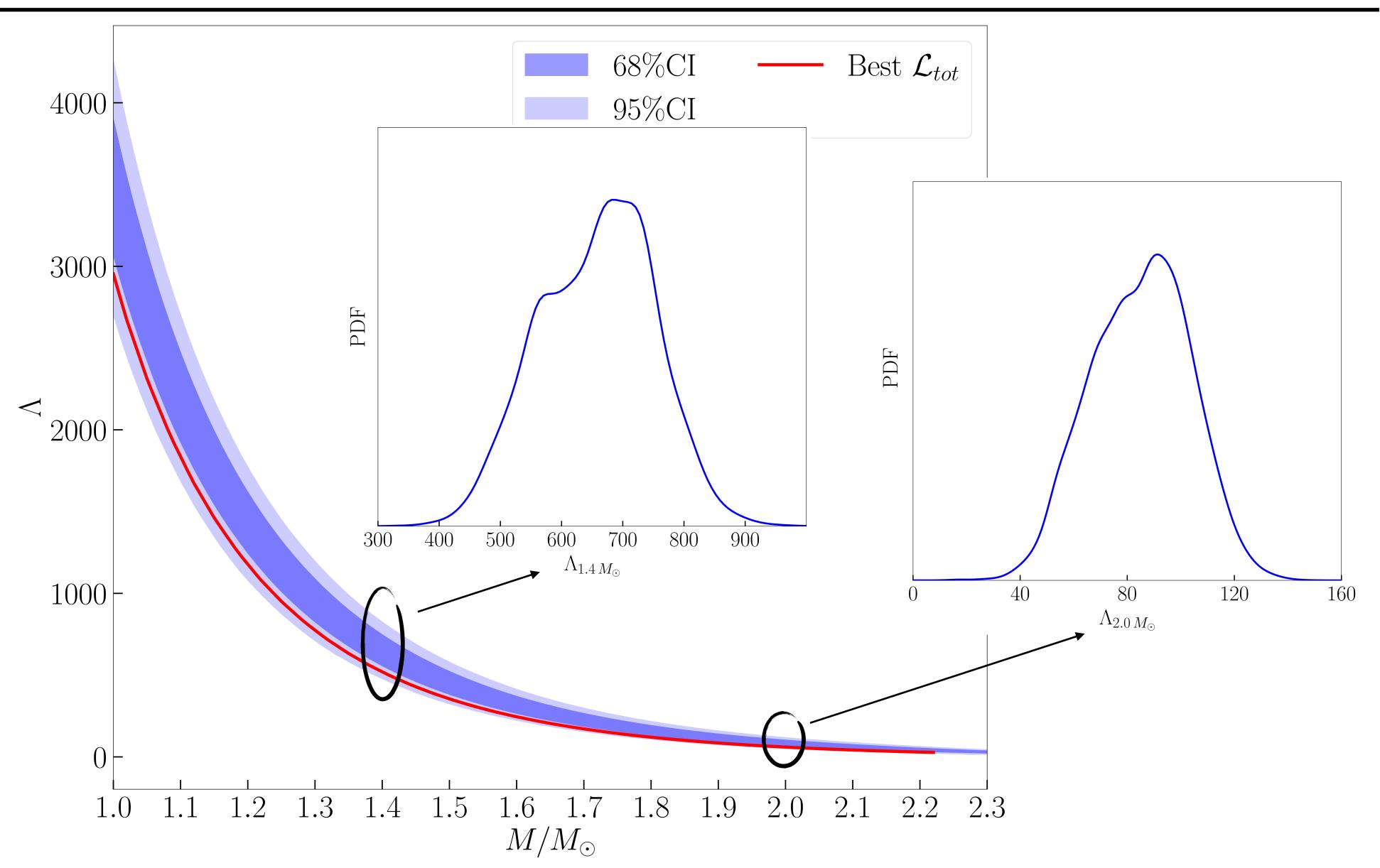
Tidal deformability



Tidal deformability



Tidal deformability



- Bayesian statistical analysis on nuclear matter parameters with nuclear experiments:

- Bayesian statistical analysis on nuclear matter parameters with nuclear experiments:
 - Skyrme ansatz

- Bayesian statistical analysis on nuclear matter parameters with nuclear experiments:
 - Skyrme ansatz
 - Fit with experimental observables of different types (ground state, giant resonances,...);

- Bayesian statistical analysis on nuclear matter parameters with nuclear experiments:
 - Skyrme ansatz
 - Fit with experimental observables of different types (ground state, giant resonances,...);
 - Result: a robust posterior distribution of Skyrme parametrizations compatible with the experimental data;

- Bayesian statistical analysis on nuclear matter parameters with nuclear experiments:
 - Skyrme ansatz
 - Fit with experimental observables of different types (ground state, giant resonances,...);
 - Result: a robust posterior distribution of Skyrme parametrizations compatible with the experimental data;
 - Further evidence of tension between $^{208}{
 m Pb}\,A_{PV}$ and $^{48}{
 m Ca}\,A_{PV}$ and α_D

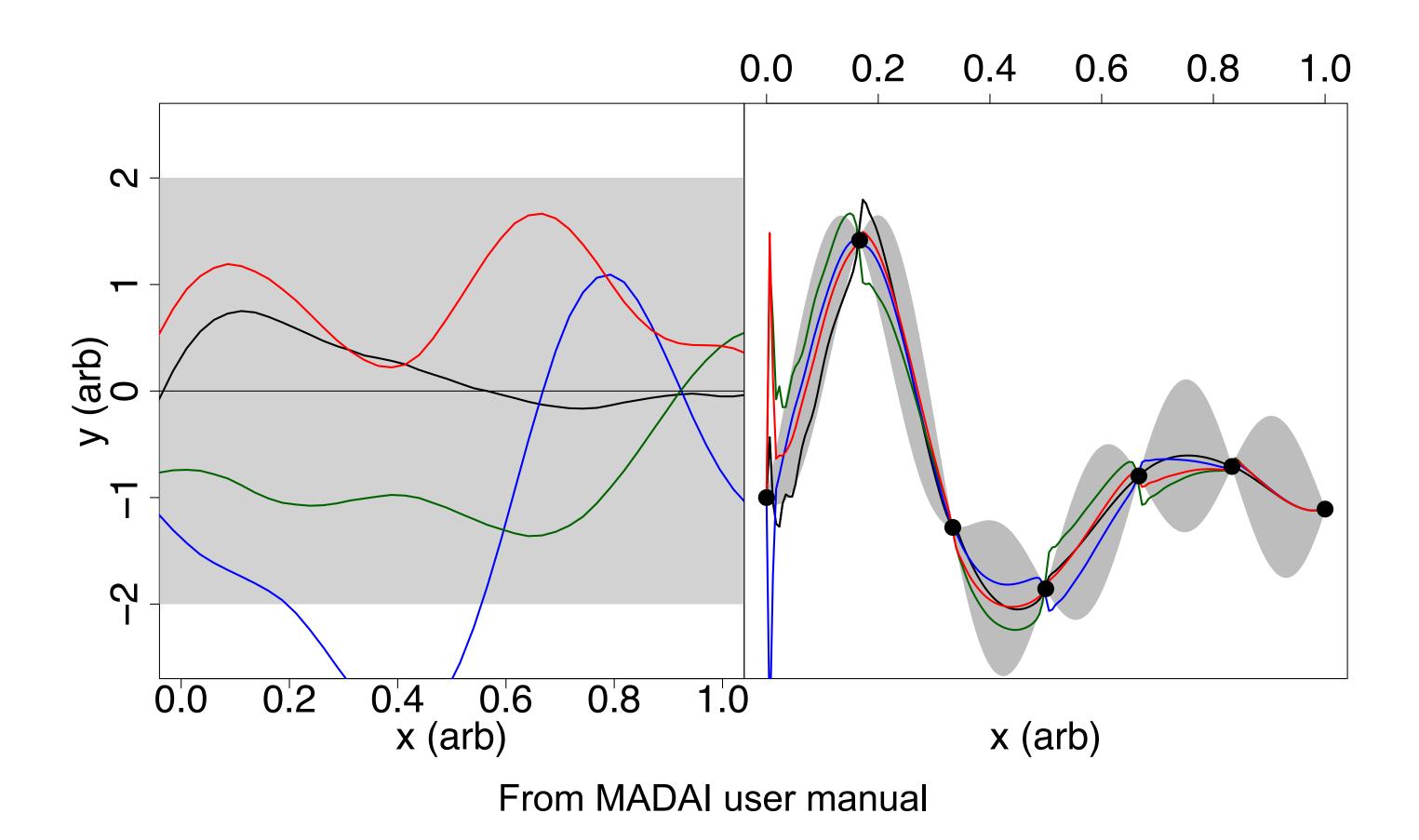
- Bayesian statistical analysis on nuclear matter parameters with nuclear experiments:
 - Skyrme ansatz
 - Fit with experimental observables of different types (ground state, giant resonances,...);
 - Result: a robust posterior distribution of Skyrme parametrizations compatible with the experimental data;
 - Further evidence of tension between $^{208}{
 m Pb}\,A_{PV}$ and $^{48}{
 m Ca}\,A_{PV}$ and α_D
- Bayesian statistical analysis on nuclear matter parameters with neutron star observations:

- Bayesian statistical analysis on nuclear matter parameters with nuclear experiments:
 - Skyrme ansatz
 - Fit with experimental observables of different types (ground state, giant resonances,...);
 - Result: a robust posterior distribution of Skyrme parametrizations compatible with the experimental data;
 - Further evidence of tension between $^{208}{
 m Pb}\,A_{PV}$ and $^{48}{
 m Ca}\,A_{PV}$ and α_D
- Bayesian statistical analysis on nuclear matter parameters with neutron star observations:
 - Final distribution of parameters informed by both nuclear physics experiments and neutron star observations!

- Bayesian statistical analysis on nuclear matter parameters with nuclear experiments:
 - Skyrme ansatz
 - Fit with experimental observables of different types (ground state, giant resonances,...);
 - Result: a robust posterior distribution of Skyrme parametrizations compatible with the experimental data;
 - Further evidence of tension between $^{208}{
 m Pb}\,A_{PV}$ and $^{48}{
 m Ca}\,A_{PV}$ and α_D
- Bayesian statistical analysis on nuclear matter parameters with neutron star observations:
 - Final distribution of parameters informed by both nuclear physics experiments and neutron star observations!
 - Effect on structure of the P between n_{sat} and $2n_{sat}$ due to nuclear informed prior

Thank you for your attention!

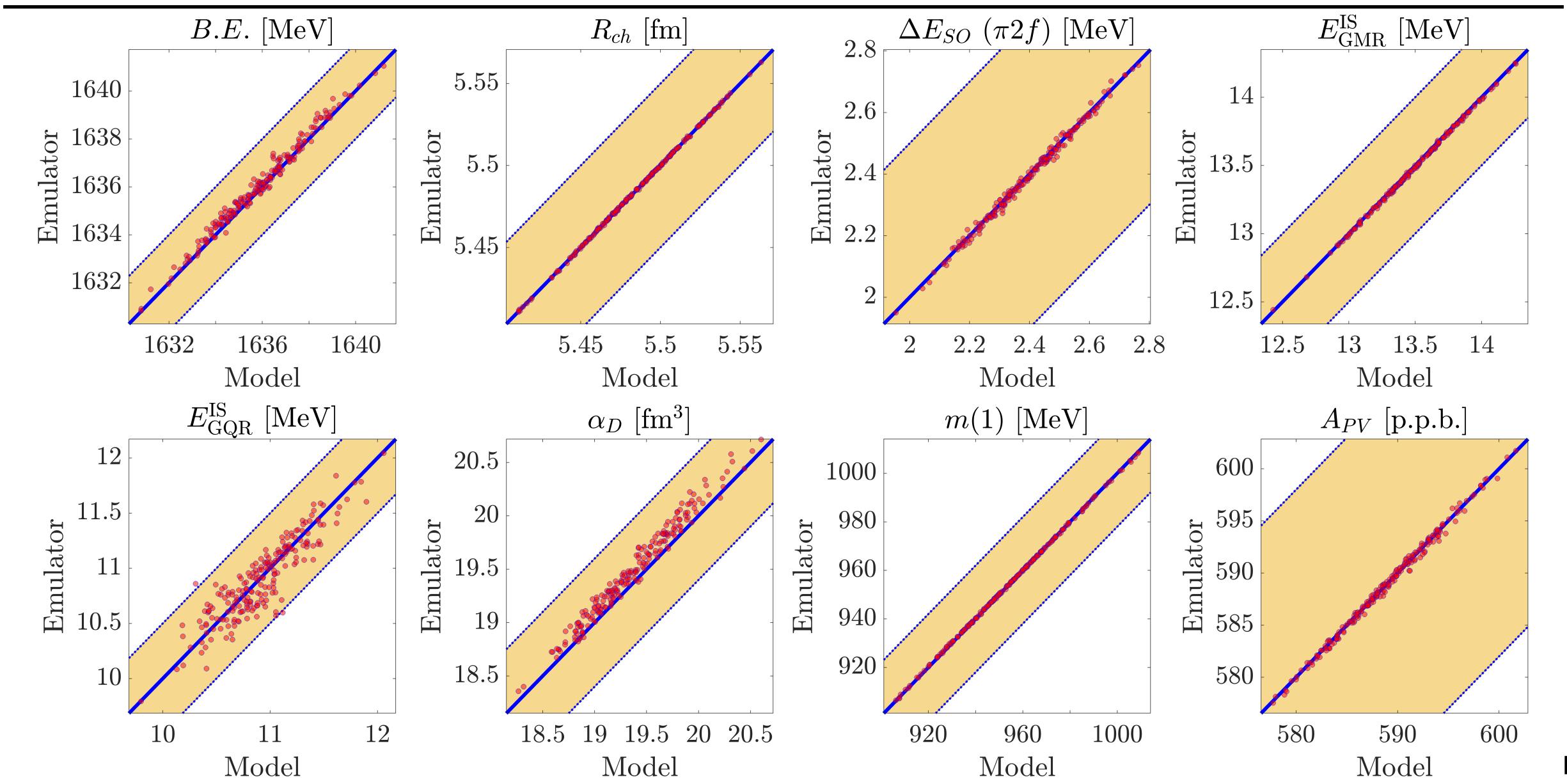
Gaussian process (GP) emulator



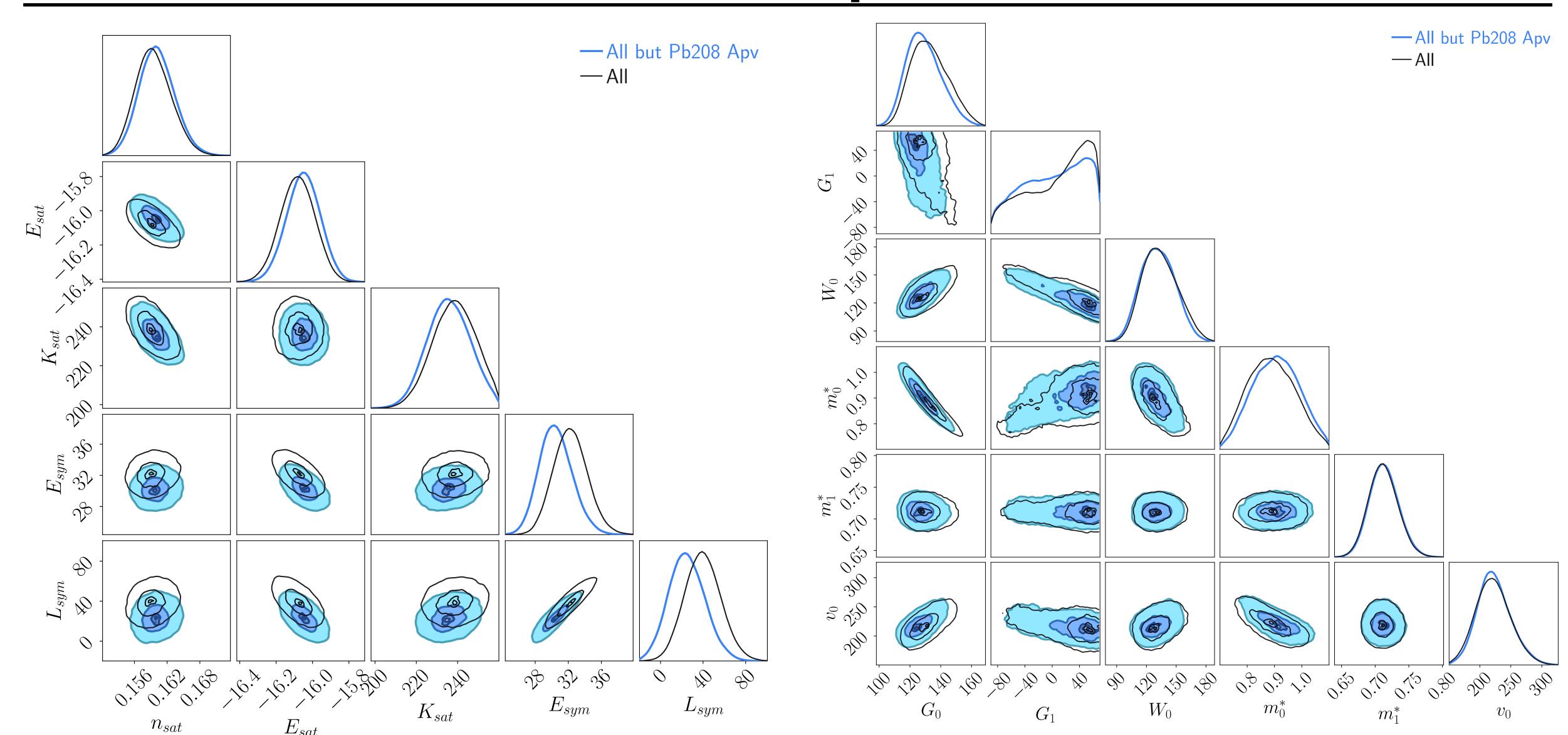
The MADAI package:

- was built for GP applied to bayesian inference
- given the parameters prior distributions, it automatically builds the grid
- it does a MCMC to estimate the posterior distribution
- it extracts parameters sample following the posteriors

Validation



Corner plots

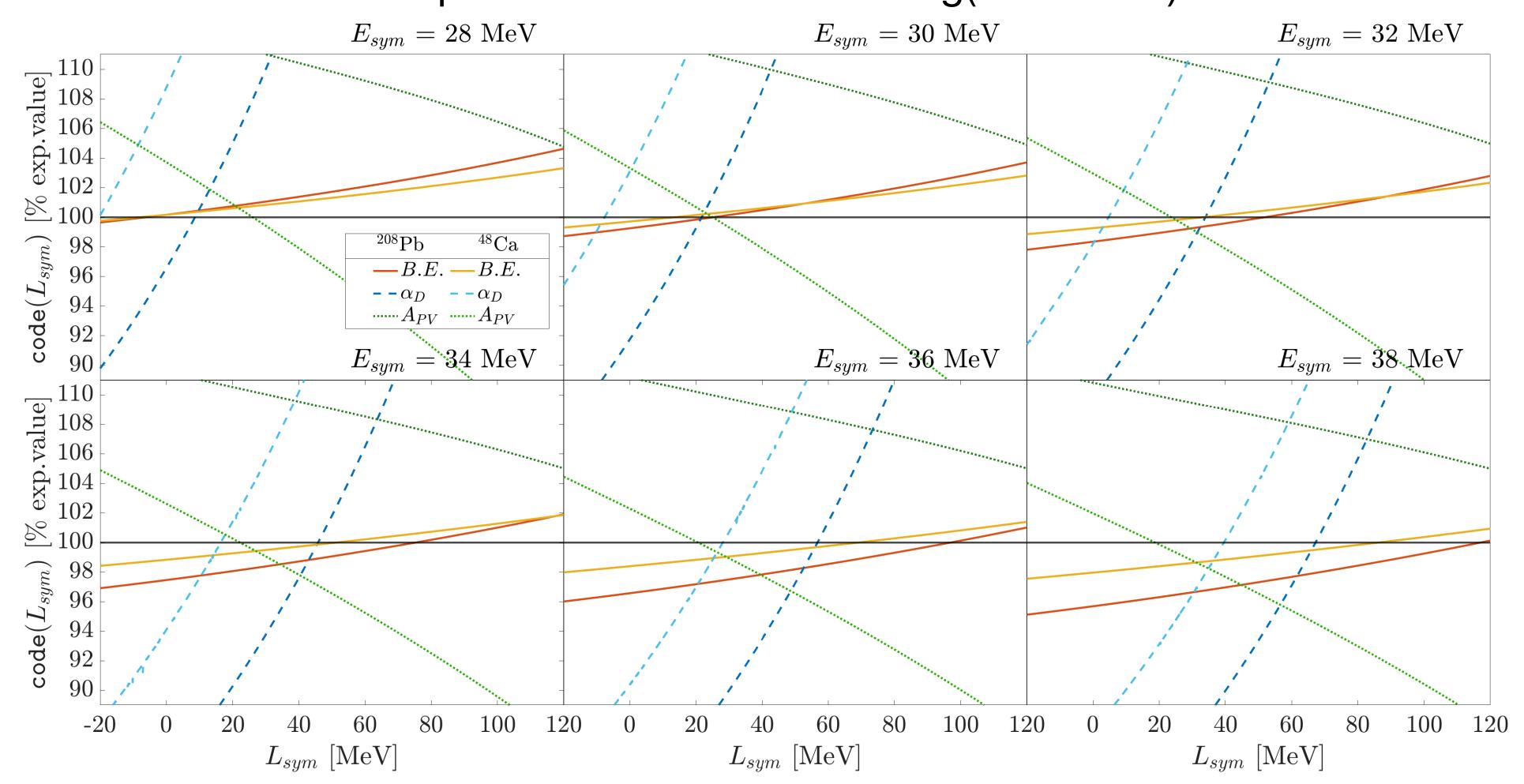


Why is L_{sym} so small?

 $L_{\!\scriptscriptstyle Sym}$ only free parameter

 E_{sym} fixed to (28,...,38) MeV

Other parameters fixed at best log(Likelihood) values

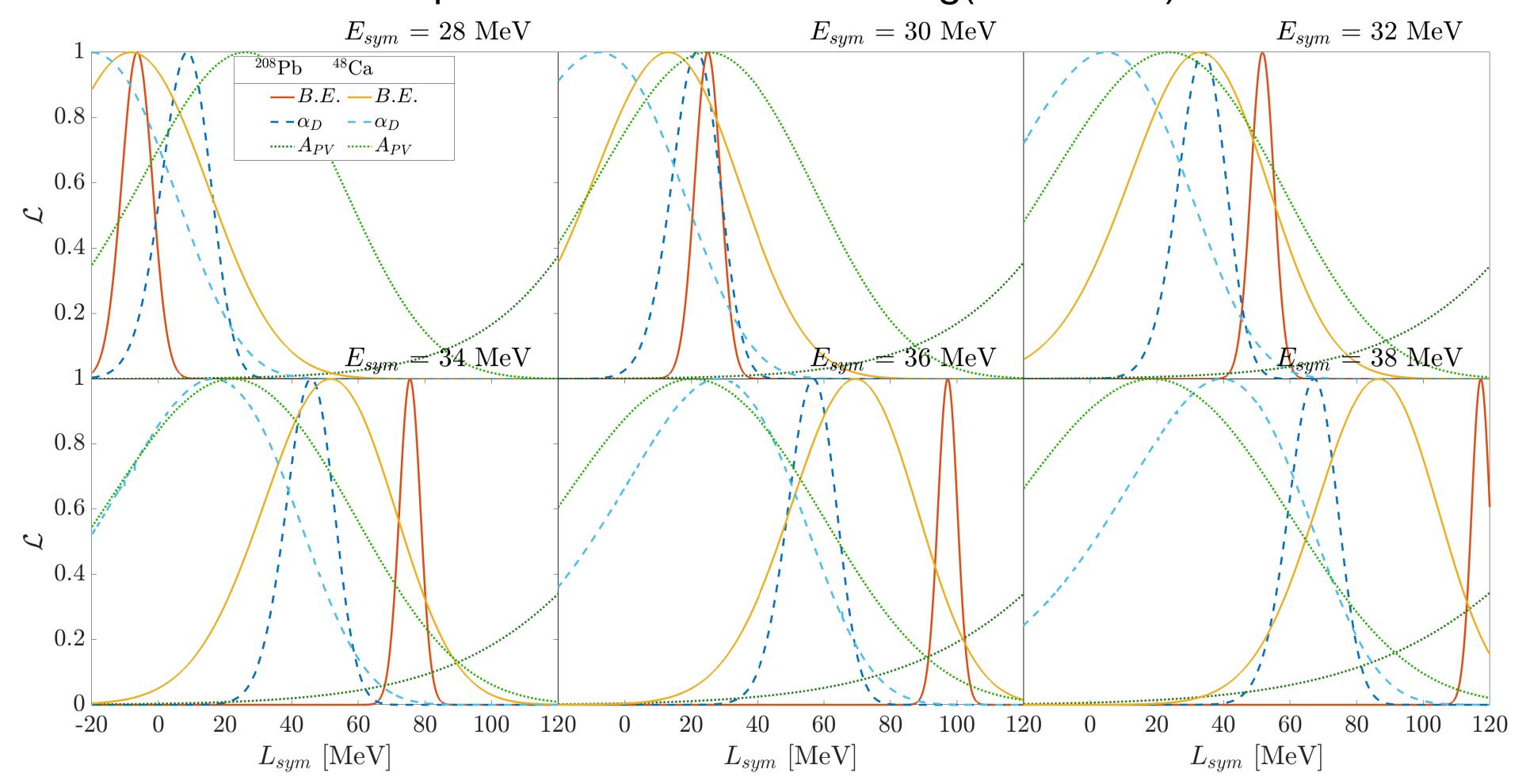


Why is L_{sym} so small?

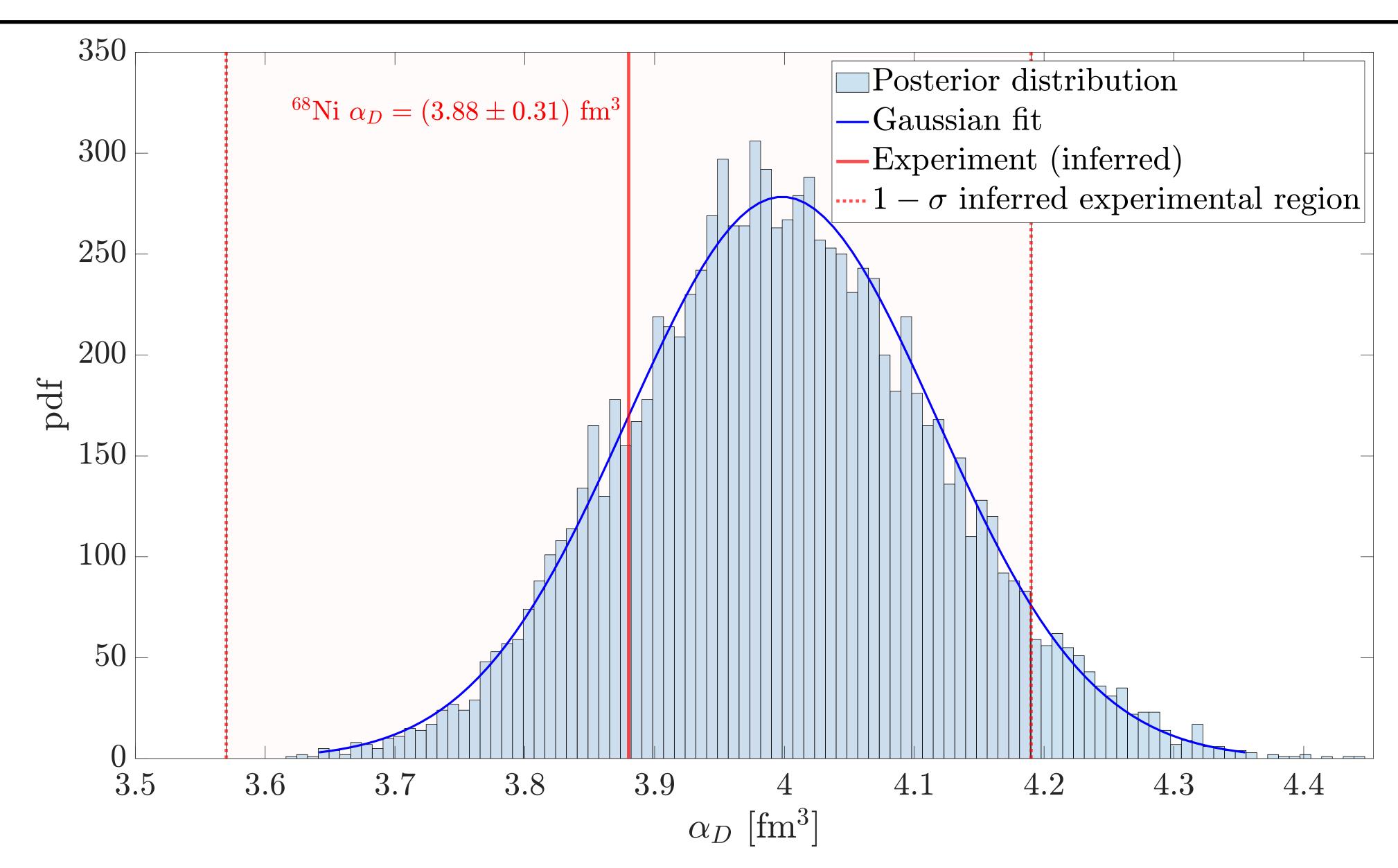
 L_{sym} only free parameter

 E_{sym} fixed to (28,...,38) MeV

Other parameters fixed at best log(Likelihood) values



68 Ni $lpha_D$ posterior distribution



NS EOS computation: Mapping of Skyrme into M.M.

Skyrme's parameters¹

$$n_{sat}, E_{sat}, K_{sat}$$

$$E_{sym}, L_{sym}$$
 $G_0, G_1, W_0, m_0^*/m, m_1^*/m$

$$n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}$$
 $E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym}$
 $m_0^*/m, m_1^*/m$

¹ 1-to-1 correspondence with usual Skyrme's parameters (L.-W. Chen et al. Phys. Rev. C 80, 014322 (2009))

Skyrme's parameters¹

$$n_{sat}, E_{sat}, K_{sat}$$
 E_{sym}, L_{sym}
 $G_0, G_1, W_0, m_0^*/m, m_1^*/m$

$$n_{sat}$$
, E_{sat} , K_{sat} , Q_{sat} , Z_{sat}
 E_{sym} , L_{sym} , K_{sym} , Q_{sym} , Z_{sym}
 m_0^*/m , m_1^*/m

¹ 1-to-1 correspondence with usual Skyrme's parameters (L.-W. Chen et al. Phys. Rev. C 80, 014322 (2009))

Skyrme's parameters¹

$$n_{sat}, E_{sat}, K_{sat}$$
 E_{sym}, L_{sym}
 $G_0, G_1, W_0, m_0^*/m, m_1^*/m$

$$n_{sat}$$
, E_{sat} , K_{sat} , Q_{sat} , Z_{sat}
 E_{sym} , L_{sym} , K_{sym} , Q_{sym} , Z_{sym}
 m_0^*/m , m_1^*/m

 $K_{sym} = K_{sym}(n_{sat}, E_{sat}, K_{sat}, \dots)$

¹ 1-to-1 correspondence with usual Skyrme's parameters (L.-W. Chen et al. Phys. Rev. C 80, 014322 (2009))

Skyrme's parameters¹

$$n_{sat}, E_{sat}, K_{sat}$$
 E_{sym}, L_{sym}
 $G_0, G_1, W_0, m_0^*/m, m_1^*/m$

$$n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}, Q_{sat}^*, Z_{sat}^*$$
 $E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym}, Q_{sym}^*, Z_{sym}^*$
 $m_0^*/m, m_1^*/m$

$$K_{sym} = K_{sym}(n_{sat}, E_{sat}, K_{sat}, \ldots)$$

Skyrme's formula
$$n < n_{sat}$$

$$Q_{sat} = Q_{sat}(n_{sat}, E_{sat}, ...) \qquad Z_{sat} = Z_{sat}(n_{sat}, E_{sat}, ...)$$

$$Q_{sym} = Q_{sym}(n_{sat}, E_{sat}, ...) \qquad Z_{sym} = Z_{sym}(n_{sat}, E_{sat}, ...)$$

Randomly extracted
$$n > n_{sat}$$

$$Q_{sat,sym}^*, Z_{sat,sym}^*$$

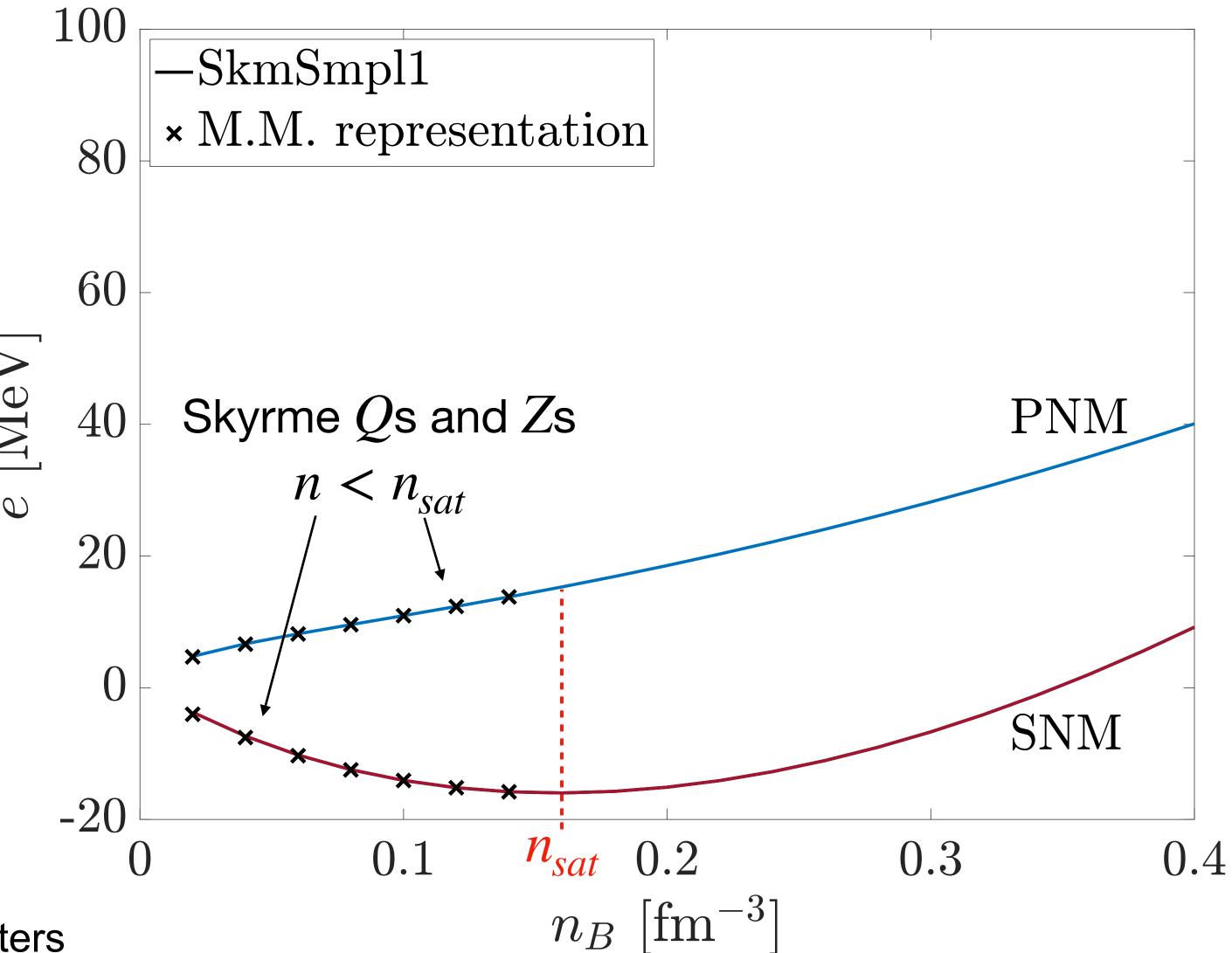
¹ 1-to-1 correspondence with usual Skyrme's parameters (L.-W. Chen et al. Phys. Rev. C 80, 014322 (2009))

Skyrme's parameters¹

$$n_{sat}, E_{sat}, K_{sat}$$
 E_{sym}, L_{sym}
 $G_0, G_1, W_0, m_0^*/m, m_1^*/m$

M.M.'s parameters

 $n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}, Q_{sat}^*, Z_{sat}^*$ $E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym}, Q_{sym}^*, Z_{sym}^*$ $m_0^*/m, m_1^*/m$



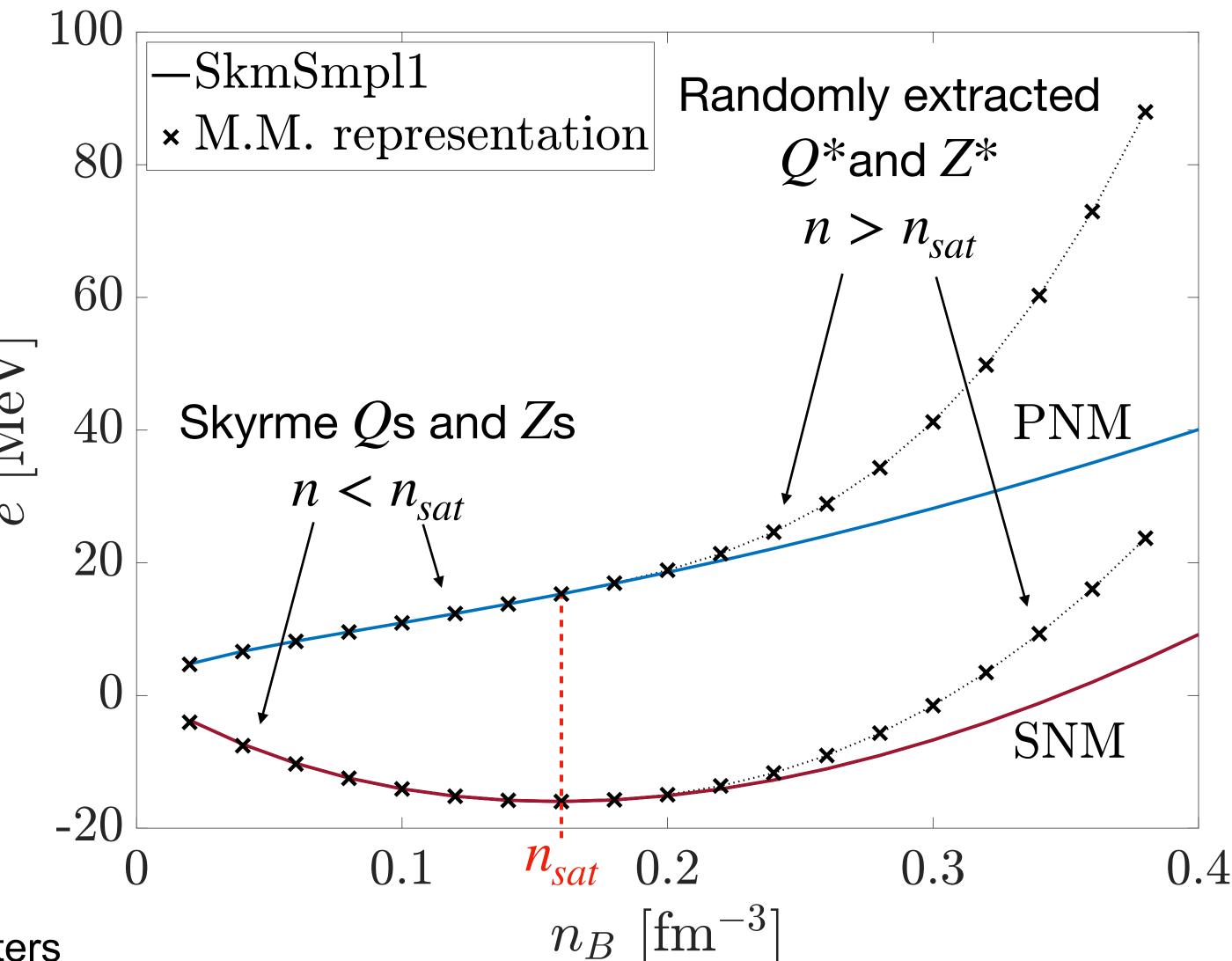
¹ 1-to-1 correspondence with usual Skyrme's parameters (L.-W. Chen et al. Phys. Rev. C 80, 014322 (2009))

Skyrme's parameters¹

$$n_{sat}, E_{sat}, K_{sat}$$
 E_{sym}, L_{sym}
 $G_0, G_1, W_0, m_0^*/m, m_1^*/m$

M.M.'s parameters

 $n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}, Q_{sat}^*, Z_{sat}^*$ $E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym}, Q_{sym}^*, Z_{sym}^*$ $m_0^*/m, m_1^*/m$



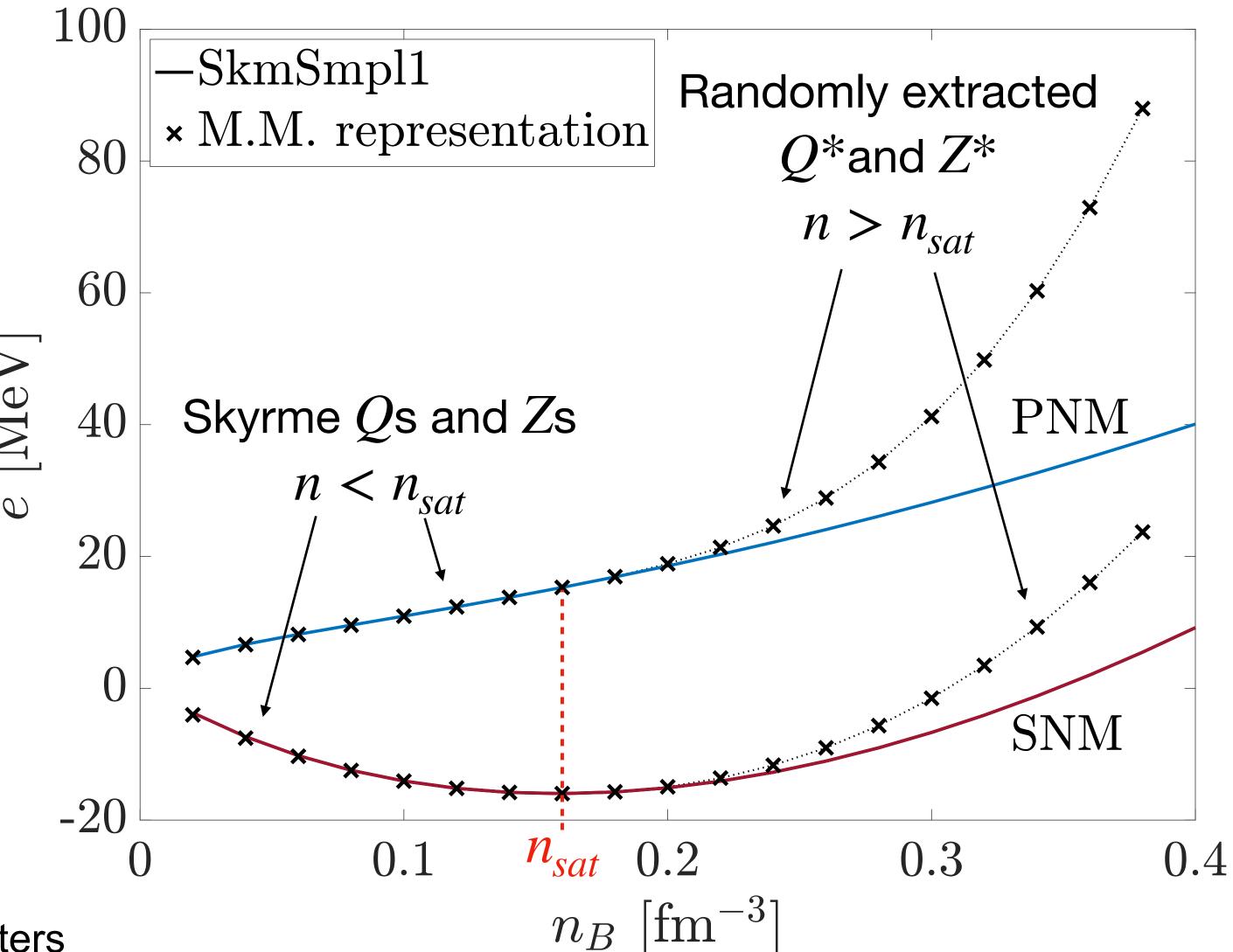
¹ 1-to-1 correspondence with usual Skyrme's parameters (L.-W. Chen et al. Phys. Rev. C 80, 014322 (2009))

Skyrme's parameters¹

$$n_{sat}, E_{sat}, K_{sat}$$
 E_{sym}, L_{sym}
 $G_0, G_1, W_0, m_0^*/m, m_1^*/m$

M.M.'s parameters

 $n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}, Q_{sat}^*, Z_{sat}^*$ $E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym}, Q_{sym}^*, Z_{sym}^*, Z_{sym}^*$ $G_0, G_1, W_0, m_0^*/m, m_1^*/m$



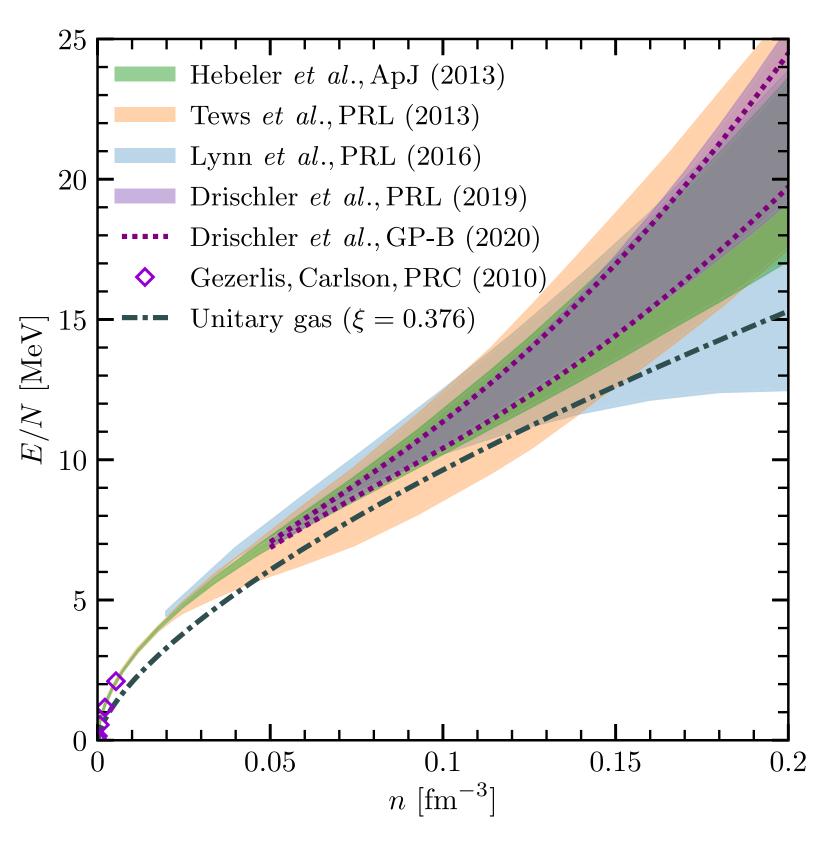
¹ 1-to-1 correspondence with usual Skyrme's parameters (L.-W. Chen et al. Phys. Rev. C 80, 014322 (2009))

Likelihoods

$$\mathcal{L}_{\chi}: \begin{cases} \exp\left(-\frac{\left(e-e_{-}(n)\right)^{2}}{2\sigma_{n}^{2}}\right) & \text{if } e \in \left(-\infty, e_{-}(n)\right] \\ 1 & \text{if } e \in \left(e_{-}(n), e_{+}(n)\right] \\ \exp\left(-\frac{\left(e-e_{+}(n)\right)^{2}}{2\sigma_{n}^{2}}\right) & \text{if } e \in \left(e_{+}(n), \infty\right) \end{cases}$$

$$\sigma_{n} = \frac{e_{+}(n) - e_{-}(n)}{9\sqrt{2\pi}}$$

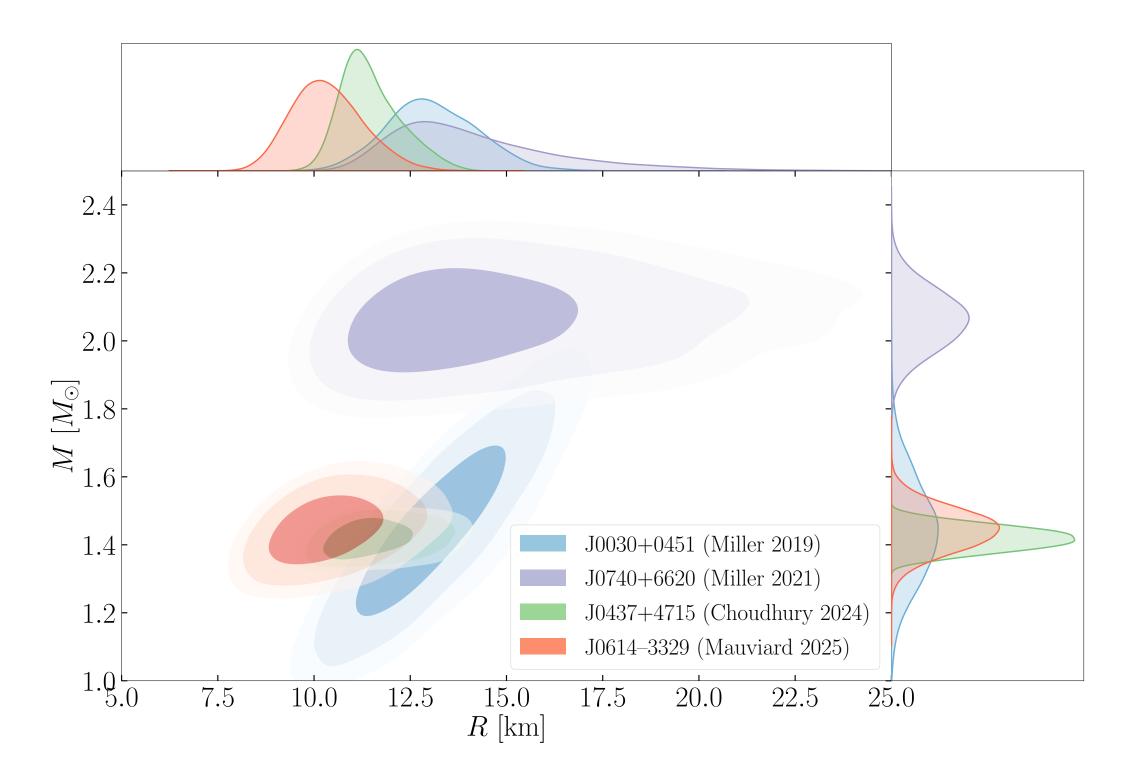
$$\mathcal{L}_{J0348}: \frac{1}{\sqrt{2\pi}\,\sigma} \int_{0}^{M_{max}/M_{\odot}} dx \, \exp\left(-\frac{(x-2.01)^{2}}{2\sigma^{2}}\right)$$

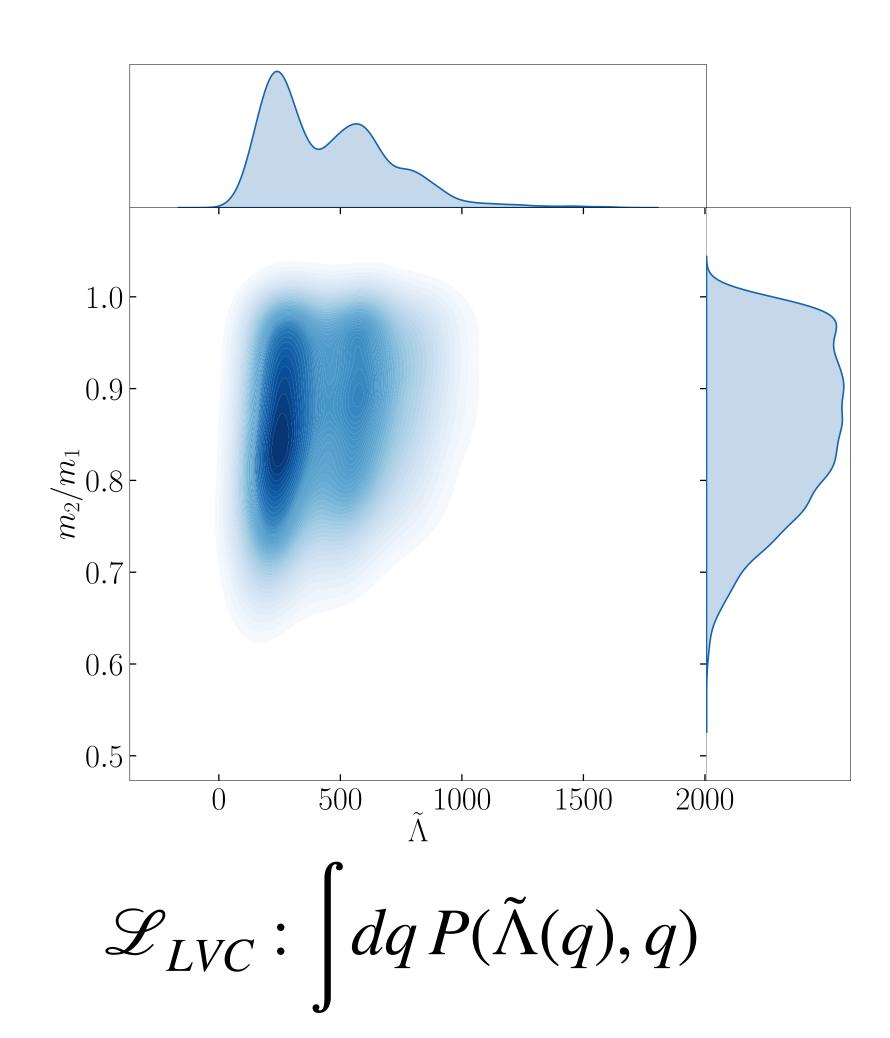


Phys. Rev. C 103, 025803

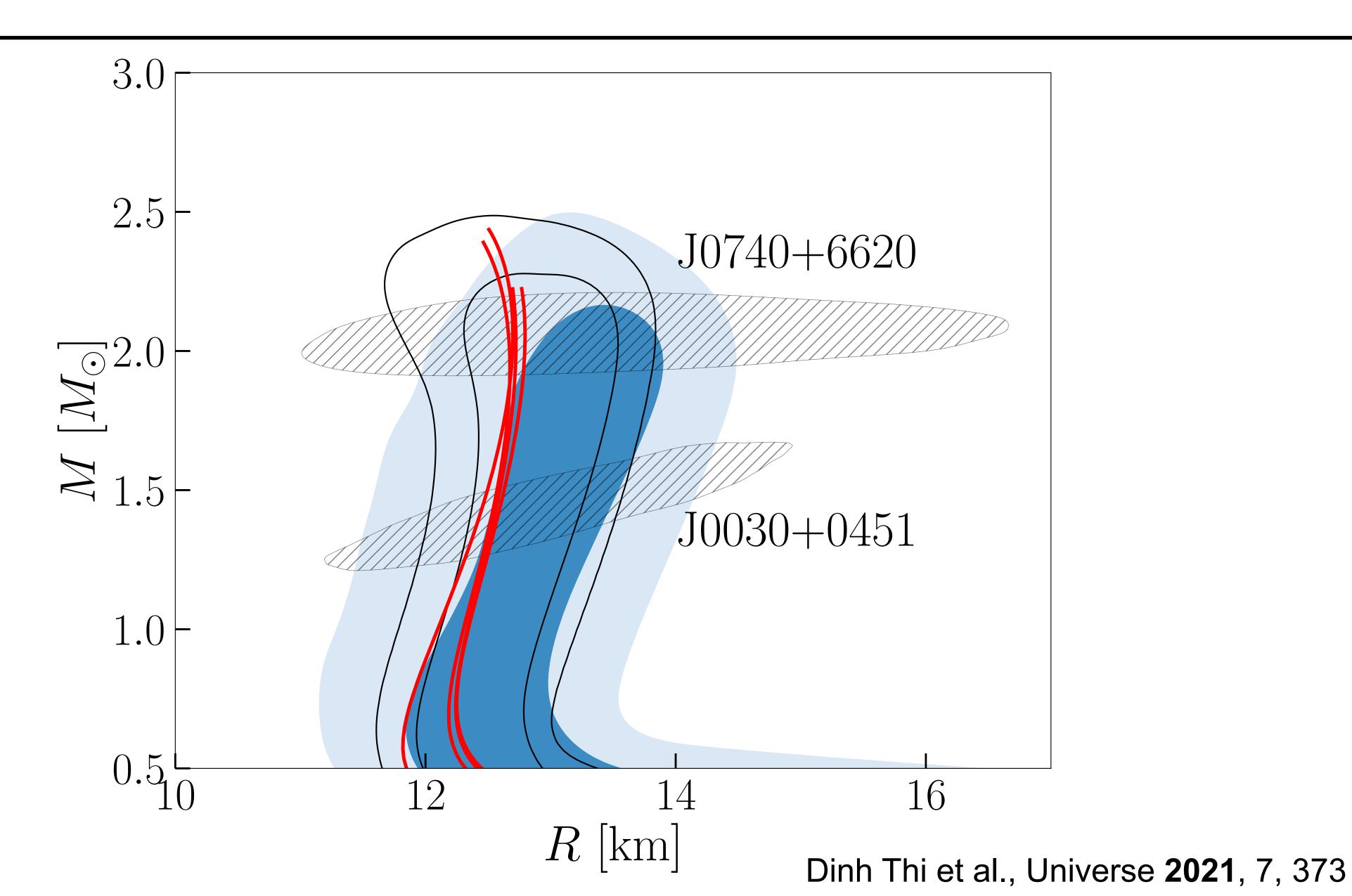
Likelihoods

$$\mathcal{L}_{NICER}$$
: $\int dM P_{N19}(M, R(M)) \cdot \int dM P_{N21}(M, R(M))$

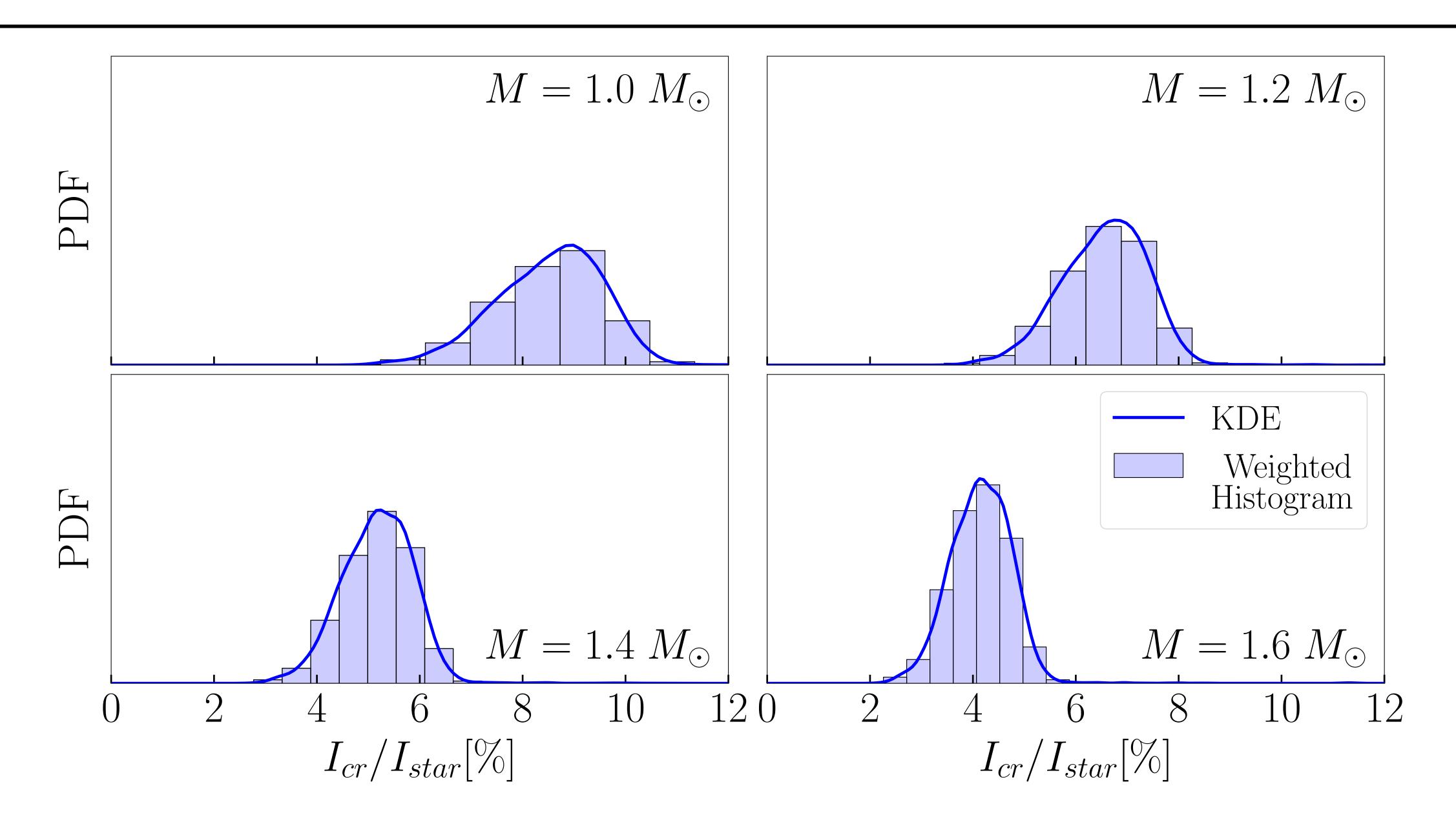




M - R relation



Moment of inertia of the crust



Crust-Core transition properties

