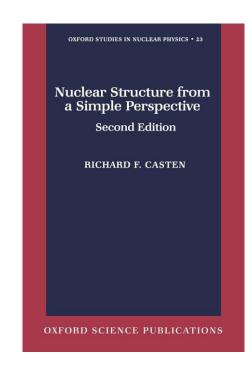
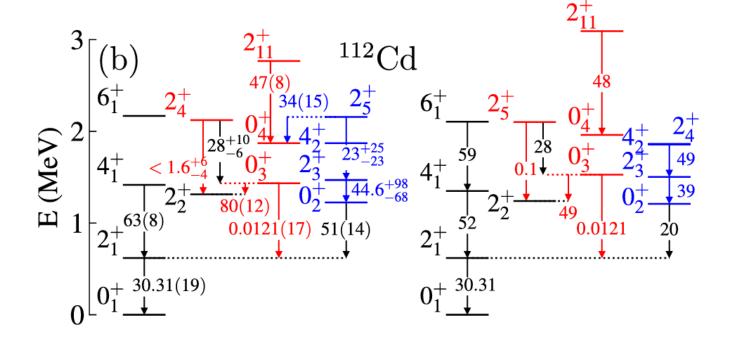
Quadrupole-octupole coupled states in ¹¹²Cd via Coulomb excitation with AGATA and SPIDER

La Marca Tommaso


Cd isotopes used as textbook examples of near harmonic vibrational nuclei

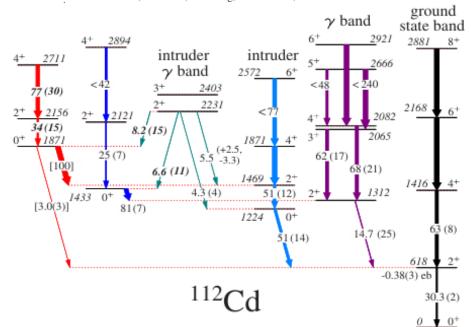

PHYSICAL REVIEW C 108, L031305 (2023)

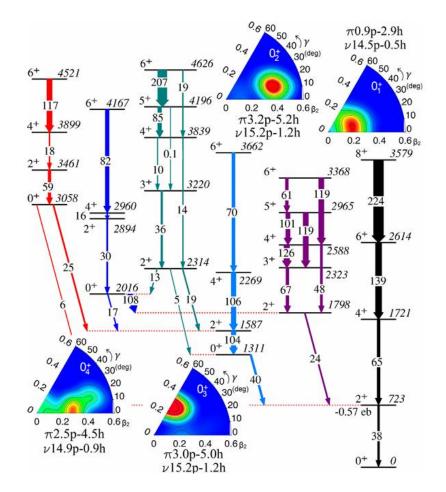
Letter

Persistent vibrational structure in 110-116Cd

N. Gavrielov , 1,2,* J. E. García-Ramos , 3,† P. Van Isacker , 4,‡ and A. Leviatan 22,§

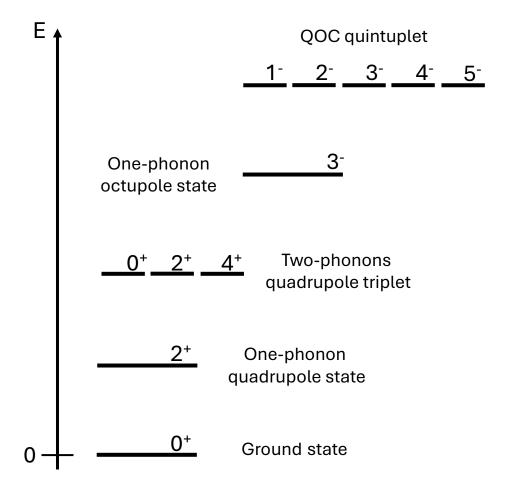
Recent results on ¹¹²Cd interpreted as a rotational triaxial nucleus

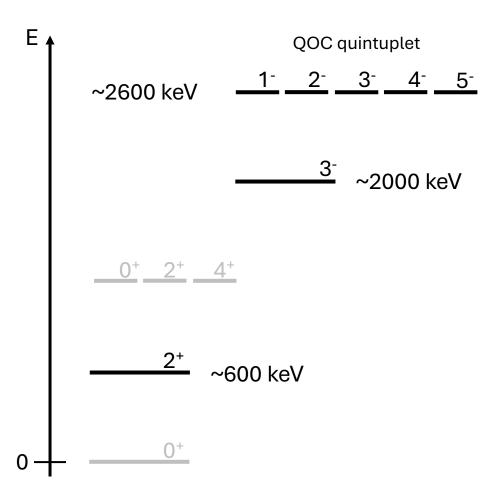

PHYSICAL REVIEW LETTERS 123, 142502 (2019)


Editors' Suggestion

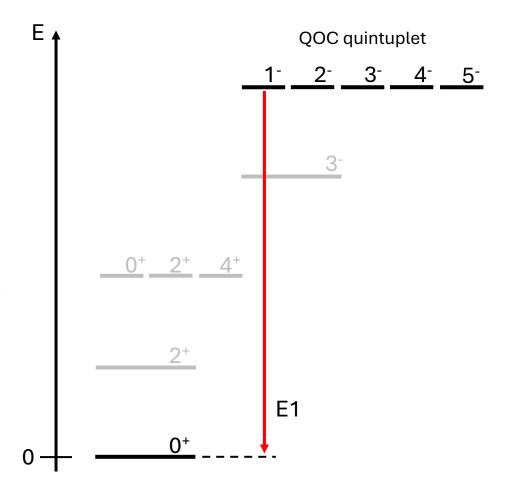
Featured in Physics

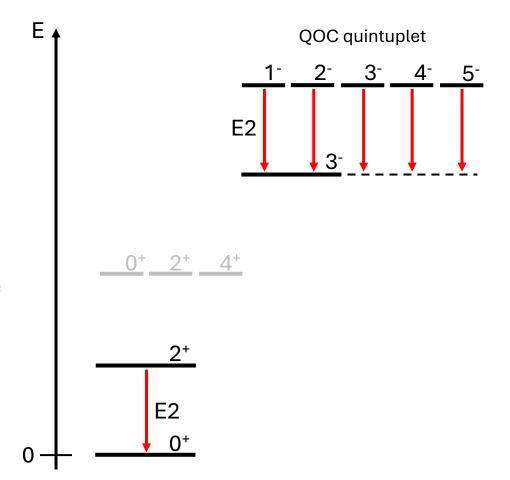
Multiple Shape Coexistence in 110,112Cd

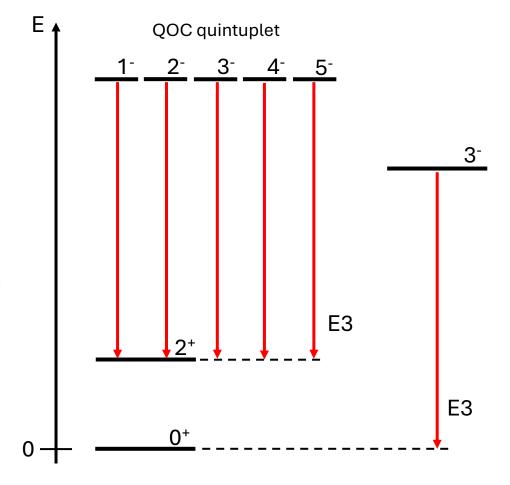

P. E. Garrett, ^{1,2} T. R. Rodríguez, ³ A. Diaz Varela, ¹ K. L. Green, ¹ J. Bangay, ¹ A. Finlay, ¹ R. A. E. Austin, ⁴ G. C. Ball, ⁵ D. S. Bandyopadhyay, ¹ V. Bildstein, ¹ S. Colosimo, ⁴ D. S. Cross, ⁶ G. A. Demand, ¹ P. Finlay, ¹ A. B. Garnsworthy, ⁵ G. F. Grinyer, ⁷ G. Hackman, ⁵ B. Jigmeddorj, ¹ J. Jolie, ⁸ W. D. Kulp, ⁹ K. G. Leach, ^{1,*} A. C. Morton, ^{5,†} J. N. Orce, ² C. J. Pearson, ⁵ A. A. Phillips, ¹ A. J. Radich, ¹ E. T. Rand, ^{1,‡} M. A. Schumaker, ¹ C. E. Svensson, ¹ C. Sumithrarachchi, ^{1,†} S. Triambak, ² N. Warr, ⁸ J. Wong, ¹ J. L. Wood, ¹⁰ and S. W. Yates, ¹¹



Quadrupole – Octupole Coupled states

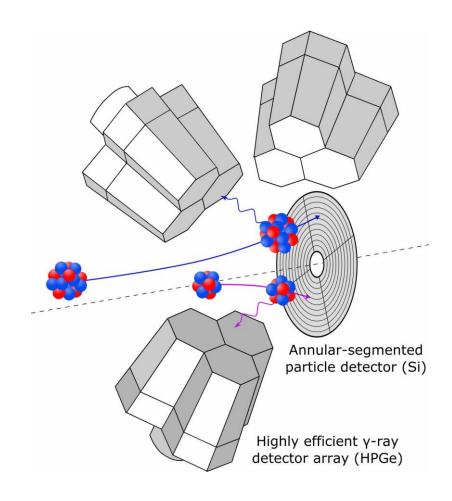

- In the vibrational picture, the interaction of quadrupole and octupole phonons creates the QOC quintuplet of states
- Marginal differences in vibrational and rotational features of positive parity states at low energy
- More marked differences in negative parity states


- QOC states' energy at about the sum of single quadrupole and octupole phonons
- 1 _{QOC} state characterised by a strong E1 transition to the ground state
- B(E2;QOCs \longrightarrow 3₁-) of the same magnitude of B(E2;2₁+ \longrightarrow 0₁+)
- B(E3;QOCs \longrightarrow 2₁⁺) of the same magnitude of B(E3;3₁⁻ \longrightarrow 0₁⁺)


- QOC states' energy at about the sum of single quadrupole and octupole phonons
- 1⁻_{QOC} state characterised by a strong E1 transition to the ground state
- B(E2;QOCs \longrightarrow 3₁-) of the same magnitude of B(E2;2₁+ \longrightarrow 0₁+)
- B(E3;QOCs \longrightarrow 2₁⁺) of the same magnitude of B(E3;3₁⁻ \longrightarrow 0₁⁺)

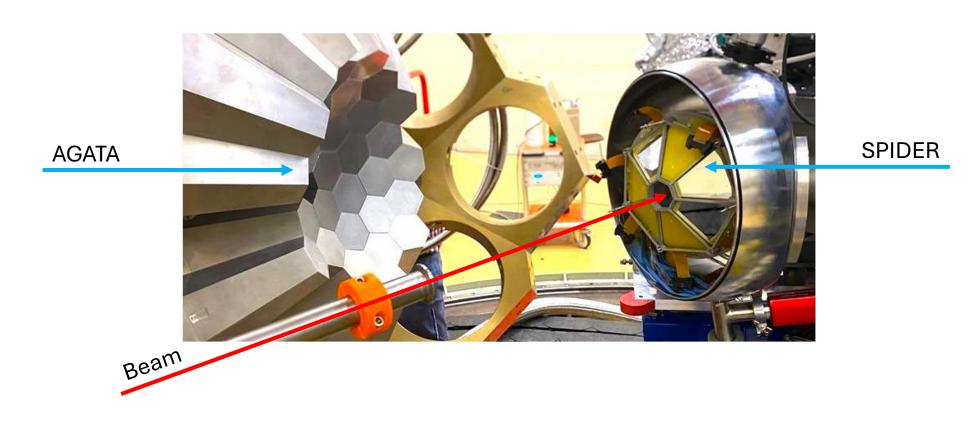
- QOC states' energy at about the sum of single quadrupole and octupole phonons
- 1⁻_{QOC} state characterised by a strong E1 transition to the ground state
- B(E2;QOCs \longrightarrow 3₁-) of the same magnitude of B(E2;2₁+ \longrightarrow 0₁+)
- B(E3;QOCs \longrightarrow 2₁⁺) of the same magnitude of B(E3;3₁⁻ \longrightarrow 0₁⁺)

- QOC states' energy at about the sum of single quadrupole and octupole phonons
- 1⁻_{QOC} state characterised by a strong E1 transition to the ground state
- B(E2;QOCs \longrightarrow 3₁-) of the same magnitude of B(E2;2₁+ \longrightarrow 0₁+)
- B(E3;QOCs \longrightarrow 2₁⁺) of the same magnitude of B(E3;3₁⁻ \longrightarrow 0₁⁺)


Experimental Technique

Coulomb excitation of ¹¹²Cd

- Inelastic electromagnetic scattering
- Allows for model independent measurements of important observables
- ⁶⁰Ni beam @ 187 MeV on ¹¹²Cd target


$$D_{min} = R_p + R_t + \Delta \approx 1.2 \left(A_p^{1/3} + A_t^{1/3} \right) + 5 [fm]$$

$$\sigma_{coulex} \propto P(I_i \to I_f) \left[1 + K(\theta) Q(I_f) \right]$$

Experimental Apparatus

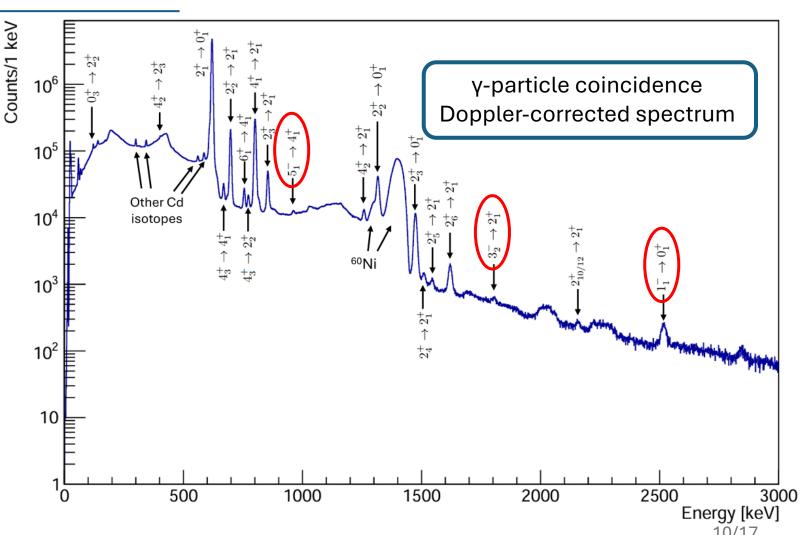
- Coulomb excitation of ¹¹²Cd
- Setup: AGATA + SPIDER at Laboratori Nazionali di Legnaro (LNL-INFN, Italia)

Experimental Apparatus

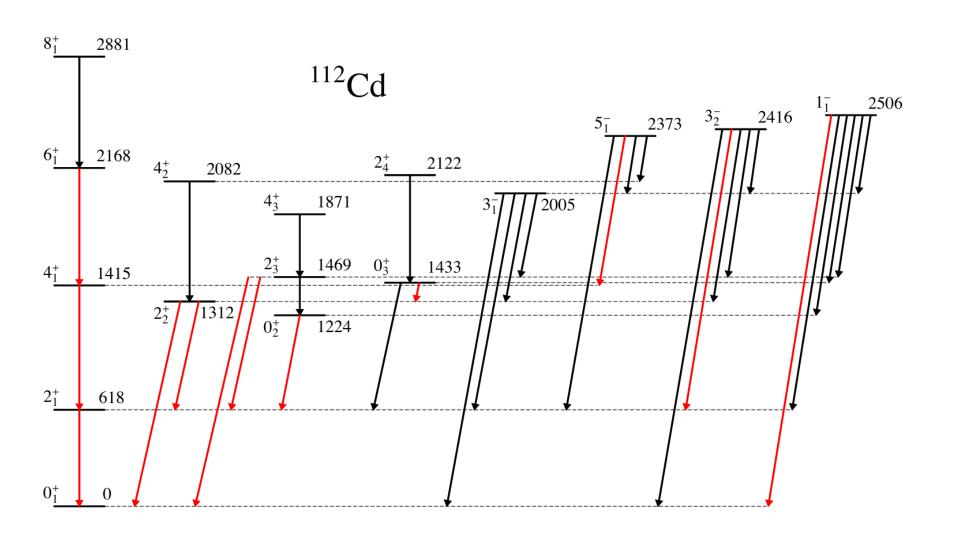
Advanced Gamma Tracking Array (AGATA)

- Highly segmented HPGe crystals
- Tracking capability
- Position resolution: ~3 mm
- Angular coverage: $\sim 1\pi$ sr
- Energy resolution: 2.35 keV at 1.3 MeV
- Efficiency: 7-10% at 1.3 MeV

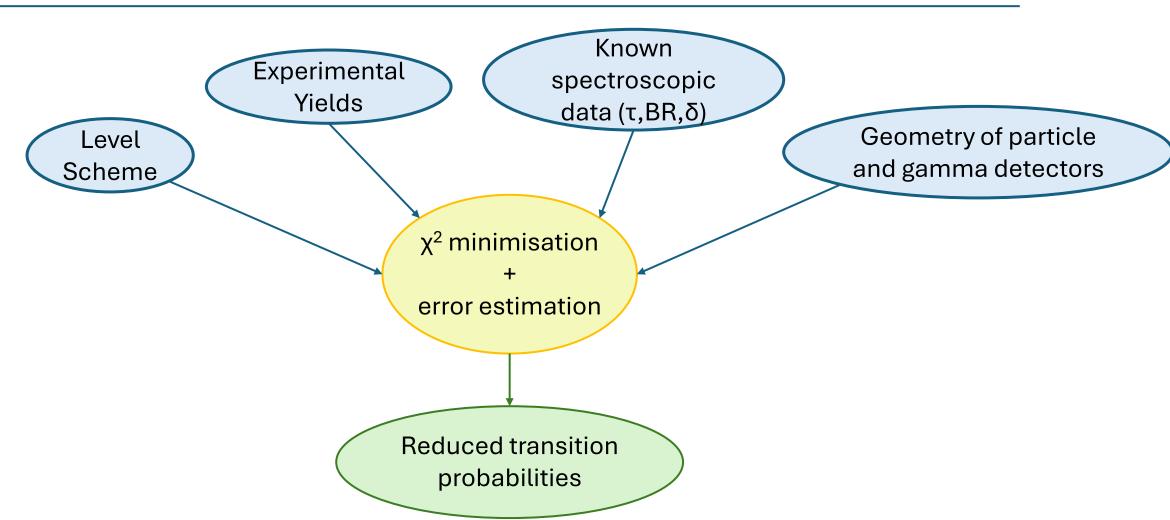
Experimental Apparatus


Silicon Pie Detector (SPIDER)

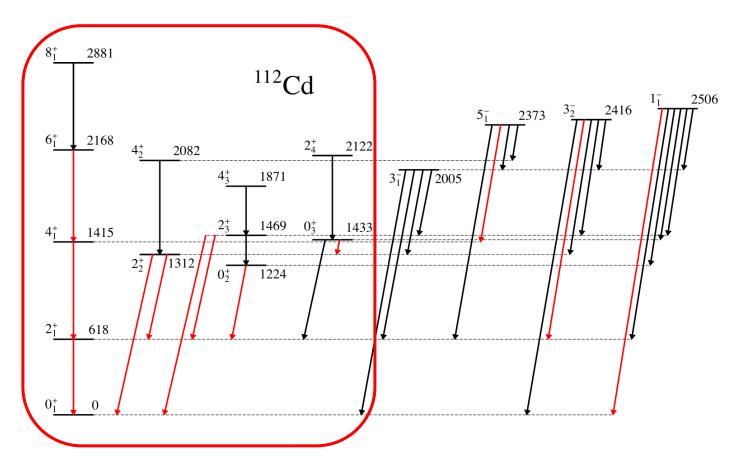
- 7 silicon detectors in cone-like configuration
- 8 strips for each detector
- Angular coverage: [0°,360°] azimuthal, [124°,161°] polar at 8.5 cm from target
- Energy resolution: 15-22 keV
- Leakage current: < 1nA



Acquired energy spectrum


- Focus on negative parity states
- Measurement of B(E2) and B(E3) values from experimental yields
- Analysis performed with GOSIA code

Reconstructed partial level scheme



GOSIA code for Coulomb excitation experiments

Minimisation strategy

- Initial minimisation on known spectroscopic data for positive parity states
- Second minimisation adding experimental yields for positive parity states

Minimisation strategy

- Fixed 3₁⁻ matrix elements to known values (not observed)
- Minimisation on known spectroscopic data for negative parity states
- Final minimisation adding experimental yields for negative parity states

Preliminary measured reduced transition probabilities

- B(E2;QOCs → 3₁-)
 measured with
 unprecedented precision
- B(E3;QOCs $\rightarrow 2_1^+$) measured for the first time

• B(E3;3 $_2^- \longrightarrow 0_1^+$) measured for the first time

Transition	B(E2) [W.u.]	$\mathrm{B}(\mathrm{E2})^{Lit}$ [W.u.]
$5_1^- \to 3_1^-$	57(4)	$58^{+39(a)}_{-37}$
$3_{2}^{-} \rightarrow 3_{1}^{-}$	82(7)	85^{+110}_{-66}
$1_1^- \to 3_1^-$	55(3)	$<190^{(a)}$
$2_1^+ \to 0_1^+$	30.2*	$30.2(3)^{(b)}$
Transition	B(E3) [W.u.]	$B(E3)^{Lit}$ [W.u.]
$5_1^- \to 2_1^+$	$6.8^{+2.2}_{-1.8}$	
$3_2^- \rightarrow 2_1^+$	14(5)	
$1_1^- \rightarrow 2_1^+$	2.1(6)	
$3_2^- \to 0_1^+$	2.6(7)	/ >
$3_1^- \to 0_1^+$	21.8**	$21.8(18)^{(c)}$

^{*} Used as normalisation

^{**} Fixed during minimisation

⁽a) P. E. Garrett, H. Lehmann, J. Jolie et al. (1999) Quadrupole-octupole coupled states in 112Cd, *Physics Review C* **59**

⁽b) https://www.nndc.bnl.gov/ensdf/

⁽c) Fewell MP, Spear RH, Adam GK Esat MT (1985) Determination of B(E3; 01+ -> 31-) Values for the Stable Isotopes of Cadmium. *Australian Journal of Physics* **38**, 555-562.

Results

QOC states properties

- QOC states' energy at about the sum of single quadrupole and octupole phonons
- 1⁻_{QOC} state characterised by a strong E1 transition to the ground state

Already known in the literature

- B(E2;QOCs \longrightarrow 3_1^-) of the same magnitude of B(E2; $2_1^+ \longrightarrow 0_1^+$)
- B(E3;QOCs \longrightarrow 2₁⁺) of the same magnitude of B(E2;3₁⁻ \longrightarrow 0₁⁺)

Results

QOC states properties

- QOC states' energy at about the sum of single quadrupole and octupole phonons
- 1 occ state characterised by a strong E1 transition to the ground state
- B(E2;QOCs \longrightarrow 3₁-) of the same magnitude of B(E2;2₁+ \longrightarrow 0₁+)
- B(E3;QOCs \longrightarrow 2₁⁺) of the same magnitude of B(E2;3₁⁻ \longrightarrow 0₁⁺)

Transition	B(E2) [W.u.]	$B(E2)^{Lit}$ [W.u.]
$5_1^- \to 3_1^-$	57(4)	$58^{+39(a)}_{-37}$
$3_2^- \to 3_1^-$	82(7)	85^{+110}_{-66}
$1_1^- \rightarrow 3_1^-$	55(3)	$<190^{(a)}$
$2_1^{\scriptscriptstyle op} o 0_1^{\scriptscriptstyle op}$	30.2*	$30.2(3)^{(b)}$

Results

QOC states properties

- QOC states' energy at about the sum of single quadrupole and octupole phonons
- 1 Qoc state characterised by a strong E1 transition to the ground state
- B(E2;QOCs 3_1^-) of the same magnitude of B(E2; 2_1^+ 0_1^+)
- B(E3;QOCs \longrightarrow 2₁⁺) of the same magnitude of B(E2;3₁⁻ \longrightarrow 0₁⁺)

Transition	B(E3) [W.u.]	$B(E3)^{Lit}$ [W.u.]
$5_1^- \to 2_1^+$	$6.8^{+2.2}_{-1.8}$	
$3_2^- \to 2_1^+$	14(5)	
$1_1^- \to 2_1^+$	2.1(6)	
$3_2^- \to 0_1^+$	2.6(7)	
$3_1^- \to 0_1^+$	21.8**	$21.8(18)^{(c)}$

Conclusions

- The Coulomb excitation of ¹¹²Cd was performed with the AGATA+SPIDER setup at LNL-INFN
- The B(E2) and B(E3) values for transitions concerning the populated negative parity states were obtained in a preliminary analysis
- The data obtained in this work was compared with previous experimental data (if present) and (qualitatively) with QOC states properties predictions
- This preliminary analysis suggests that 5_1^- , 3_2^- and 1_1^- states do not behave as ideal QOC states and that 112 Cd does not seem to behave as an ideal vibrational nucleus

Thank you for your attention

Spokespersons:

K. Wrzosek-Lipska, A. Nannini, P.E. Garrett, and M. Zielińska

K. Wrzosek-Lipska^a, A. Nannini^b, P.E. Garrett^c, M. Zielińska^d, P. Aguilera^e, Z. Ahmed^c, G. Andreetta^g, F. Angelini^g, M. Balogh^g, J. Benito Garcia^e, V. Bildstein^c, S. Buck^c, D. Brugnara^g, S. Carollo^e, J. Cederkäll^h, G. Colombi^c, G. de Angelis^g, D.T. Dohertyⁱ, C. Fahlander^h, F. Galtarossa^e, A. Goasduff^g, B. Gongora-Servín^{g,t}, A. Gottardo^g, K. Hadyńska-Klęk^a, S.F. Hicks^k, A. Illana^f J. Iwanicki^a, G. Jaworski^a, D. Kalaydjieva^c, R. Kjus^d, W. Korten^d, M. Komorowska^a, J. Kowalska^a, S. Lange^c, S.M. Lenzi^e, S. Lunardi^e, N. Marchini^b, K. Mashtakov^c, M. Matejska-Minda^j, M. Mazzocco^e, R. Menegazzo^e, D. Mengoni^e, P.J. Napiorkowski^a, D.R. Napoli^g, R. Nicolás del Álamo^e, B. Olaizola^o, M. Palacz^a, S. Pannu^c, J. Pellumaj^g, R.M. Pérez-Vidal^p, E.E. Peters^k, I. Piętka^a, S. Pigliapoco^e, E. Pilotto^e, L. Próchniak^a, F. Recchia^e, K. Rezynkina^e, M. Rocchini^c, T.R. Rodriguez^l, M. Sedlak^s, P. Sekrecka^a M. Siciliano^m, F. Simioni^g, A. Stolarz^a K. Stoychev^c, D. Stramaccioni^g, C. Sullivan^u, C.E. Svensson^c, J.J. Valiente-Dobón^g, J.L. Woodⁿ, L. Zago^g, I. Zanon^r,

^a HIL, University of Warsaw, Poland; ^b INFN Firenze, Italy; ^c University of Guelph, Canada; ^d IRFU, CEA, Université Paris-Saclay, France; ^e University of Padova and INFN Padova, Italy; ^f Complutense University of Madrid, Spain; ^g INFN, Laboratori Nazionali di Legnaro, Italy; ^h University of Lund, Sweden; ⁱ University of Surrey, UK; ^j Polish Academy of Sciences, Cracow, Poland; ^k University of Kentucky, Lexington, USA; ^l Universidad Autónoma de Madrid, Madrid, Spain; ^m Argonne National Laboratory, USA ⁿ Georgia Institute of Technology, Atlanta, USA; ^o Instituto de Estructura de la Materia, CSIC, Madrid, Spain; ^p IFIC, CSIC - Universitat de Valéncia, Spain; ^r KTH Royal Institute of Technology, Stockholm, Sweden; ^s Slovak Academy of Sciences, Bratislava, Slovakia; ^l Università di Ferrara, Italy; ^u University of Liverpool, UK;