European Nuclear Physics Conference 2025

Contribution ID: 259

Type: Oral Presentation

Direct Measurement of the 59 Cu(p, α) 56 Ni reaction with the Multi Sampling Ionization Chamber Detector (MUSIC)

We report the preliminary results from a direct cross-section measurement of the 59 Cu(p, α) 56 Ni reaction, performed in inverse kinematics using the high-efficiency MUSIC active-target detector at the ReA6 facility at FRIB. This reaction is critical in explosive astrophysical environments. In type I X-ray bursts, where rapid proton capture and α -induced processes drive the thermonuclear runaway, the competition between the 59 Cu(p, α) and 59 Cu(p, γ) reactions governs the breakout from the NiCu cycle. This breakout is essential for synthesizing heavier nuclei and ultimately shapes the X-ray burst light curves and the composition of burst ashes. Similarly, in the ν p-process—operating in the proton-rich ejecta of core-collapse supernovae— the 59 Cu(p, α) reaction rate strongly influences the formation of heavy, proton-rich isotopes that are observed in the aftermath of these stellar explosions.

Our measurement used a 59 Cu beam delivered at 8.41 MeV/u with an intensity of ~1×10⁴ pps, covering the center-of-mass energy range from 2.38 to 5.57 MeV. This energy window lies within the Gamow range for temperatures above 2 GK—a regime critically relevant for both X-ray bursts and the ν p-process. The experiment employed methane gas in the MUSIC chamber to enable high-rate detection and event-by-event identification was achieved through characteristic energy-loss patterns, allowing a clear separation of (p, α) events from potential contaminants.

Author: LOPEZ SAAVEDRA, Eilens (Argonne National Laboratory)Presenter: LOPEZ SAAVEDRA, Eilens (Argonne National Laboratory)Session Classification: Parallel session

Track Classification: Nuclear Astrophysics