

Neutrinoless Double Beta Decay: where we stand and what lies ahead

Claudia Nones
CEA/IRFU

The context: ghostly neutrinos

- The most poorly understood particle within the SM
- First postulated by Pauli in 1930 to explain missing energy in beta decay
- Detected by Reines & Cowan in 1956 (nuclear reactor experiment)
- According to SM: electrically neutral, massless, weakly interacting

- Neutrino oscillations: evidence that neutrinos have mass
- Physics beyond the Standard Model


The Majorana Neutrino

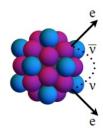
- > In the Standard Model, all the fermions are so-called Dirac particles and have an anti-fermion partner.
- In 1937 E. Majorana proposed that in the case of a neutral particle, the fermions and the anti-fermions could coincide. **The neutrino could therefore be a « Majorana particle ».**
- A Majorana neutrino mass term could then be added to the Standard Model's Lagrangian, and the « See-Saw » mechanism could explain the smallness of the mass eigenstsate by predicting a sterile « right-handed » and heavy neutrino.

Majorana neutrino

Violation of the lepton number conservation

With see-saw mechanism the small mass is explained

Dirac neutrino

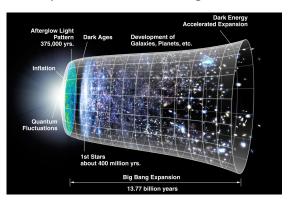

V≠**V**^C

Lepton number conservation

But why the mass is that small?

The question is still pending if the neutrino is a Dirac or a Majorana neutrino Answering it is crucial for our understanding of particle physics.

Nuclear Double Beta Decay in a nutshell



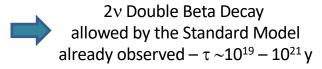
Double Beta Decay is the rarest nuclear weak process

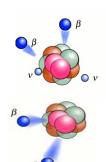
It takes place between two even-even isobars

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + (...)$$

If only electrons and nothing else:

 $\times 10^{15}$

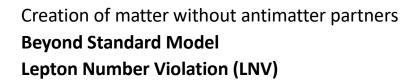

- Need to find single events in a ton of isotope x year(s) of exposure!
- 3 x 10⁻¹⁴ Bq/g
- We go to extreme length to limit ubiquitous radioactivity



More details on double beta decay

Double beta decay is a nuclear transition involving two even-even isobars

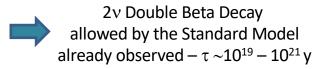
①
$$(A,Z) \rightarrow (A,Z+2) + 2e^- + 2v_e$$



②
$$(A,Z) \to (A,Z+2) + 2e^{-}$$

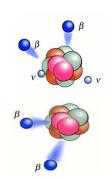
$$2n \rightarrow 2p + 2e^{-}$$

Neutrinoless
Double Beta Decay (0 $v2\beta$)
never observed $\tau > 10^{24}$ – 10^{26} y

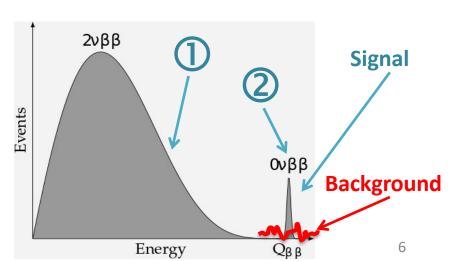


The only currently viable experimental approach to probe the Majorana nature of neutrino

More details on double beta decay

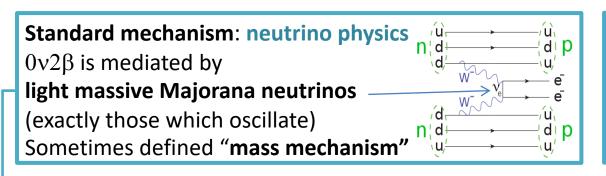

Double beta decay is a nuclear transition involving two even-even isobars

Neutrinoless Double Beta Decay (0v2 β) never observed $\tau > 10^{24}$ – 10^{26} y



Experimental signatures based on the

Sum energy spectrum of the two electrons

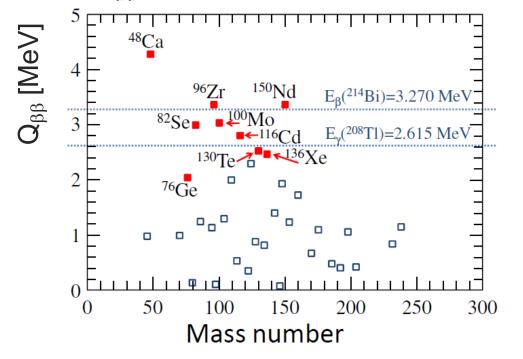

 $Q_{\beta\beta} \sim 2-3 \text{ MeV}$

for the most promising candidates

Why neutrinoless Double Beta Decay is important

- Majorana nature of neutrino (irrespectively of the mechanism)
- ➤ See-saw mechanism ⇒ naturalness of small neutrino masses
- Leptogenesis and matter-antimatter asymmetry in the Universe
- Neutrino mass scale and hierarchy

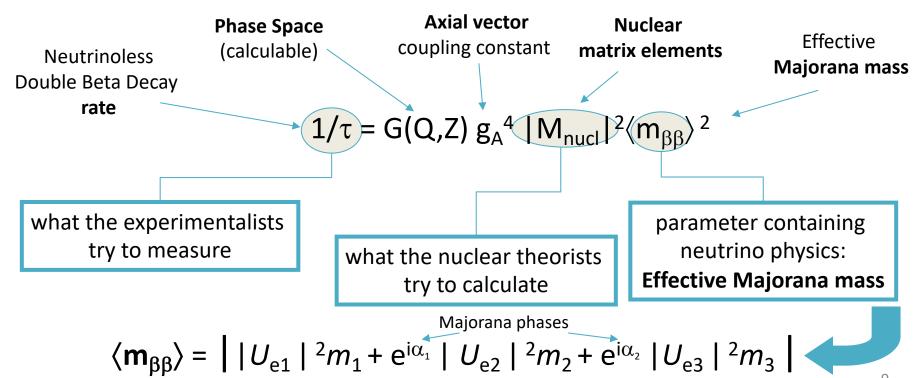
Non-standard mechanisms:


Sterile v, LNV,...

Not necessarily neutrino physics

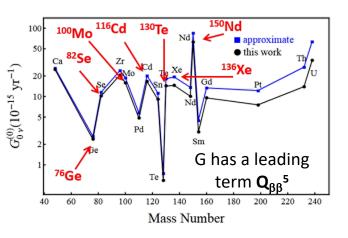
- Minimal straightforward extension of the Standard Model
- Metric to compare experiments and technologies

Which and how many nuclei?


Double Beta Decay is the main decay channel for 35 nuclei, with a large span of $\mathbf{Q}_{BB} \rightarrow$ energy available for the decay products

Most promising candidates
High Q_{BB}

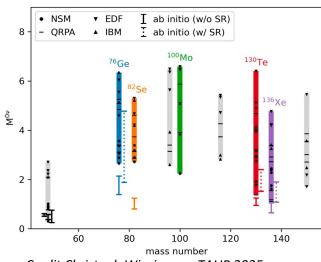
Rate in case of mass mechanism


how **0v-DBD** is connected to **neutrino mixing matrix** and **masses** in case of process induced by light v exchange (**mass mechanism**)

Phase space and nuclear matrix elements

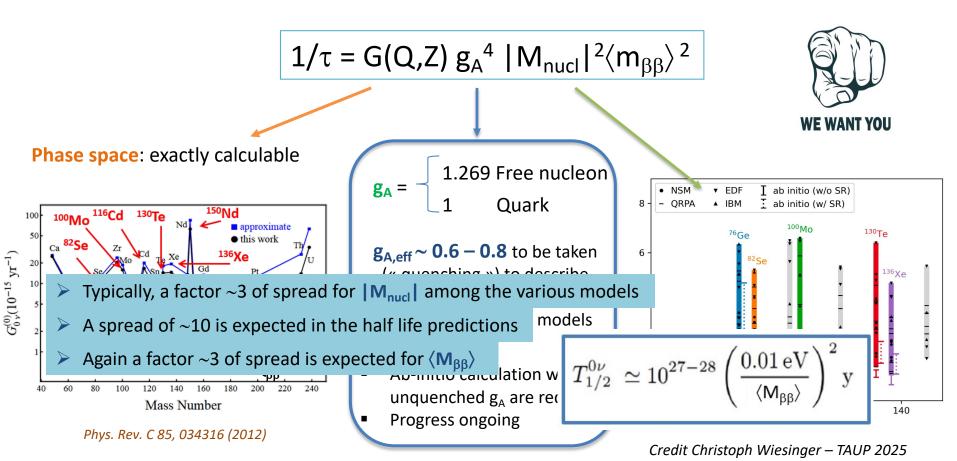
$$1/\tau = G(Q,Z) g_A^4 |M_{nucl}|^2 \langle m_{\beta\beta} \rangle^2$$

Phase space: exactly calculable

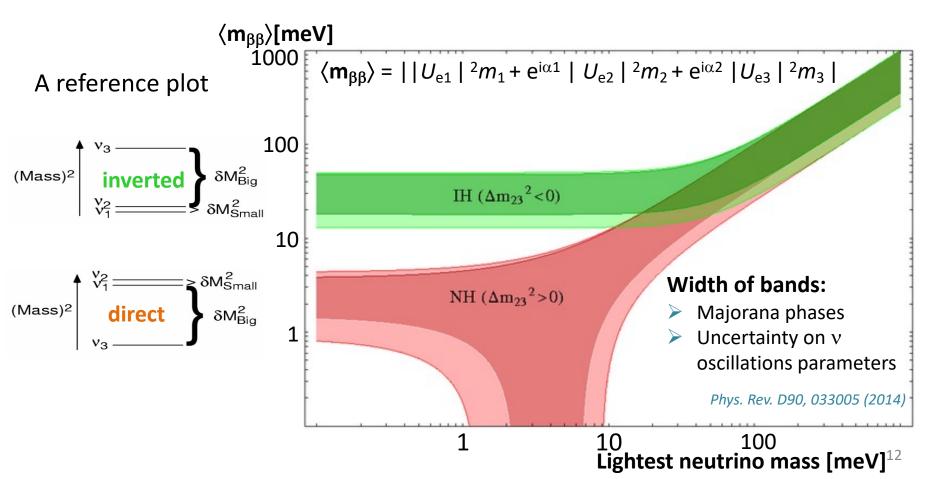

Phys. Rev. C 85, 034316 (2012)

$$g_A = \begin{cases} 1.269 \text{ Free nucleon} \\ 1 & \text{Quark} \end{cases}$$

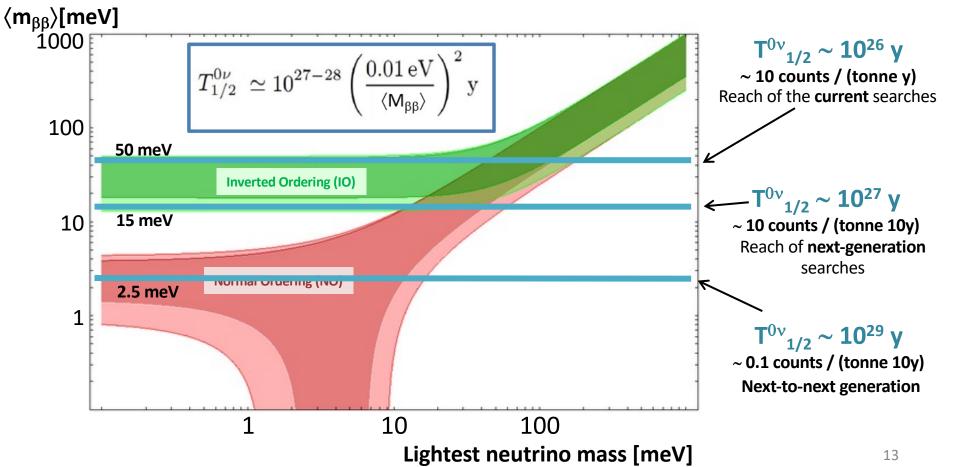
 $g_{A,eff} \sim 0.6 - 0.8$ to be taken (« quenching ») to describe β and $2\nu\beta\beta$ rates with current nuclear models

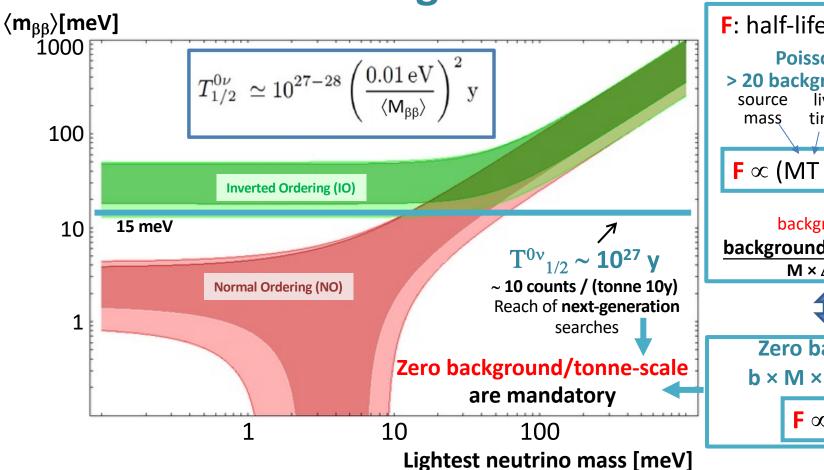

- Controversial
- Ab-initio calculation with unquenched g_A are required
- Progress ongoing

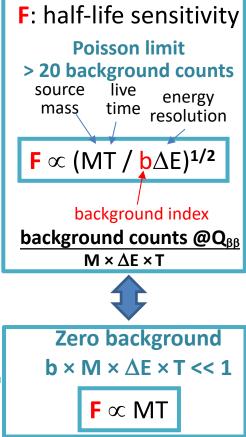
- NMEs encode the structure of the parent and daughter nuclides
- Several nuclear models



Credit Christoph Wiesinger – TAUP 2025


Phase space and nuclear matrix elements

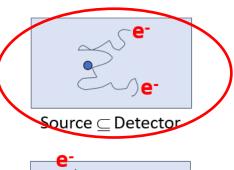

The effective Majorana mass

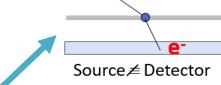


Experimental challenge

Next generation

Factors guiding isotope selection


General features for $0v2\beta$ searches


Requests for the source

1 Large source \rightarrow tonne scale \rightarrow > 10²⁷ nuclei

2 Maximize efficiency

→ The option in which the source is separated from the detector is abandoned for next-generation experiments

However, this option may be interesting in case of discovery to investigate the mechanism of $0\nu2\beta$

Requests for the background

Generic measures as underground operation, shielding (passive and active), radiopurity of materials, vetos are common to $0v2\beta$ and other rare event search

Specific desirable features for $0v2\beta$

- High energy resolution
- Particle identification
- Tracking / Event topology
- Multi-site vs. single-site events
- Surface vs. bulk events
- Fiducial volume / Active shielding
- > Final-state nucleus identification

Currently competing technologies (1)

Source dilution in a liquid scintillator

KamLAND-Zen (136 Xe) – SNO+ (130 Te)

② TPCs

e ipcs

EXO-200 - NEXT - nEXO (136Xe)

③ Semiconductor detectors

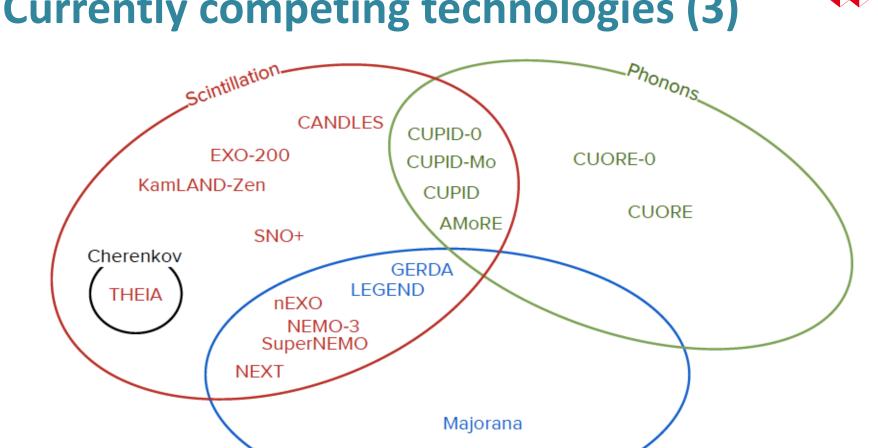
 $GERDA - LEGEND (^{76}Ge)$

4 Bolometers

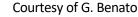
CUORE (130 Te) – AMORE – CUPID (100 Mo)

- Re-use of existing infrastructures
- Large amount of isotopes (multi-ton)
- Isotope dilution (a few %)
- Energy resolution ~ 10 % FWHM
- Rough space resolution
- Large amount of isotopes (multi-ton)
- Full isotope concentration
- Energy resolution ~ 1 % 2 % FWHM
- Event topology
- Crystal array (~1 ton scale in total)
- (Almost) full isotope concentration
- Energy resolution ~ 0.1 % 0.2 % FWHM
- Particle identification
- Pulse shape discrimination

Currently competing technologies (2)



Readout channel	Energy resolution	Particle identification	Sensitivity to position	Applicable to multiple isotopes
Ionization	0.1-1%	Only in gas	Yes	Not really
Phonons	~0.2%	Nope	Nope	Yes
Scintillation	Few %	α vs β	In liquids and gases	Yes
Cherenkov	Forget it!	Visible only for β's	Maybe	Yes


Take-away messages:

- The best detector technology does not exist
- The combination of readout channels is very welcome
 - →Good resolution with one, background rejection with the other

Currently competing technologies (3)

lonization

Experimental status

KamLAND-Zen 800 - $T_{1/2} > 3.8 \times 10^{26}$ y arXiv:2406.11438 (2024)

GERDA - $T_{1/2} > 1.8 \times 10^{26} \text{ y}$

Phys. Rev. Lett. 125, 252502 (2020)

 $EXO-200 - T_{1/2} > 3.5 \times 10^{25} \text{ y}$

Phys. Rev. Lett. 123, 161802 (2019)

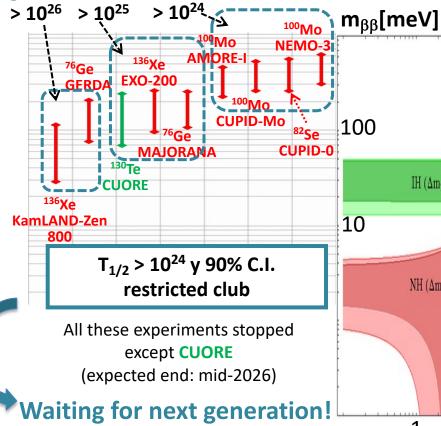
MAJORANA dem. - $T_{1/2} > 8.3 \times 10^{25}$ y Phys. Rev. Lett. 130, 062501 (2023)

CUORE - $T_{1/2} > 3.5 \times 10^{25}$ y

TAUP 2025 (2025)

CUPID-0 - $T_{1/2} > 4.6 \times 10^{24} \text{ y}$ Phys. Rev. Lett. 129, 111801 (2022)

AMORE-I - $T_{1/2} > 2.9 \times 10^{24} \text{ y}$


Phys. Rev. Lett. 134, 082501 (2025)

CUPID-Mo - $T_{1/2} > 1.8 \times 10^{24} \text{ y}$

Eur. Phys. J. C 82, 1033 (2022)

NEMO-3 - $T_{1/2} > 1.1 \times 10^{24} \text{ y}$

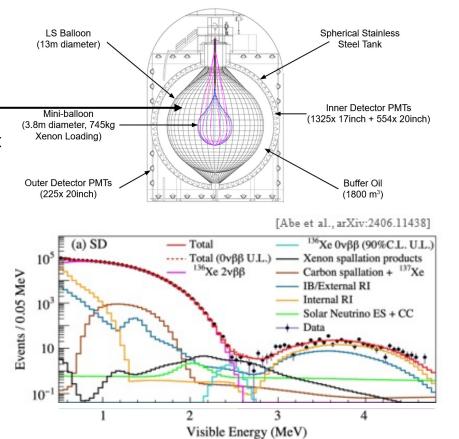
Phys. Rev. D 92, 072011 (2015)

LEGEND200 already in data taking

 $[1.9x10^{26}y]$

IH $(\Delta m_{23}^2 < 0)$

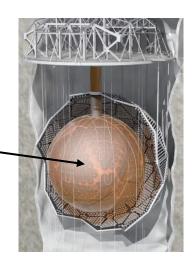
NH $(\Delta m_{23}^2 > 0)$

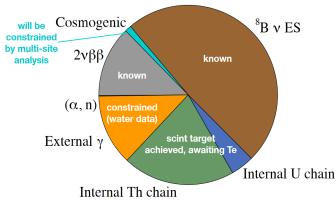

10

Lightest neutrino mass2[meV]

100

KamLAND-Zen


- 1000 ton liquid scintillator detector
- \triangleright Re-use facility used for ν oscillation experiment
- Nylon balloon with enrXe-loaded scintillator
- **KamLAND-Zen-800**, 2nd phase
 - Large isotope mass, 750 kg of 91% ¹³⁶Xe
 - Poor energy resolution, 4% at 2.5 MeV
 - → Final result, world-best constraint $T_{1/2}(^{136}\text{Xe}) > 3.8 \cdot 10^{26} \text{yr} (90\% \text{ CL})$ → $m_{66} < [28, 122] \text{ meV} (90\% \text{ CL})$ > 2.6 · 10²⁶ yr (90% CL, sensitivity)
- KamLAND2-Zen, planned detector upgrade

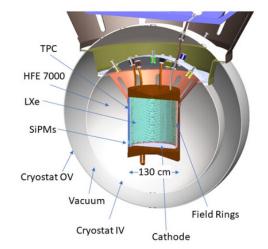


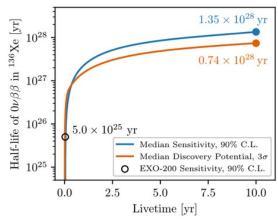
→ After 5 years: $T_{1/2}^{0v} > 2 \times 10^{27} \text{ yr}$

SNO+

- 780 ton liquid scintillator detector
 Re-use facility used for solar v experiment
- Staged natTe loading
 - Large isotope mass,
 e.g. 1.3 ton of ¹³⁰Te for 0.5% loading
 - Poor energy resolution, 4% at 2.5 MeV
- Water phase completed, scintillator phase ongoing, 0.5% loading in preparation
 - → Projected sensitivity $T_{1/2}(^{130}\text{Te}) > 2.0 \cdot 10^{26} \text{yr} (90\% \text{ CL}), 3 \text{ yr with } 0.5\%$ $T_{1/2}(^{130}\text{Te}) > 7.4 \cdot 10^{26} \text{yr} (90\% \text{ CL}), 5 \text{ yr with } 1.5\%$

Background budget


(low concentration \rightarrow dominated by ⁸B solar ν)


nEXO

- Liquid enrXe time projection chamber,
 - building on EXO-200
 - Large isotope mass, 5 ton of 90% ¹³⁶Xe
 - Reasonable energy resolution, 1% at 2.5 MeV
 - → Projected sensitivity, 10 yr [Adhikari et al., J.Phys.G 49 (2022) 1, 015104]

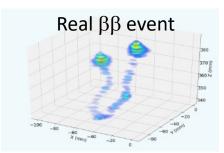
$$T_{1/2}(^{136}\text{Xe}) > 1.35 \cdot 10^{28} \text{yr} (90\% \text{ CL})$$

 $T_{1/2}(^{136}\text{Xe}) = 7.4 \cdot 10^{27} \text{yr} (3\sigma)$ Discovery sensitivity

Development of Ba tagging
 [Chambers et al., Nature 569 (2019) 7755, 203-207;
 Ray et al., Atoms 12 (2024) 12, 71]

Background dominated by Rn outgassing and intrinsic radioactivity

NEXT


- ➤ High pressure (10-15 bar) gas enrXe TPC
 - Primary scintillation ($t_0 \rightarrow z$ coordinate)
 - Electroluminescence for energy resolution and for tracking

Staged approach

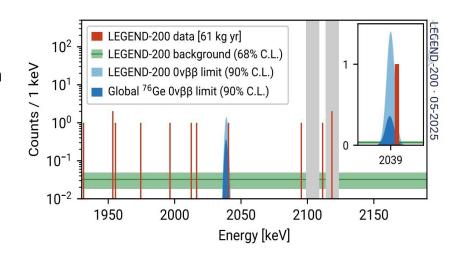
- ➤ **NEXT-White** (2015-2021) **LSC, Spain** 5 kg prototype
- NEXT-100 (2023-2029) LSC, Spain Upscaling of NEXT-White \rightarrow 97 kg
 - Currently, operation at 4 bar
 - Operation at 10 bar by 2026
 - Good energy resolution <1%

Projected sensitivity $T_{1/2}(^{136}\text{Xe}) > 4 \cdot 10^{25} \text{yr} (90\% \text{ CL}) - 3 \text{ year}$ [JHEP 2016, 159 (2016)]

➤ **NEXT-HD** (High Definition) – start in 2030 Up to 1 ton enriched Xe gas at 20 bar

Target sensitivity: 10²⁷ y 5 ton×y

- NEXT-BOLD (Barium On Light Detection)
 - Ba tagging by SMFI (Single Molecule Fluorescence Imaging) was proved – demonstrator under R&D
 - Background free [JINST 18


[JINST 18 P08006 (2023)]

Target sensitivity: 10²⁸ y 10 ton×y

LEGEND

A. Leder at this conference

- High-purity enrGe detectors in active liquid argon shield, building on:
- GERDA, lowest background, background-free [Agostini et al., PRL 125 (2020) 25, 252502]
- MAJORANA, best energy resolution,
 2.5 keV (FWHM) at 2.0 MeV
 [Arnquist et al., PRL 130 (2023) 6, 062501]
- **LEGEND-200**, up to 200 kg of 90% ⁷⁶Ge in
- Upgraded GERDA infrastructure, improved light read-out
- Data taking
- Projected discovery sensitivity, 5 yr [Agostini et al., Rev.Mod.Phys. 95 (2023) 2, 025002] $T_{1/2}(^{76}\text{Ge}) = 1.5 \cdot 10^{27} \text{yr} (3\sigma)$

- LEGEND-1000, new infrastructure in preparation at LNGS
- Sizeable isotope mass, 1 ton of 90% ⁷⁶Ge
 - → Projected discovery sensitivity, 10 yr
 - [Abgrall et al., arXiv:2107.11462]

$$T_{1/2}(^{76}\text{Ge}) > 1.6 \cdot 10^{28} \text{yr} (90\% \text{ CL})$$

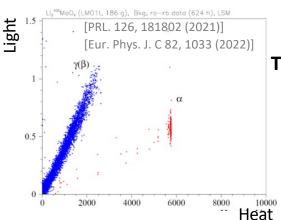
$$T_{1/2}(^{76}\text{Ge}) = 1.3 \cdot 10^{28} \text{yr} (3\sigma)$$

CUORE

I. Nutini at this conference

CUORE - LNGS, Italy

- Array of natural TeO₂ crystals operated as bolometers at 10 mK
- Built on the precursor CUORICINO experiment
- 988 TeO₂ crystals, arranged in 19 towers 206 kg of ¹³⁰Te
- Energy resolution $\Delta E \sim 7.8$ keV FWHM @Q_{$\beta\beta$}


Results: $T_{1/2} > 3.5 \times 10^{25}$ y (90%) – 2039 kg y

Background dominated by **energy-degraded surface** α 's

CUPID demonstrators

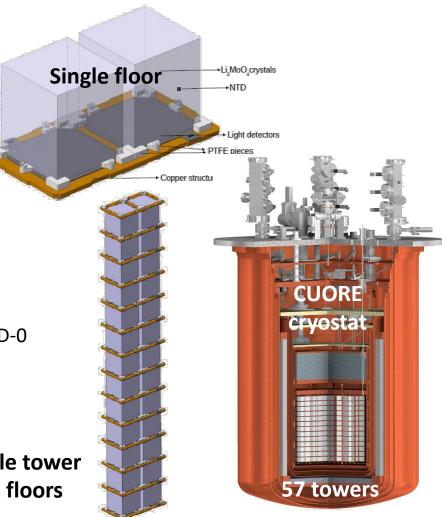
CUPID-Mo - LSM, France

- Pure bolometers → Scintillating bolometers
- ¹³⁰Te (TeO₂) → ¹⁰⁰Mo (enriched Li₂MoO₄) Q_{ββ}=3034 keV > 2.6 MeV (Reject external γ background)
- 20 Li₂Mo₄ crystals 2.26 kg of ¹⁰⁰Mo
- ► Energy resolution ΔE ~ 7.7 keV FWHM @Q_{ββ}

Results: $T_{1/2} > 1.8 \times 10^{24} \text{ y (90\%)}$ 2.71 kg v

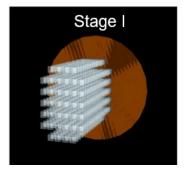
 $\begin{array}{c} \text{Reject} \\ \alpha \text{ background} \end{array}$

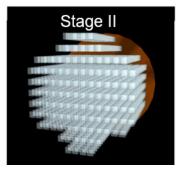
CUPID-0 - LNGS, Italy Zn82Se First scintillating bolometer demonstrator


[PRL, 129, 111801 (2022)] $T_{1/2} > 4.6 \times 10^{24}_{30} \text{ y}$

CUPID

enrMo-containing scintillating bolometers


- Heat readout based on NTD Ge sensors
- Energy resolution ΔE ~ 5 keV FWHM @Q_{BB}
- Exploit CUORE infrastructure changing isotope
- Adopt CUPID-Mo technology
- Single module: $Li_2^{100}MoO_4$ **45×45x45 mm 280** g
- 1596 crystals
- **240 kg of ¹⁰⁰Mo** with >95% enrichment
- **Bolometric Ge light detectors** as in CUPID-Mo, CUPID-0 upgraded with **Neganov-Trofimov-Luke mode** to achieve the required rejection of $2v2\beta$ random coincidences [BINGO/CROSS development]


Single tower 14 floors

CUPID – Timeline and sensitivity

- Staged development
- Stage-I \to 1/3 of crystals (**2030-2033**)
- Stage-II \rightarrow remaining 2/3 of crystals (2034)

CUPID Stage-I

 σ - discovery sensitivity $T^{0v}_{1/2} = 0.2 \times 10^{27} \text{ yr}$ $m_{88} < (26-44) \text{ meV}$

FULL CUPID

Exclusion sensitivity 90% C.I.

(10 y livetime - 240 kg 100 Mo + 5 keV FWHM) $T^{0v}_{1/2} > 1.4 \times 10^{27} \text{ yr}$ $m_{\beta\beta} < (10-17) \text{ meV}$

 $ightharpoonup 3 \sigma$ - discovery sensitivity $T^{0v}_{1/2} = 1 \times 10^{27} \text{ yr}$ $m_{\beta\beta} < (12-21) \text{ meV}$

R&D ongoing to reduce the BI by a further order of magnitude (BINGO and others), making possible

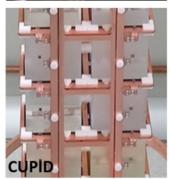
CUPID-1T

10 y livetime - 1000 kg 100 Mo + 5 keV FWHM $T^{0v}_{1/2} > 9.2 \times 10^{27} \text{ yr}$ Deep inside the normal m_{BB} < (4.0-6.9) meV ordering region

Beyond CUORE and CUPID: BINGO

Techniques for background rejection in future Li₂MoO₄ / TeO₂ based experiments 3 main innovations

- Internal active shield (ultrapure BGO scintillators)
 - mitigate γ background in TeO₂
- Revolutionary assembly to reject surface background
- Enhanced-sensitivity (Neganov-Trofimov-Luke) light detectors
 - mitigate pile-up
 - read out the BGO active shields
 - detect Cherenkov light in TeO₂

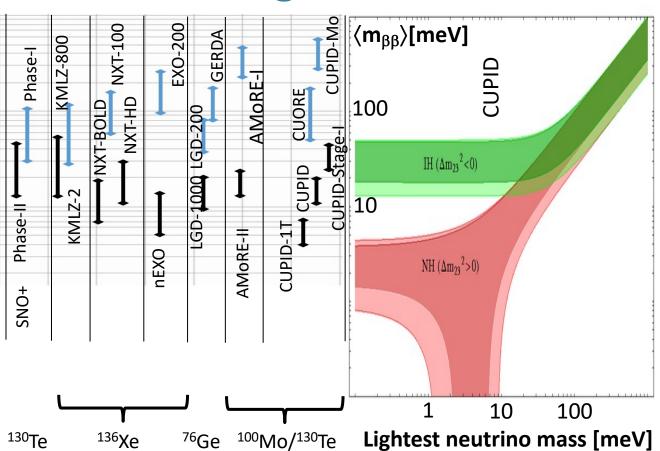

MINI-BINGO in Modane (demonstrator)

12 Li₂MoO₄ crystals

12 TeO₂ crystals

from 2026

Simulation CUPID vs. BINGO


How we are moving forward

Current generation

(final sensitivity for concluded/running projects)

Next generation (projects to be

started on 5-10 years' time scale)

Conclusions

- $> 0 \nu \beta \beta$ is a crucial process for particle physics and cosmology
- Several approaches and technologies make this field very active
- Many projects will extend their sensitivity in the next years

Next-generation experiments have a good discovery potential

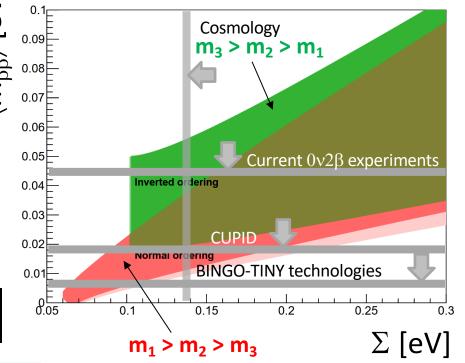
Neutrinoless double beta decay is a high-risk, high-reward pursuit

A hard search, but a discovery would reshape physics: the Standard Model, mass, and the matter—antimatter asymmetry.

What lies ahead

From the current to the next generation

Emphasis on 7 promising research lines


Emphasis on 7 promising research mes					
① KamLAND-Zen 400 → KamLAND-Zen 800 → KamLAND2-Zen 1	¹³⁶ Xe Source dilution in				
2 SNO+ \rightarrow SNO+-phase II ¹³⁰ Te	a liquid scintillator				
$ (3) EXO-200 \rightarrow nEXO $	Xe TPCs				
	AC II C3				
	Semiconductor detectors – Ge diodes				
6 AMORE-I \rightarrow AMORE-II 100Mo CUORE 130Te CUPID-Mo 100Mo CUPID-0 82Se \rightarrow CUPID \rightarrow CUPID 1t 100Mo	Bolometers				
	22				

Neutrino mass scale and effective neutrino mass

Cosmology, single and double β decay measure different combinations of the neutrino mass eigenvalues, constraining the neutrino mass scale

$$\sum \sum_{i=1}^{3} m_{i}$$

$$\langle m_{\beta} \rangle \equiv \left(\sum_{i=1}^{3} m_{i}^{2} |U_{ei}|^{2}\right)^{1/2}$$

double β **decay -** coherent sum - **virtual** neutrino - Majorana phases

Many theoretical models for the nuclear

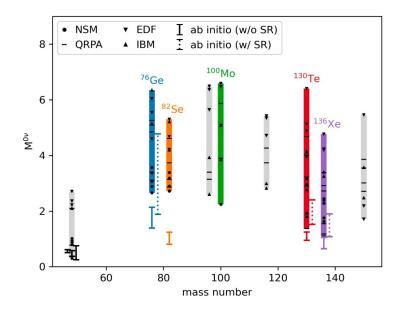
matrix elements

$$1/\tau = G(Q,Z) g_A^4 |M_{nucl}|^2 \langle m_{\beta\beta} \rangle^2$$

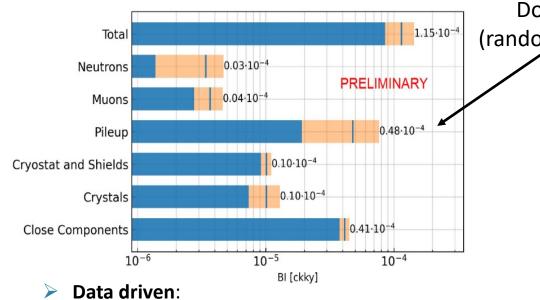
The $0\nu\beta\beta$ community in general assumes $g_A \approx 1.27$ (no quenching)

- Different phenomenological many-body methods using different approximations (e.g. limited number of nuclear shells), significant spread

 [Agostini et al., Rev.Mod.Phys. 95 (2023) 2, 025002; ..]
- Experiments provide range of $m_{\beta\beta}$ constraints


$$T_{1/2} = ... \rightarrow m_{\beta\beta} = [.., ..]$$

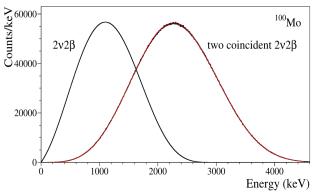
• First **ab initio calculations available**, may resolve quenching issue


[Yao et al., PRL 124 (2020); Belley et al., PRL 126 (2021); Novario et al., PRL 126 (2021); Cirigliano et al., PRL 120 (2018); Belley et al., arXiv:2307.15156; Belley et al., PRL 132 (2024); ..]

 Effective field theory (EFT) analysis identified additional short-range contribution

[Cirigliano et al., PRL 120 (2018) 20, 202001; ..]

CUPID - background



based on CUORE and CUPID-Mo background models

[Eur. Phys. J. C 83 (2023) 675] [Phys. Rev. D 110 (2024) 052003]

Conservative projections based on current available data: $BI = 1.1 \times 10^{-4} \text{ ckky}$

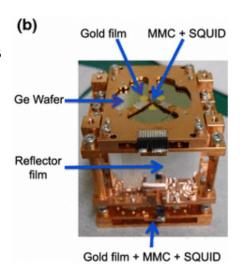
Dominant contributions: pile-up events (random coincidences of ordinary 2νββ events)

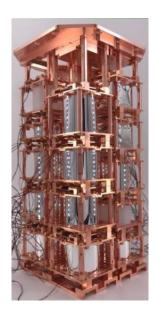
- Fastest $2v2\beta$ decay: $T_{1/2} \sim 7.1x10^{18}$ y
- Slow response of bolometric signals Mitigated by Neganov-Trofimov-Luke light detectors

Two orders of magnitude better than in CUORE

AMoRE

enrMo-containing scintillating bolometers


- Heat readout based on MMC sensors
- Energy resolution ΔE ~ 10-15 keV FWHM @Q_{ββ}
- AMoRE-I (2020-2022)
 - 13x ^{48depl}Ca¹⁰⁰MoO₄ (4.6 kg)
 - 5x Li₂¹⁰⁰MoO₄ (1.6 kg)


Results: $T_{1/2} > 2.9 \times 10^{24} \text{ y}$

[Phys. Rev. Lett. 134, 082501 (2025)]

- > AMORE-II from 2026 phased approach
 - Secured 110 kg of ¹⁰⁰Mo 596x Li₂¹⁰⁰MoO₄ crystals
 - New cryostat and underground lab work in progress

Projected sensitivity: 8×10²⁶ y in 5 years

