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The standard cosmological model: General Relativity + CDMΛ
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The standard cosmological model: General Relativity + CDMΛ

What is dark energy? Is there an
alternative to ?Λ

3



Modified gravity
Many models propose to explain accelerated expansion using new laws for gravity:
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Many models propose to explain accelerated expansion using new laws for gravity:
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structures formation

4



Outline

Growth rate of structure
What is the growth rate of structures?
How to measure it?

Introduction:
The CDM standard model
Alternatives to 

Λ

Λ

Type Ia supernovae
What are they?
The Zwicky Transient Facility

The growth-rate analysis pipeline
Simulation
Analysis

Results
The sample bias
ZTF 6-years forecast
How to improve the measurement?

Other works
Systematic effect on  due to velocities
What's next?

Conclusion

H0

5



 as a probe for general relativityfσ8

Structure evolution:
Dark energy vs Gravity

Dark Energy
Gravity

Image credits: Illustris TNG6



 as a probe for general relativityfσ8

Structure evolution:
Dark energy vs Gravity

Density contrast: δ(x) =
ρ(x)

ρ̄ − 1

Dark Energy
Gravity

Image credits: Illustris TNG6



 as a probe for general relativityfσ8

Structure evolution:
Dark energy vs Gravity

Density contrast: δ(x) =
ρ(x)

ρ̄ − 1

:
RMS of fluctuation over sphere of

8 Mpc.  radius

σ8

h−1

δ(x) = σ8
~
δ(x)

Image credits: Illustris TNG6



 as a probe for general relativityfσ8

Velocities are linked to density through the
continuity equation:

where  growth rate

∇. v(x) ∝ fσ8
~
δ(x)

f ≡

Velocities

Dark Energy
Gravity

Image credits: Illustris TNG6



 as a probe for general relativityfσ8

Velocities are linked to density through the
continuity equation:

where  growth rate

∇. v(x) ∝ fσ8
~
δ(x)

f ≡

General Relativity + CDM:
 with 

Λ
f ≃ Ω

γ
m γ ≃ 0.55

Velocities

Dark Energy
Gravity
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Velocities as probes of :
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Type Ia supernovae (SNe Ia): powerful probes for cosmology

Di
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ce

Distance modulus:
μ = mB − MB ∝ 5 log(dL)
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SNe Ia: a few words about standardization
SNe Ia are not perfectly standard !!!

Correlation of peak magnitude with stretch, color and host galaxies exists

Tripp relation: mstd

B
= mB + αx1 − βc

After standardization σM ∼ 0.12

10



SNe Ia: a few words about standardization

How to get ,  and ?mB x1 c

Collect data
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SNe Ia: a few words about standardization

How to get ,  and ?mB x1 c

Adjust lightcurve with SALT2 (SED model for SNe Ia)
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The Zwicky Transient Facility survey
The ZTF survey:

Photometric telescope observing 3/4 of
the sky every  nights in 3 bands
Spectroscopic telescope measuring
transient spectra

∼ 2

 classified supernovae
More than 3000 SNe Ia at low redshift

∼ 8000

z < 0.1

Image credits: ZTF.Caltech11
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Simulation: the N-Body simulation

OuterRim (Heitmann et al. 2019)
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(x1 ~ Nicolas et al. 2021,
c ~ Scolnic & Kessler 2016

and  σint ~ N(0, 0.12))

1 + zobs = (1 + zcos)(1 + zp)

mB,i = MB − αx1,i + βci + σint,i + μ(zcos,i) + 10 log(1 + zp,i)
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Simulation: survey parameters
I have worked in ZTF simulation working group to construct ZTF simulation input files

Survey 
parameters

Cadence 
(dates, coordinates, 

filters used)

Instrument & Atmosphere
(CCD gain, zero point, 

skynoise)
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Simulation:  and lightcurvesSNSim
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 simulation
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Simulation:  and lightcurvesSNSim

Realistic
 SN Ia LCs

Survey 
parameters

N-body
 simulation

Theory
Observations

Noise is computed as

σF = √F + σ2
sky

+ σ2
ZP
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Simulation: applying spectroscopic identification selection function
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Simulation: applying spectroscopic identification selection function
Detection: 2 points with SNR  5>
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Simulation: applying spectroscopic identification selection function
Spectroscopic efficiency from Perley et al. 2019
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Simulation: applying spectroscopic identification selection function
⟨NSN⟩ ∼ 4300
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Analysis: lightcurves fit and cosmological cut
After SALT2 fit, we apply quality cuts:
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Analysis: velocities from Hubble diagram residuals
Standard candles + velocities + noise

The velocity estimator:

v̂ = −
ln(10)c

5
(

(1 + z)c

H(z)r(z)
− 1)

−1

Δμ

The velocity estimator error:

σv̂ = −
ln(10)c

5
(

(1 + z)c

H(z)r(z)
− 1)

−1

σμ
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Analysis: the Maximum-Likelihood method
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Analysis: the Maximum-Likelihood method
Method used with galaxy data in Abate et al. 2010, Johnson et al. 2014 and Howlett et al. 2017

The correlation function depends on the Power Spectrum

⟨v(xi)v(xj)⟩ ∝ (fσ8)2 ∫ dk
~
P(k)W (v)(k; xi, xj)

It gives us a  dependent model for our covariance matrix!fσ8

C vv
ij (fσ8) = ⟨v(xi)v(xj)⟩
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Analysis: the Maximum-Likelihood method
Method used with galaxy data in Abate et al. 2010, Johnson et al. 2014 and Howlett et al. 2017

Two non-linear models of power spectra:

One based on N-body simulaton fit from Bel et al. 2019

One based on PT beyond order one from Taruya et al. 2012

Effect of redshift space distorsions taken into account with damping
function  (Koda et al. 2014)Du(σu)
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Analysis: the Maximum-Likelihood method
Free parameters of the likelihood:

Growth-rate related parameters:
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Analysis: the Maximum-Likelihood method
Free parameters of the likelihood:

Growth-rate related parameters:

,  RSD,  non-linearitiesp = {fσ8,σu,σv} σu ≡ σv ≡

The likelihood:
L(p) ∝ |C(p)|− 1

2 × exp [− 1
2 v

TC(p)−1
v]

The covariance:
Cij(p) = C vv

ij (fσ8,σu) + σv
2δKij + σ2

v̂
δKij

C vv
ij (fσ8,σu) = ⟨v(xi)v(xj)⟩ ∝ (fσ8)2 ∫ dkP(k)W(k)D2

u(k;σu)
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Results: the selection bias (Carreres et al. 2023)
Bias on HD residuals Bias on velocity estimates

v̂ = −
ln(10)c

5
(

(1 + z)c

H(z)r(z)
− 1)

−1

Δμ

Only the estimated velocities are biased !!!
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Results: the selection bias (Carreres et al. 2023)

Bias on fσ8
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Results: forecast for a ZTF 6-years complete sample (Carreres et
al. 2023)

 half of the samplez < 0.06 ⇒ ⟨NSN⟩ ≃ 1600 ∼
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Results: forecast for a ZTF 6-years complete sample (Carreres et
al. 2023)

 half of the sample⟨NSN⟩ ≃ 1600 ∼

Joint fit
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Results: comparison with existing measurements (Carreres et al.
2023)

With ~1600 SNe Ia, ZTF is at the same precision level as existing measurements with
several thousands of galaxies
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Results: could a bias correction improve the constraint? (Carreres
et al. 2023)

Simulate a perfect correction of the bias: vdebias,i ∼ N (vtrue, σv̂,i)
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How to improve the measurement?

Bias correction of the velocity estimates ?

Does not improve strongly the constraint on fσ8
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How to improve the measurement?

Bias correction of the velocity estimates ?

Does not improve strongly the constraint on fσ8

Use photo-typing to increase the redshift limit

Velocity  density measurements (e.g. ZTF + DESI)×
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Future surveys

Forecast credits: DESI arxiv:1611.00036, LSST arxiv:1708.08236, EUCLID arXiv:1606.0018032
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Systematic effect on  due to velocities (paper in prep)
Hubble Diagram fit
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Systematic effect on  due to velocities (paper in prep)
Hubble Diagram fit

where  is degenerate with 

H0

Δμ = mB + αx1 − βc − M0 − μmodel(z)

M0 H0

Velocity error term:

with  km/s

σμ−z = 5
ln 10

σv

z

cσv ≃ 250

We use our 27 mocks from  that contain correlated velocities to evaluate velocities
effect in Hubble diagram fit

SNSim
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Systematic effect on  due to velocities (paper in prep)H0

Velocities not taken into account
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Systematic effect on  due to velocities (paper in prep)H0

Diagonal term for velocity errors
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Systematic effect on  due to velocities (paper in prep)H0

Full covariance matrix for velocities

Preliminary results: using full covariance matrix multiplies by ~4 the error on  on
simulations. First test on ZTF DR2 data gives an error multiplied by ~2.

M0
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computation:

Work started with C. Ravoux: development of the  public packageflip

Application of the  analysis to ZTF datafσ8
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I developed a simulation of supernovae observations including realistic
velocities from N-body simulations

I used real observation conditions to generate ZTF survey realizations

I developed a full analysis pipeline to measure  from SNe Iafσ8

The spectroscopic selection causes a bias on velocity estimations above
z ∼ 0.06

We forecast that we will have a ~19% precision on a  measurement with a
6-year ZTF SNe Ia spectro-identified sample with 

fσ8

z < 0.06

Improvements are expected from future work on photometric typing analysis
and combination with density measurements
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 as a function of 

 

fσ8 zmax
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Velocity estimators biases
v̂1 = −

ln(10)c

5 ( (1+z)c

H(z)r(z)
− 1)

−1
Δμ

v̂2 = −
ln(10)

5
H(z)r(z)

(1+z) Δμ

v̂3 = −
ln(10)c

5 ( 1+z
z − 1)

−1
Δμ

v̂4 = −
ln(10)c

5
z

1+z
Δμ
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Gaussian prior on σu
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ZTF  budget erro(Dhawan et al. 2021)H0
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