Improvement of the prediction of biological effects for Targeted Alpha Therapy

Victor Levrague¹, Mario Alcoler-Avila², Lydia Maigne³, Michaël Beuve², Etienne Testa² and Rachel Delorme¹

> 1: LPSC, Grenoble 2: IP2I, Lyon 3: LPC, Clermont-Ferrand

AG GDR MI2B - 4-6 October 2023

Targeted Alpha Therapy : an innovative internal radiotherapy

Radiotherapy: treat a disease, usually cancer, using ionizing beams

Introduction Materials & Methods Results Conclusion Perspectives

Prediction of biological effects in Targeted Alpha Therapy

Targeted Alpha Therapy : an internal radiotherapy

- No direct control of the irradiation
- Heterogeneous tissular dose deposition
- Heterogeneous cellular dose deposition, because of short range of alpha particles (few μm)

Homemade Geant4 simulation on a cell irradiated by alpha particles

Uniform physical dose is not enough to predict biological effects

Perspectives

Introduction

Materials & Methods

Results

Conclusion

Prediction model overview

Prediction model overview

The biophysical model NanOx (1/2)

The biophysical model NanOx (2/2)

Cell survival curve for low and high LET particles

- Nucleus : only sensitive volume = only damage in nucleus induce cell death
- Works for specific cell lines, depending on experimental data
- NanOx : Experimentally calibrated & validated for hadrontherapy (50 400 MeV/n)

Introduction

Results

Cell survival to lethal events:

$$\left(egin{array}{c} S_{\,lethal} = \ \exp\left(-\sum_{E_k^i} nig(E_k^i)
ight) \end{array}
ight)$$

Geant4 simulation of an helium ion crossing a cell nucleus

1 1						
Intr		INTIN	n			
TI TU	U UU					

Results

Conclusion

Cell survival to lethal events:

$$\left[egin{array}{ll} S_{\,lethal} = \ \exp\left(-\sum_{E^i_k} nig(E^i_k ig)
ight)
ight)
ight)
ight]$$

Density of lethal events per energy:

$$\left(rac{dn}{dE}(E) \ = \ - \ rac{\ln \left(1 \ - \ lpha(E) \cdot a \cdot \ LET(E)
ight)}{L \cdot \ LET(E)}
ight)$$

Geant4 simulation of an helium ion crossing a cell nucleus

Cell survival to lethal events:

$$\left[egin{array}{ll} S_{\,lethal} = \ \exp\left(-\sum_{E^i_k} nig(E^i_k)
ight)
ight)
ight)
ight]$$

Density of lethal events per energy:

$$\overline{rac{dn}{dE}(E)} = - rac{\ln\left(1 - lpha(E) \cdot a \cdot LET(E)
ight)}{L \cdot LET(E)}$$

Geant4 simulation of an helium ion crossing a cell nucleus

Cell survival to lethal events:

$$\left[egin{array}{ll} S_{\,lethal} = \ \exp\left(-\sum_{E^i_k} nig(E^i_k ig)
ight)
ight)
ight)
ight]$$

Density of lethal events per energy:

$$\overline{\frac{dn}{dE}(E)} = - \frac{\ln (1 - \alpha(E) \cdot a \cdot LET(E))}{L \cdot LET(E)}$$

Geant4 simulation of an helium ion crossing a cell nucleus

Perspectives

Number of lethal events:

$$\left(egin{array}{cc} n\left(E_k^i,\,E_k^f
ight) = \ \int_{E_k^f}^{E_k^i} rac{dn}{dE}(E)\,\cdot\,dE \end{array}
ight)$$

Results

Cell survival to lethal events:

$$\int S_{\,lethal} = \; \exp\left(-\sum_{E^i_k} nig(E^i_kig)
ight) \; ,$$

Density of lethal events per energy:

$$\frac{dn}{dE}(E) = - \frac{\ln\left(1 - \alpha(E) \cdot a \cdot LET(E)\right)}{L \cdot LET(E)}$$

Geant4 simulation of an helium ion crossing a cell nucleus

Number of lethal events:

$$\left(egin{array}{cc} n\left(E_k^i,\,E_k^f
ight) \,=\, \int_{E_k^f}^{E_k^i} rac{dn}{dE}(E)\,\cdot\,dE \end{array}
ight)$$

Materials & Methods

Introduction

$$igg(S_{total} \,=\, S_{lethal}\,\cdot\, S_{global}$$

Python module *nanox_low_energy* available

Perspectives

Conclusion

Prediction model overview

Geant4 simulations

- Open source track-structure Monte-Carlo model
- Tracking of alpha particles until 1 keV
- Low energy electromagnetic physics list

- **Output :**
 - > Physical doses in **nuclei** and cells
 - > $\ln (E^{i})$ and out (E^{f}) energies of alpha particles in nuclei
 - To calculate cell survivals

Homemade Monte-Carlo simulation of 10 helium ions emitted in the cytoplasm

Perspectives

Results

Conclusion

Complex geometry generation: CPOP

95 μm radius Spheroid generated by CPOP

- Open-source tool that can generate highly compacted multi-cellular geometries, with realistic cell deformation management
- Based on Geant4

Maigne et al. 2021

Complex geometry generation: CPOP

95 μm radius Spheroid generated by CPOP

- Open-source tool that can generate highly compacted multi-cellular geometries, with realistic cell deformation management
- Based on Geant4

Maigne et al. 2021

- My work: enhance CPOP with new functionalities, updating the GitHub repository and adapting the model for Targeted Alpha Therapy and the Geant4 release
- Collaboration with Lydia Maigne & Alexis Pereda (LPC Clermont)
- Available in GitHub, and soon in an official example of Geant4

11	$\gamma \pm i$	20			$^{+}$	- 1.	n		
			(1		(· I				
			u	u	ωı				

Materials & Methods

Prediction model overview

Impact of intracellular radionuclide distribution

Materials & Methods

Introduction

- Radionuclides can enter in cells because of the chemical vector
- Radionuclide distribution cannot be known during treatment

Results

Conclusion

Perspectives

Simulation parameters

Reproduction of the experimental treatment conditions of *Chouin et al. 2012*, murine treatment, 400 kBq injected

- Number of alpha particles per cell : 42 (uniform in spheroid)
- Studied parameters :
 - Spheroid compaction : 25 75 %
 - Radionuclide used : ²¹⁰Po, ²¹¹At , ²¹³Bi
 - Spheroid radius : 30 95 μm

Cell survivals calculated for the HSG cell line

Introduction

Materials & Methods

Results

Conclusion

Mean nucleus physical dose increase of cytoplasm and nucleus radionuclide source distribution, compared to membrane source distribution only.

Irradiation conditions : ²¹¹At, 95 μm spheroid radius, 75 % compaction

Perspectives

Conclusion

Mean nucleus physical dose increase of cytoplasm and nucleus radionuclide source distribution, compared to membrane source distribution only.

Constant = activity per cell

Introduction

Materials & Methods

Results

Conclusion

Introduction

Materials & Methods

Results

Conclusion

Cross-fire irradiation (1/2)

Results

Cross-fire irradiation to a cell =

Irradiation coming from radionuclides in the surrounding medium of this cell

Cross-fire irradiation

100 %

Importance of the **medium irradiation** compared to **intracellular irradiation**

Materials & Methods

100 % cross-fire

Conclusion

0 % cross-fire

Perspectives

0%

Introduction

Cross-fire irradiation (2/2)

Membrane radionuclide distribution:

Nucleus radionuclide distribution:

65 to 98% nucleus cross-fire irradiation

86 to 98% nucleus cross-fire irradiation

Introc	luction
111100	aotion

Materials & Methods

Results

Conclusion

Cross-fire irradiation (2/2)

Irradiation conditions : ²¹¹At, 95 µm spheroid radius, 75 % compaction

$$TCP = \prod_{i=1}^{n} (1 - S_i)$$

Introduction

Materials & Methods

Results

Conclusion

Perspectives

Irradiation conditions : ²¹¹At, 95 μm spheroid radius, 75 % compaction

$$TCP = \prod_{i=1}^{n} (1 - S_i)$$

Introduction

Materials & Methods

Conclusion

Irradiation conditions : ²¹¹At, 95 µm spheroid radius, 75 % compaction

$$TCP = \prod_{i=1}^{n} (1 - S_i)$$

Introduction

Materials & Methods

Results

Conclusion

Irradiation conditions : ²¹¹At, 95 µm spheroid radius, 75 % compaction

$$TCP = \prod_{i=1}^{n} (1 - S_i)$$

TCP = 1 for particles per cell > 10

Highest differences between distributions at ~ **5 particles per cell** \rightarrow Threshold effect

18-fold higher TCP between nucleus and membrane source

Perspectives

Materials & Methods

Conclusion

Take-home messages

- Intracellular radionuclide distribution must be precisely modeled for small tumors (< 50µm radius) and low compaction spheroid, especially with low radionuclide concentration</p>
- Biological quantities are mandatory to take into account in addition to physical ones

			- 1					
n	2	\sim	\sim	н I.	\sim	tı.	\sim	n
							()	
		\sim	S.	U	\sim	UI.	$\mathbf{\nabla}$	

Materials & Methods

Results

Perspectives and ongoing work

 Article submission on intra-cellular radionuclide study, with the remarks of the reviewers from the Green Journal submission

Article submission on NanOx formalism for low energy ion irradiations

Perspectives and ongoing work

- Comparison with experimental data of literature (Neti study or others)
- Study on **intra-tumoral** radionuclide **distribution**:
 - Impact of different distribution scenarios
 - Impact of cell labeling %
 - Impact of radionuclide diffusion kinetic

Evolution of antibody kinetics over time. Bastiaannet et al. 2023.

Materials & Methods

Results

Conclusion

Discussion

AG GDR MI2B - 4-6 October 2023

Impact of 100 keV/n threshold on TCP: methods

3 hypotheses under 100 keV/n:

- All α are equal to zero under 100 keV/n
- α is assumed = 0 at E = 0. Linear interpolation is done
- All α are equal to α (100 keV/n) under 100 keV/n

Impact of 100 keV/n threshold on TCP: results

$L_k - L_k - Luep - Luep hypothesis.$ Ω_{\nucleus} $Edep^{nucleus} ightarrow rac{\Omega/nucleus}{\Lambda}$ E_k^f **Nucleus** E_k^i Edep $^{nucleus} ightarrow$ nucleus $Edep^{\Omega/nucleus} ightarrow nucleus$

$E_{k}^{i} - E_{k}^{f} = Edep$ hypothesis: formalism

$$Edep^{tot\ in\ nucleus}\ =\ E_k^i\ -\ E_k^f\ +\ Edep^{\Omega/nucleus}\ -\ Edep^{nucleus}\ -\ Edep^{nucleus}\ +\ \Omega/nucleus}$$

Narrow track hypothesis: Material & Methods

Narrow track hypothesis: Results

Relative difference on average:

$$2 \cdot \; rac{\left(E_k^i - \, E_k^f
ight) - \, Edep^{tot\,in\,nucleus}}{E_k^i - \, E_k^f + Edep^{tot\,in\,nucleus}}$$

Below **10 MeV:** < 0.1% error on the hypothesis

More precise electron tracking doesn't change the results

Formalism comparison

Formalism comparison: Material & Methods

Formalism comparison: results

