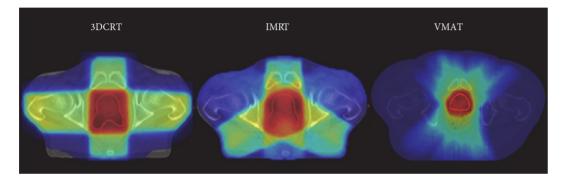
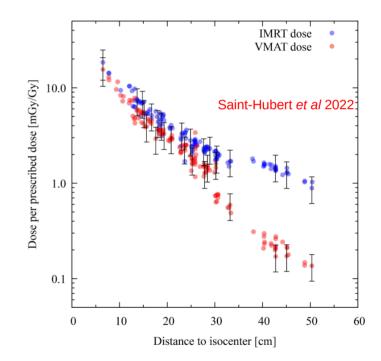
ESTIMATING OUT-OF-FIELD DOSE DISTRIBUTION BASED ON MONTE CARLO TRAINING DATASET

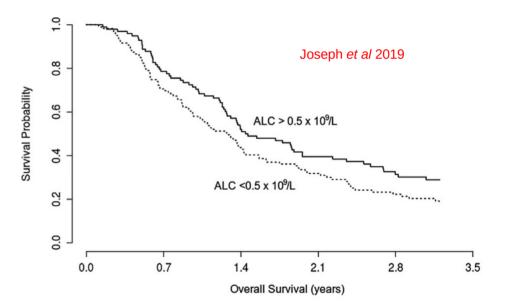
Maxime Jacquet CREATIS Lyon




Out-Of-Field dose

Comparison of the deposited dose according to treatment modality Vanneste *et al* 2016

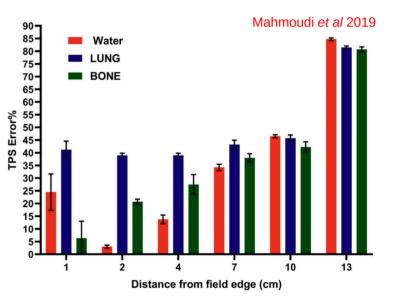
Recent photon radiotherapy methods:


- Diminution of the high dose deposited outside of the tumour volume
- Higher peripherical dose deposited

Experimental measurements of Out-Of-Field dose for IMRT and VMAT in an anthropormorphic phantom

Out-Of-Field dose

- Out-Of-Field (OOF) dose consequences:
 - Increased risk of radiation-induced cancers
 - Lymphopenia: negative correlation with patient overall survival
- Immuno-radiotherapy implementation
 - Precise estimation of OOF dose
 - ⇒New dose constraints on lymphocyte-rich structures (thymus, bone marrow, spleen ...)



Overall survival with post-treatment absolute lymphocyte count (ALC)

OOF dose estimation

- OOF dose = below 5 % isodose
- Treatment Planning systems (TPS) strongly underestimates the deposited dose
- To accurately estimate OOF dose:
 - Analytical models
 - Monte-Carlo (MC) simulations

	Analytical models	MC simulations	
Calculation time	++ - ~ minutes ~ days		
Accelerator design	++ Simple models	- Accurate models	
Precision	+	++	
Empirical adjustement	- Derive parameters from experiments	++ Matching experiments	
Adaptability	-	+	

Difference between dose measurements and Monaco TPS predictions Lymphocyte-Sparing Artificial Intelligence-guided Radio-Immunotherapy (LySAIRI) RHU project

Collaboration:

- CLB (Centre Léon Bérard)
- CREATIS
- IGR (Institut Gustave Roussy)

CREATIS

Deliver novel solutions toward the first effective implementation of immuno-radiotherapy

 Deep learning tools to quantify the OOF dose

OOF dose estimation

Deep learning models trained by MC simulations

	Analytical models	MC simulations	Deep learning models
Calculation time	++ ~ minutes	- ~ weeks	++
Accelerator design	++ Simple models	- Accurate models	-
Precision	+	++	+(+)
Empirical adjustement	- Derive parameters from experiments	++ Matching experiments	++
Adaptability	-	+	++

Training datasets

Proof of concept:

- Images of patients with a head and neck cancers
- Dataset training: pair of corresponding dose distributions
 - TPS calculations (Monaco)
 - MC simulations of an Elekta versa HD: GATE

⇒Generation of the OOF dose directly from the TPS information

GEANT4 wrapping:

- Easy access to GEANT4 functionnalities
- Additionnal features
- Collaborative development

Medical physics applications

Dosimetry studies

- External and internal therapy
- Hadrontherapy

Imaging systems

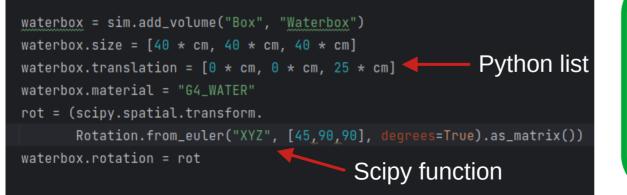
- PET
- SPECT
- Compton camera
- X-ray

However:

- Old code
- 15 years of development

Hundreds of contributors

- Maintenance issues



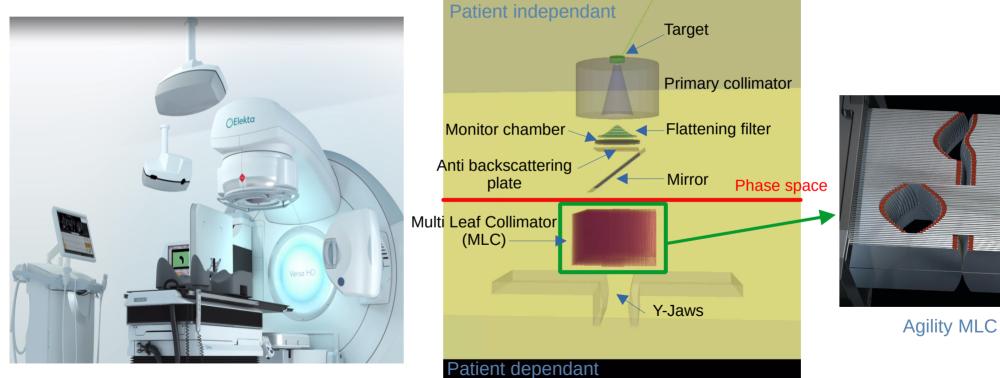
GATE

New release of Gate: **GATE 10**

GATE 10

- Based on new C++ technologies
- Python wrapping:
 - Easy to use
 - Combination with numpy/scipy libraries
- Open access collaborative work

Windows compatibility


Multithreading available

• Still in development

 Beta version available at the end of the year

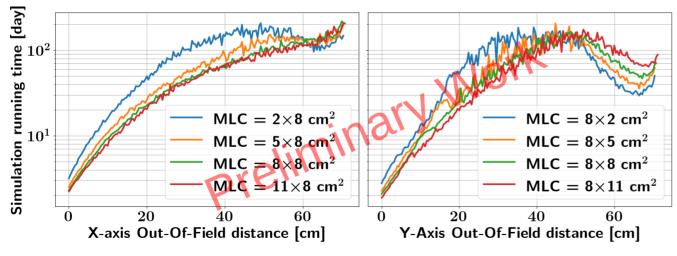
Waiting for your contributions

Simulation of the Elekta Versa HD

Elekta Versa HD

Elekta LINAC VERSA HD 6 MV simulated with GATE 10

Estimation of OOF calculation times


10/12

Simulation settings

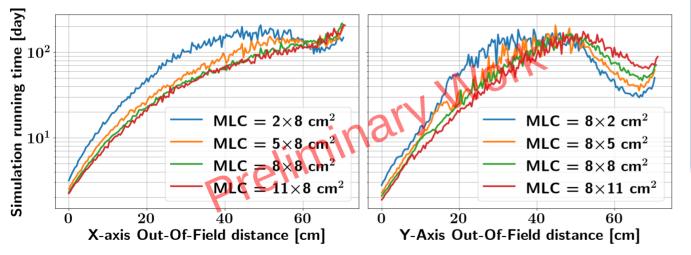
- Phase Space

- Ideal MLC

- Targeted error on OOF dose distribution: 5 %
- Number of photon to simulate
- Simulation running time on a voxelized image

Day number to achieve 5 % of statistical uncertainties as a function of the axis-distance for differents MLC apertures

Estimation of OOF calculation times


Simulation settings

- Phase Space

- Ideal MLC

- Number of photon to simulate
- Simulation running time on a voxelized image

For far OOF (~40 cm):

- $\sim 10^{11}$ photons to simulate
- 50 200 simulation days on one thread (i9-13950HX)

If targeted precision = 1 %

Running time ~ 25 times higher

MC simulations acceleration

10/12

Day number to achieve 5 % of statistical uncertainties as a function of the axis-distance for differents MLC apertures

Perspective: strategies for MC simulation acceleration

Particle generation

Virtual Source Model approach

- Several virtual sources:
 - Primary photons
 - Secondary photons Chetty et al 2000 Chabert et al 2016
- Faster but less precise

« Full » MC approach

- Precise but time consuming

Phase space before the MLC

Generative Adversarial Network (GAN) approach

- Particle generation with GAN
 - Trained on phase space data
- Faster but precision on low dose ?

Sarrut et al 2019

Perspective: strategies for MC simulation acceleration

« Full » MC approach

- Phase space before the MLC
- Precise but time consuming

Particle generation

Virtual Source Model approach

- Several virtual sources:
 - Primary photons
 - Secondary photons
 Chetty et al 2000
 Chabert et al 2016
- Faster but less precise

Generative Adversarial Network (GAN) approach

- Particle generation with GAN
 - Trained on phase space data
- Faster but precision on low dose ?

Sarrut et al 2019

Particle transportation

Biasing approach:

- Most of OOF events: Compton scattering
 - « Smart » suppresion of p.e. processes
 - Weighting by the event probability of occurence

Variance reduction but edge-effect ?

Selective Tracking Lenght Estimator (TLE) approach

- « Low » energy photons in the OOF regions:
 - Local photon energy deposition
- Variance reduction but realistic approximation ?

Smekens et al 2012

CONCLUSION

LySAIRI project:

- Deep learning models development
- Accurate MC datasets training

Development of MC simulations

- Elekta Versa HD in GATE 10
- Running time estimation for one image:
 - 50 200 days on one thread
 - Daily scale with the cc-in2p3

Acceleration strategies of MC simulations