CLINM : Nuclear data for particle therapy

AG du GdR Mi2B – 2023

L.Gesson, C.Reibel, C.Finck, N.Arbor, M.Vanstalle

01. Secondary particles in heavy ion therapy

Secondary particles in heavy ion therapy Secondary particles production

Radiotherapy X-rays therapy Ion beam therapy

Secondary particles in heavy ion therapy Secondary particles production

Secondary particles in heavy ion therapy Secondary particles production

Secondary particles measurement Radiolytic effects

Secondary particles measurement Radiolytic effects

Ionizing radiations

→ Deposite most of its energy in water (~ 65% of cells)

Secondary particles measurement Radiolytic effects

State of art

Discrepancies between simulation codes / hadronic models

Discrepancies between simulations code and experimental data

Need to improve nuclear models to understand better the secondary particles production

02. CLINM – Secondary particles measurements

Sections of Light Ion and Neutron Measurements

Sombined measurement of secondary particles and radiolysis effectiveness with radiochemistry team (IPHC)

Secondary charged particle identification + γ + neutrons of high energy measurement

Sections of Light Ion and Neutron Measurements

Dombined measurement of secondary particles and radiolysis effectiveness with radiochemistry team (IPHC)

Secondary charged particle identification + γ + neutrons of high energy measurement

ΔE-E telescope CeBr₃ crystal scintillator + plastic scintillator

CeBr₃ choice
Not only charged particles but also γ + neutrons
Time measurement
No intern radioactivity (unlike LaBr₃)
Energy resolution : 3.8keV
Short decay time : 19ns

Secondary particles measurement Calibration measurements

Facility	lon type	Energy
Cyrcé - Strasbourg	¹ H	16 - 25 MeV
CAL - Nice	¹ H	60 MeV
GSI - Darmstadt	¹² C	110 - 180 MeV/u
CNAO - Pavia	¹² C	120 - 200 MeV/u

AG du GdR Mi2B - 2023 - levana.gesson@iphc.cnrs.fr

AG du GdR Mi2B - 2023 - levana.gesson@iphc.cnrs.fr

At CNAO – Centro Nazionale di Adroterapia Oncologica, Pavia, Italy

Plastic : - 1200V CeBr₃ : + 350V

ΔE -E measurement

At CNAO – Centro Nazionale di Adroterapia Oncologica , Pavia, Italy

AG du GdR Mi2B - 2023 - levana.gesson@iphc.cnrs.fr

AG du GdR Mi2B - 2023 - levana.gesson@iphc.cnrs.fr

AG du GdR Mi2B - 2023 - levana.gesson@iphc.cnrs.fr

Comparison between different target thicknesses at 5°

Preliminary

Comparison between G4 simulation and experimental data 5cm target and 200MeV/u beam, at 5°

Comparison between G4 simulation and experimental data 5cm target and 200MeV/u beam, at 5°

Comparison between G4 simulation and experimental data 23cm target and 400MeV/u beam, at 0°

Comparison between G4 simulation and experimental data 23cm target and 400MeV/u beam, at 0°

Preliminary

Conclusion

CLINM project

- Secondary charged particle identification
- Calibration of the ΔE-E telescope detectors with protons and carbons
- First ΔE-E measurements at CNAO
- Z identifications and comparison with G4 simulations

Perspectives

- Implementation of data in simulation
- Comparison with radiolysis results
- Next beam time in spring 2024

Merci pour votre attention

Remerciements

Heavy Ion Therapy Research Integration

Institut Pluridisciplinaire Hubert CURIEN **CNAO** The National Center for Oncological Hadrontherapy

[1] Nymus 3D animations – part of the Demcon group

[2] Oliver Jäkel, Physical advantages of particles: protons and light ions, Published Online: 26 Sep 2019 - https://doi.org/10.1259/bjr.20190428

[3] https://news.emory.edu/features/2018/11/proton-therapy-center/index.html

[4] Cucinotta and Durante, Lancet Oncol. 2006

[5] Jakob et al., Proc. Natl. Acad. Sci. USA 2009; Nucl. Acids Res. 2011

[6] https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-11-242

[7] Dudouet, J. & Cussol, Daniel & Durand, D. & Labalme, M. (2013). Benchmarking GEANT4 nuclear models for carbon-therapy at 95 MeV/A. Physical Review C. 89. 10.1103/PhysRevC.89.054616.

[8] M. E. Wolf. Robust optimization in 4D treatment planning for carbon ion therapy of lung tumors. PhD thesis, Technische Universitä t, Darmstadt, November 2018. URL http://tuprints.ulb.tu-darmstadt.de/8354/

[9] University of Iowa health care - https://www.youtube.com/watch?v=nZ044EicYO4

[10] International Agency for Research on Cancer – World Health Organization

[11] D. Schardt, T. Elsasser, and D. Schulz-Ertner. Heavy-ion tumor therapy; Physical and radiobological benefits. Rev, Mod. Phys., 82(1):383, 2010.

[12] Seco, Joao, Daniel Robertson, Alexei Trofimov, et Harald Paganetti. « Breathing Interplay Effects during Proton Beam Scanning: Simulation and Statistical Analysis ». Physics in Medicine and Biology 54, no 14 (21 juillet 2009): N283-94.

[13] Reidel, C.-A., C. Schuy, Ch. Finck, F. Horst, D. Boscolo, J. Baudot, E. Spiriti, et al. « Response of the Mimosa-28 Pixel Sensor to a Wide Range of Ion Species and Energies ». Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1017 (novembre 2021): 165807.

[14] Sarikaya, Ismet. « Biology of Cancer and PET Imaging: Pictorial Review ». Journal of Nuclear Medicine Technology 50, no 2 (juin 2022): 81-89.

[15] Sarrut D, Bardiès M, Boussion N, et al. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys. 2014;41(6):064301.

[16] Mein S, Tessonnier T, Kopp B, Harrabi S, Abdollahi A, Debus J, Haberer T, Mairani A. Spot-Scanning Hadron Arc (SHArc) Therapy: A Study With Light and Heavy Ions. Adv Radiat Oncol. 2021 Feb 4;6(3):100661. doi: 10.1016/j.adro.2021.100661. PMID: 33817410; PMCID: PMC8010580.

[17] Haettner, Emma & Iwase, Hiroshi & Krämer, M & Kraft, G & Schardt, Dieter. (2013). Experimental study of nuclear fragmentation of 200 and 400 MeV/u C-12 ions in water for applications in particle therapy. Physics in medicine and biology. 58. 8265-8279. 10.1088/0031-9155/58/23/8265.