

Le 05.10.2023

Imagerie à temps-de-vol pour l'imagerie des gamma prompts en protonthérapie

Plan

01 Contexte

02 Projet PGTI

03 Résultats

04 Perspectives

Hadronthérapie

Répartition de la dose en fonction de la profondeur de l'eau pour divers faisceaux de rayonnement clinique

Source : Kaiser, A. et al. Proton Therapy Delivery and Its Clinical Application in Select Solid Tumor Malignancies. J. Vis. Exp. (144), e58372, doi:10.3791/58372 (2019).

Hadronthérapie

Forme de **radiothérapie** se basant sur l'utilisation de protons ou noyaux légers (carbone)

Dépôt de dose

Énergie déposée par les particules ionisantes engendrant la destruction des cellules tumorales. La zone maximale du dépôt de dose pour les hadrons est appelée **Pic de Bragg**

La physique des protons + Gamma Prompts

- > Diffusions coulombiennes inélastiques
- > Diffusions coulombiennes élastiques
- >Bremsstrahlung
- >Réactions nucléaires inélastiques

La physique des protons + Gamma Prompts

- > Diffusion coulombiennes inélastiques
- > Diffusion coulombiennes élastiques
- >Bremsstrahlung
- Réactions nucléaires inélastiques
 - Émission secondaire de Gamma Prompt (GP)
 - Quasi instantanée (< 1 ps)

Projet PGTI (Prompt Gamma Time Imaging)

Objectifs :

Utilisation des gamma prompts pour traquer le parcours des protons

- Développement de 30 détecteurs (PbF₂ + SiPM)
- Un moniteur de faisceau

Répartition des tâches

- Détecteur expérimental (LPSC)
- Tests au CAL (centre de protonthérapie)
- Reconstruction et simulation Monte Carlo sur Geant4 (imXgam)

Projet PGTI (Prompt Gamma Time Imaging)

Objectif:

Suivi en temps réel des traitements de **protonthérapie**

⇒ Reconstruction des positions d'émission des gamma prompt (GP) sur le parcours des protons

Résolution temporelle visée : 100 ps

Pour 1 proton :
$$TOF_{mesure} = t_{stop} - t_{start} = TOF_{theorique} = T_{proton}(r_v, v_{proton}) + T_{GP}(r_v)$$

Projet PGTI (Prompt Gamma Time Imaging)

 $TOF_{mesure} = t_{stop} - t_{start} = TOF_{theorigue} = T_{proton}(r_v, v_{proton})$

 $TOF_{mesure} = t_{stop} - t_{start} = TOF_{theorique} = T_{protons}(r_v, v_{protons})$

Objectif:

Suivi en temps réel des traitements de **protonthérapie**

⇒ Reconstruction des positions d'émission des gamma prompt (GP) sur le parcours des protons

Résolution temporelle visée : 100 ps

 $+T_{GP}(r_v)$

 $+T_{GP}(r_v)$

Pour plusieurs protons :

Algorithme

Problème inverse :

Minimisation de la fonction coût :

$$C(\mathbf{r}_{v}, \mathbf{v}_{protons}) = \frac{1}{2\sigma^{2}} \|\mathbf{TOF}_{mesuré} - \mathbf{TOF}_{théorique}(\mathbf{r}_{v}, \mathbf{v}_{protons})\|^{2}$$

- $\mathbf{r}_{\mathbf{v}} = (r_1, ..., r_N)$ vecteur de l'ensemble des positions des vertex (émission des GP)
- * $\mathbf{v}_{protons} = (v_1, ..., v_M)$ profil de vitesse moyen des protons
- $TOF_{mesuré} = (t_1, ..., t_N)$ vecteur de tous les temps-de-vol mesurés
- N nombre d'évènements
- M nombre de bins du profil de vitesse
- Input : Temps-de-vol (TOF) des protons et des gamma prompts
- **Output** : Positions des vertex et profil de vitesse moyen des protons
- Garantie théorique de convergence vers la bonne solution en utilisant un algorithme itératif

Dispositifs de détection

Scintillateur plastique Dimensions : 1x25x25 mm³ 16 SiPM

Moniteur de faisceau

Radiateur Tcherenkov

Dimensions : 1.5x1.5x1.5 cm³ (PbF₂) 4 SiPM Hamamatsu (6x6 mm²) 10

Détecteur TIARA

Simulation GEANT4

- Faisceau ponctuel de 148 MeV de protons dirigé selon l'axe x
- Moniteur de faisceau placé sur l'axe de propagation du faisceau de protons
- Fantôme au centre de la simulation
- 30 détecteurs de PbF₂ placés tout autour du fantôme

Résultats

- Fantôme : sphère d'eau de 20 cm
- 16 000 000 de protons (148 MeV) envoyés (détection de 3 GP pour 10 000 protons)

Résultats: Profil de vitesse

13

Algorithme : Validation

Données analytiques

Résultats : Fantôme Anthropomorphique

- Changement du fantôme utilisé : sphère d'eau → fantôme anthropomorphique
- Pre-processing de l'image dans python pour pouvoir l'intégrer dans Geant4
- Implémentation des matériaux dans la simulation

15

Movenne par slice

<u>**Résultats : Fantôme Anthropomorphique</u>**</u>

- Fantôme : Fantôme anthropomorphique
- 1.4 millions de protons (148 MeV) envoyés

<u>**Résultats : Fantôme Anthropomorphique</u>**</u>

- Fantôme : Fantôme anthropomorphique
- 1.4 millions de protons (148 MeV) envoyés

Perspectives

 Faire une simulation comparable aux tests au CAL ⇒ Intégration du fantôme du CAL dans la simulation et des caractéristiques du faisceau test

Etapes:

- Lire les données CT
- Les rendre lisible par Geant4
- Simuler tous les faisceaux du plan d'irradiation

Merci pour votre attention

19

Postdoc position (2-years) at LPSC, Grenoble

Development of a novel technique for TOF-based proton imaging

within the Prompt Gamma Time Imaging project

Info: sara.marcatili@lpsc.in2p3.fr

21

Résultats : Fantôme Anthropomorphique

- Changement du fantôme utilisé : sphère d'eau → fantôme anthropomorphique
- Pre-processing de l'image dans python pour pouvoir l'intégrer dans Geant4
- Implémentation des matériaux dans la simulation

22

Perspectives

 Faire une simulation comparable aux tests au CAL ⇒ Intégration du fantôme du CAL dans la simulation et des caractéristiques du faisceau test

Fantôme (données DICOM)

Fantôme (après processing sur python)

Résultats : Fantôme Anthropomorphique

Adaptation de la simulation pour ne considérer que le profil de vitesse des protons qui ont **émis un gamma prompt**

Résultats : Fantôme Anthropomorphique

Adaptation de la simulation pour ne considérer que le profil de vitesse des protons qui ont émis un gamma prompt

Objectifs

- Prochaines étapes
 - Calibration de la simulation pour pouvoir reproduire les tests fait en centre de protonthérapie (fantôme + faisceau)

26

 Implémentation du système optique dans les détecteurs + ajout des SiPM

Résultats

- Fantôme : sphère d'eau de 15 cm
- 16 000 000 de protons (148 MeV) envoyés

Résultats: Profil de vitesse

Alicia Garnier