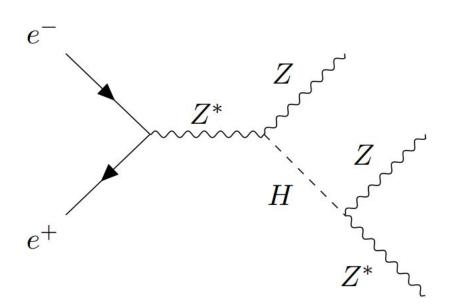

First look at Higgs' width uncertainty in H(ZZ*) final state (FCC-ee simulations)

Inès Combes, supervised by Nicolas Morange (IJCLab) 07.07.2023

Reminder : Higgs factory for $\sqrt{s} = 240 {\rm GeV}$

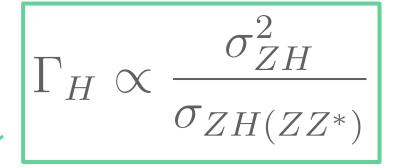


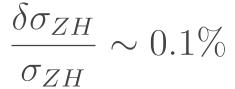

 $N_{expected~ZH~events} \sim 10^6$ for a luminosity of 5 ab-1 at FCC-ee

$$\sigma_{
m ZH} \propto {
m g}_Z^2$$

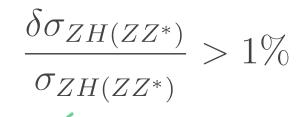
=> **direct** measurement of ZH cross section in electron-positron collider (access to **recoil mass**)

Specific decay of the Higgs: H(ZZ*)

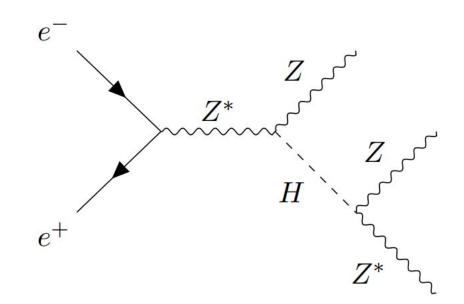



 $N_{\text{expected }ZH(ZZ^*) \text{ events}} \sim 25000$

•
$$\sigma_{ZH(ZZ^*)} \propto \frac{\mathrm{g}_Z^4}{\Gamma_H}$$


Link between Higgs' width and ZH,ZZZ cross section

Higgs' width measurement and its uncertainty



ZH(ZZ*) - Different final states

$$\mathrm{BR}(Z \to \mathrm{ee}/\mu\mu) \sim 6.7\%$$

 $\mathrm{BR}(Z \to \mathrm{qq}) \sim 70\%$
 $\mathrm{BR}(Z \to \nu\nu) \sim 20\%$

- Fully hadronic final states => more statistics but complicated combinatorics
- Fully **leptonic** => **fewer** statistics
- Mixes of leptons and/or neutrinos and/or jets => better balance

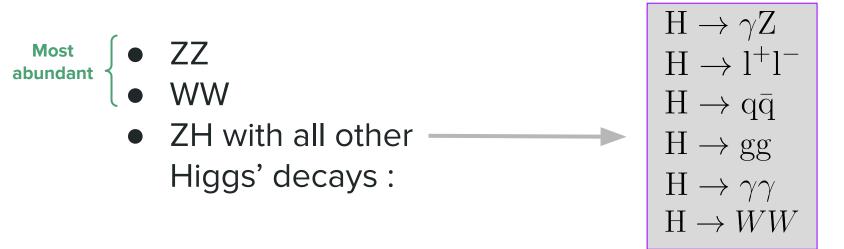
3 (so far) combinations of a pair of leptons, pair of jets and pair of neutrinos

Choice

Plan

I - Mixed final states with a pair of neutrinos/leptons/jets

- 1 Common features and background processes
- 2 Details of the analysis on $ZH,Z(II)Z(vv)Z^*(jj)$ final state
- 3 Overview on ZH, Z(II)Z(jj)Z*(vv)
- 4 Overview on ZH, Z(vv)Z(II)Z*(jj)
- 5 Fit and uncertainty on the Higgs width


II - Influence of degradation of neutral hadrons energy resolution

I - Mixed final states

1 - Common features and corresponding analysis steps before any selections

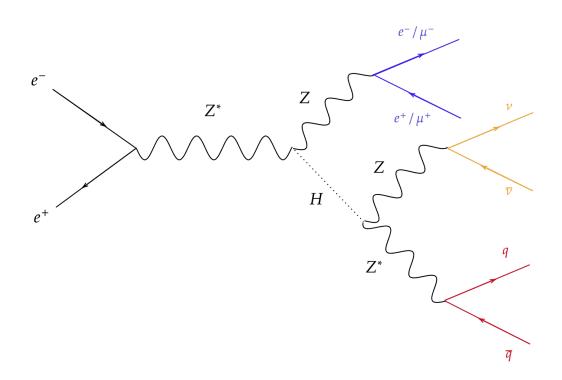
- Pair of (high momentum) leptons coming from one on shell Z
 - => selection of leptons with **25**<**p**<**80GeV**, and filter to have a **preselection** of events having only **one leptonic Z candidate**, reconstructed by taking the lepton pair with the dilepton mass closest to the Z mass (**resonance builder** function)
- Pair of jets (coming from either the on shell or off shell Z of the Higgs)
 - => Jet reconstruction with **Durham-kt** algorithm in the FCC Analysis framework, njets mode with **njets** = **2**
- Pair of neutrinos
 - => extraction of missing energy, missing transverse energy, missing z-momentum

1 - Backgrounds for ZH(ZZ*)

Expected number of signal and background

Number of events for $L = 5ab^{-1}$									
H(ZZ)	ZZ	WW	H(WW)	H(bb)	$H(\tau\tau)$	H(other)			
$\sim 26 400$	$\sim 6.8 \ 10^6$	$\sim 82 \ 10^6$	$\sim 215~000$	$\sim 577~000$	$\sim 63\ 200$	$\sim 90\ 000$			

Recap: main steps of the analysis


- Common preselection (stages 1 and 2 of fccanalysis framework, same for the three channels)
- Selections, specific to each channel (final)
- Generation of **histograms** and plots (*final and plots*)
- **Fit** with COMBINE

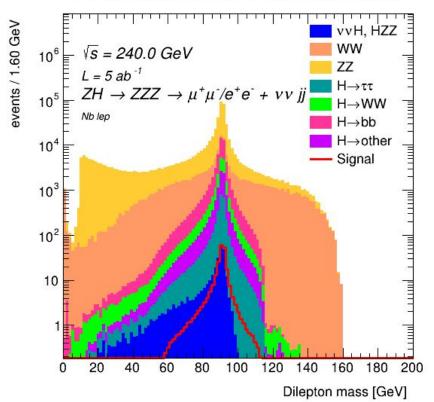
Ready to look at the three channels:

- details on ZH, Z(II)Z(vv)Z*(jj) channel
- overview of the two others
- Combine result for the three channels together

2 - ZH, Z(II)Z(vv)Z*(jj) final state

2 - ZH, Z(II)Z(vv)Z*(jj) Feynman diagram and signature

Signature:

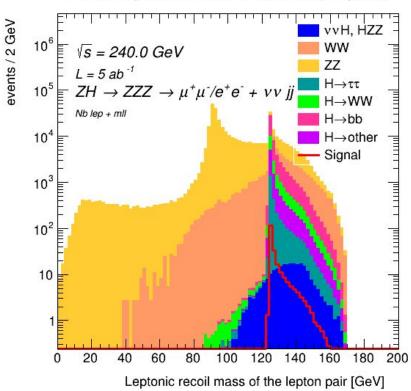

- dilepton mass around the Z mass
- leptonic recoil around Higgs mass
- high missing energy
- dijet mass around 30 GeV

Cut on dilepton mass

$$m_{ll} \in [70; 105] \text{GeV}$$

Most reduced backgrounds:

- ZZ
- WW

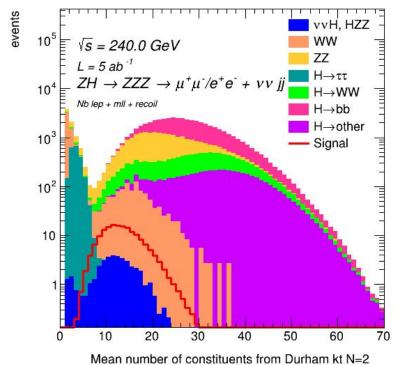


Cut on leptonic **recoil** mass

$$123 < m_{rec} < 130 \text{ GeV}$$

Most reduced backgrounds:

- ZZ
- WW

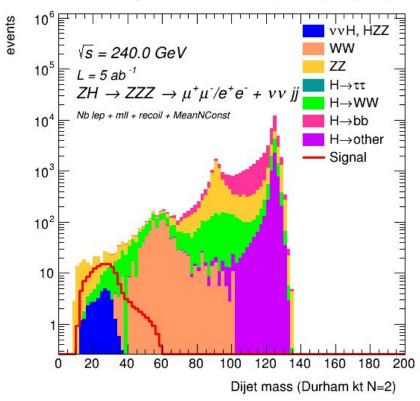


Cut on the **mean number of constituents per jet** reconstructed by Durham kt njets = 2

$$N_{\text{constituents per jet}}^{\text{mean}} > 7$$

Most reduced backgrounds:

- Htautau
- (WW*)

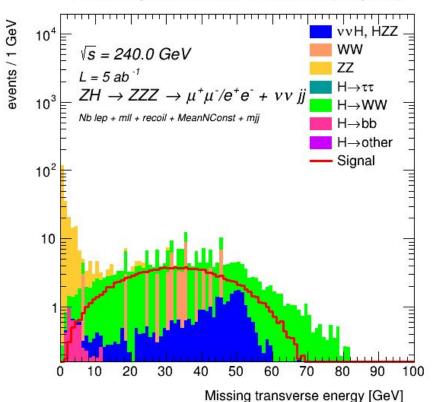


Cut on the dijet mass

$$10 < m_{jj} < 45 \text{ GeV}$$

Most reduced backgrounds:

- H(qq)
- **ZZ**
- WW



Cut on the missing transverse energy

$$E_T^{miss} > 8 \text{ GeV}$$

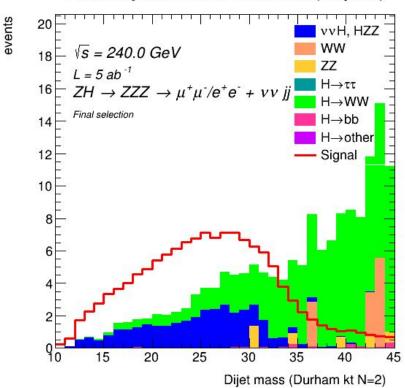
Most reduced background:

- ZZ

2 - ZH, $Z(II)Z(VV)Z^*(jj)$ - Cutflow

Number of events for $L = 5ab^{-1}$							
Selection	H(ZZ)	ZZ	WW	H(WW)	H(bb)	$H(\tau\tau)$	H(other)
No cut (one Z(ll))	229	450664	84592	13270	36466	3674	7114
$N_{\text{selected leptons}} = 2$	229	427481	84037	9942	34808	2806	7086
$70 < m_{ll} < 105 \text{ GeV}$	221	303820	34760	9528	33580	2695	6842
$123 < m_{rec} < 130 \text{ GeV}$	168	16552	5088	7204	25497	2023	5186
$N_{ m jet~const~Durham~N=2}^{mean} > 7$	155	14955	1065	6930	25497	1	5127
$10 < m_{jj} < 45 \text{ GeV}$	145	218	46	176	4	0	0
$E_T^{miss} > 8 \text{ GeV}$	141	12	43	170	1	0	0
$p_{jj} < 40 \text{ GeV}$	129	4	10	106	1	0	0

Most reduced background(s)

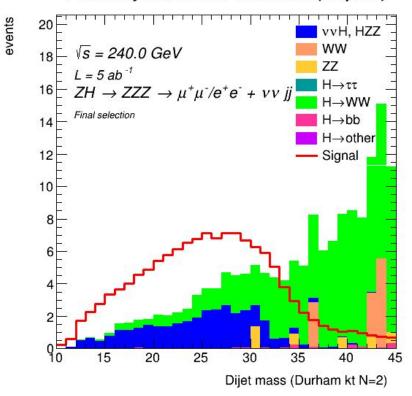

$$S = 129 \qquad \frac{S}{\sqrt{B}} \sim 11.7 \qquad \frac{S}{B} \sim 1.06$$

$$\frac{S}{B} \sim 1.06$$

$$S_{\rm efficiency} \sim 0.56$$

 $B_{\rm efficiency} \sim 2.0 \ 10^{-4}$

2 - ZH, $Z(II)Z(vv)Z^*(jj)$ - Fit on dijet mass


FCCAnalyses: FCC-ee Simulation (Delphes)

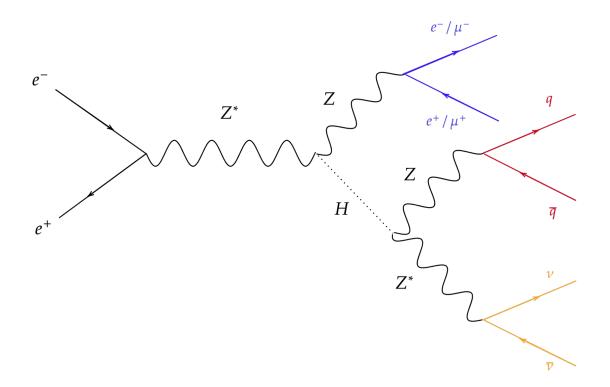
Dominant background after selections : ZH,H(WW*) => remaining H(WW*) events : $H(WW^* \to \tau \nu_{\tau} jj)$ with low momentum tau lepton

2 - ZH, $Z(II)Z(vv)Z^*(jj)$ - Fit on dijet mass

FCCAnalyses: FCC-ee Simulation (Delphes)

Fit results (uncertainty on H(ZZ*) cross section)

$$r = 1 \pm 0.090$$


$$\sim 9\%$$
 uncertainty

Included systematics:

- H(WW*) normalisation : 5%
- ZZ normalisation : 10%

3 - ZH, $Z(II)Z(jj)Z^*(vv)$ final state

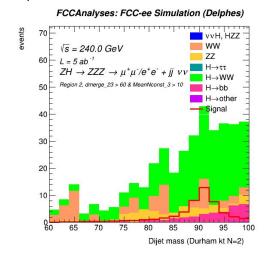
3 - ZH, Z(II)Z(jj)Z*(vv) Feynman diagram and signature

Signature:

- dilepton mass around the Z mass
- leptonic recoil around Higgs mass
- dijet mass around the Z mass
- missing energy around 30 GeV

3 - Fit result on the dijet mass for the 2 regions of ZH, $Z(II)Z(jj)Z^*(vv)$

Fit results (uncertainty on H(ZZ*) cross section)

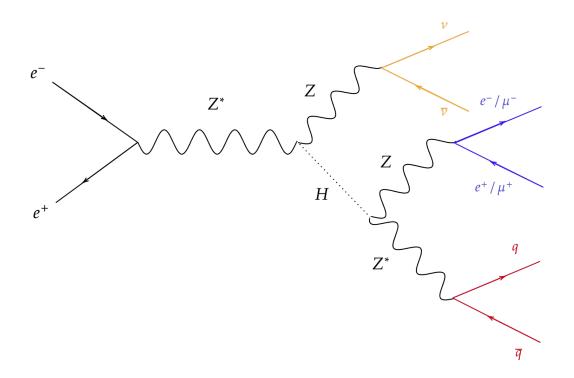

FCCAnalyses: FCC-ee Simulation (Delphes) 35 $\sqrt{s} = 240.0 \text{ GeV}$ ZZ $ZH \rightarrow ZZZ \rightarrow \mu^+\mu^-/e^+e^- + jj \ vv$ Region 1. dmerge_23 < 60 H \rightarrow ththe H \rightarrow the Signal 10 11

events

$$r = 1 \pm 0.17$$

 $\sim 17\%$ uncertainty

Included systematics :

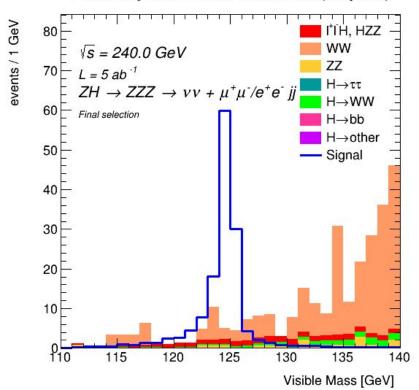

H(WW*) normalisation : 5%

Dijet mass (Durham kt N=2)

ZZ normalisation: 10%

4 - ZH, Z(vv)Z(II)Z*(jj) final state

4 - ZH, Z(vv)Z(II)Z*(jj) Feynman diagram and signature



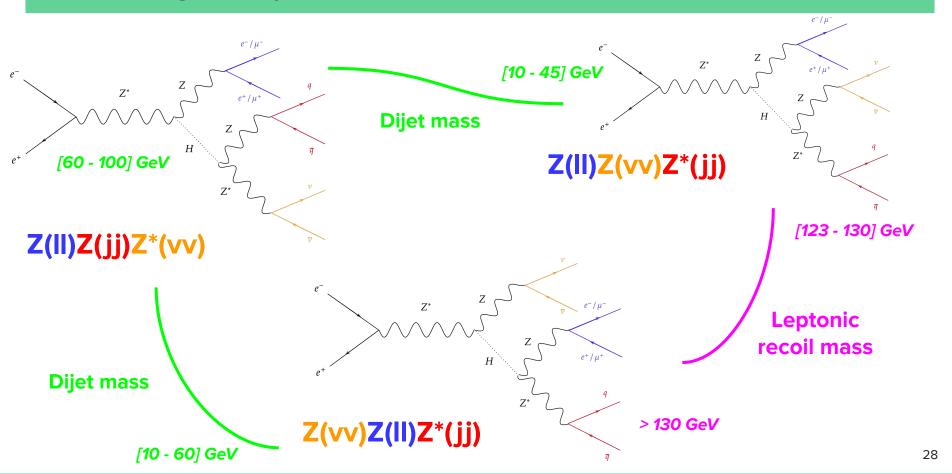
Signature:


- high missing energy
- visible mass around the Higgs mass
- dilepton mass around the Z mass
- dijet mass around 30 GeV

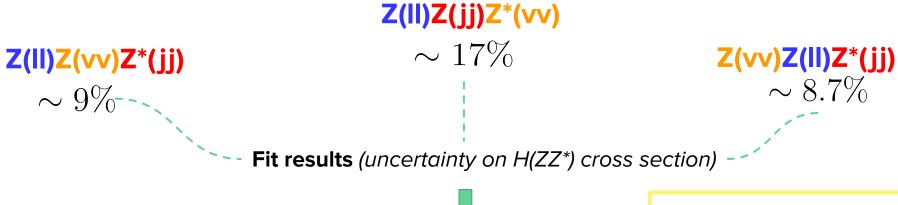
4 - ZH, Z(vv)Z(II)Z*(jj) - Fit on visible mass

FCCAnalyses: FCC-ee Simulation (Delphes)

Fit results (uncertainty on H(ZZ*) cross section)


 $\sim 8.7\%$ uncertainty

Included systematics:


- H(WW*) normalisation : 5%
- ZZ normalisation : 10%

5 - Complete fit and Higgs width uncertainty

5 - Orthogonality of selections

5 - Fit with the 3 channels

So far, final result for the width uncertainty:

$$\frac{\delta \sigma_{ZH(ZZ^*)}}{\sigma_{ZH(ZZ^*)}} \sim \frac{\delta \Gamma_H}{\Gamma_H} \sim 6.6\%$$

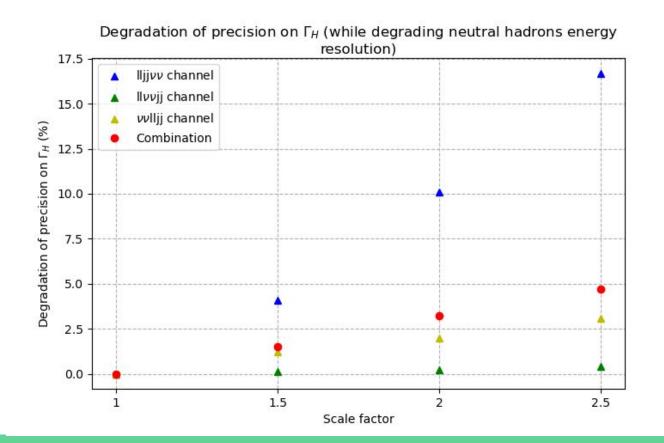

 $r = 1 \pm 0.066$

Included systematics:

- H(WW*) normalisation : 5%
- ZZ normalisation : 10%

II - Degradation of neutral hadrons energy resolution

Influence of **neutral hadron energy resolution** (1)


IDEA concept detector

Neutral hadron energy resolution :

 $\frac{30\%}{\sqrt{E}}$

Small influence of degradation on Higgs' width uncertainty! (combination, red dots)

Influence of **neutral hadron energy resolution** (2)

Loss of 5% in precision for the combination for a scale factor of 2.5

Neutral hadron energy resolution does **not** have **a big effect on Higgs' width measurement!**

Conclusion

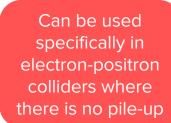
- A bit more than **6%** uncertainty on the Higgs' width with 3 mixed channels
- Low impact of neutral hadron energy resolution on Higgs' width measurement
- Study of H(4j) final state => hard to handle but really interesting case

What could be coming next?

- Adding other mixed channel
- Optimising selections with a BDT
- Trying other H(4j) channels

Backup

1 - Exclusive Durham kt algorithm for jet reconstruction

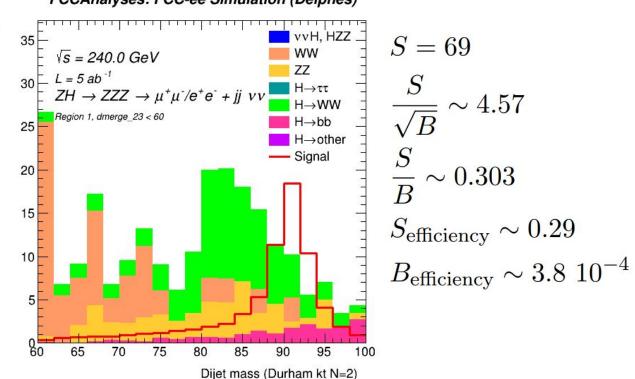

=> Principle: going backwards in the history/evolution of the jets

Steps followed by the algorithm in **njets mode**:

Compute dij for each pair of particles

$$d_{ij} = 2\min(E_i^2, E_j^2)(1 - \cos \theta_{ij})$$

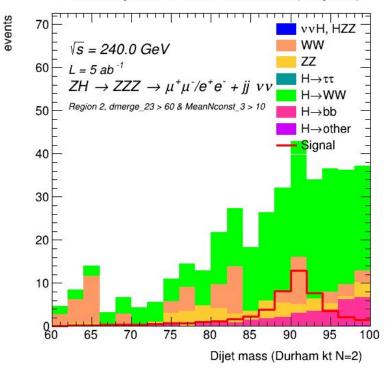
- Recombine the pair ij having the smallest dij
- Compute again dij for each pair (the ij pair from the previous step counts now as one particle, one jet)
- Stops when every particle has been clustered in one of the njets


3 - ZH, Z(II)Z(jj)Z*(vv) - Cutflow

Number of events for $L = 5ab^{-1}$							
Selection	H(ZZ)	ZZ	WW	H(WW)	H(bb)	H(au au)	H(other)
No cut (one Z(ll))	237	450664	84592	13270	36466	3674	7114
$N_{\text{selected leptons}} = 2$	236	427481	84037	9942	34808	2806	7086
$81 < m_{ll} < 101 \text{ GeV}$	213	271292	20160	8857	31289	2500	6370
$124 < m_{rec} < 138 \text{ GeV}$	198	22026	6981	8224	29088	2318	5922
$N_{\rm jet\ const\ Durham\ N=2}^{mean} > 8$	197	19907	1315	7880	29087	0	5848
$60 < m_{jj} < 100 \text{ GeV}$	178	9192	617	1655	2474	0	58
$ \cos(\theta_{miss}) < 0.93$	165	688	604	1515	2090	0	26
min angle $\frac{\text{miss}}{\text{jet}} > 0.4$	156	580	576	1420	577	0	6
$N_{\text{leptons with }p>2}=2$	132	145	499	612	52	0	0
$5 < E^{miss} < 45 \text{ GeV}$	126	100	296	537	51	0	0
$d_{12} > 2000$	121	86	184	448	48	0	0
Region 1 : $d_{23} < 60$	69	46	76	89	17	0	0
Region 2 : $d_{23} > 60$ and	49	37	68	260	31	0	0
$N_{ m jet~const~Durham~N=3}^{mean} > 10$							

3 - ZH, Z(II)Z(jj)Z*(vv) REGION 1 - Recap after selection

FCCAnalyses: FCC-ee Simulation (Delphes)


events

=> Region enriched in signal, cut on d23 used to reduce $H(WW^*)$ => remaining H(WW*) events: $H(WW^* \to jj\tau\nu_{\tau})$ with low momentum tau lepton

3 - ZH, Z(II)Z(jj)Z*(vv) REGION 2 - Recap after selection

FCCAnalyses: FCC-ee Simulation (Delphes)

$$S = 49$$

$$\frac{S}{\sqrt{B}} \sim 2.46$$

$$\frac{S}{B} \sim 0.124$$

$$S_{\text{efficiency}} \sim 0.21$$

$$B_{\text{efficiency}} \sim 6.6 \ 10^{-4}$$

=> Region 2 : not very good S/B ratios, but useful to perform the fit combined with the enriched region

4 - ZH, Z(vv)Z(II)Z*(jj) final state - Cutflow

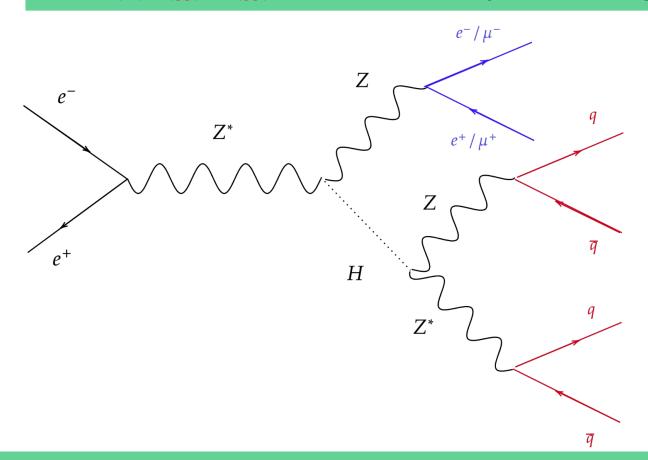
Number of events for $L = 5ab^{-1}$												
Selection	H(ZZ)	ZZ	WW	H(WW)	H(bb)	$H(\tau\tau)$	H(other)					
No cut (one Z(ll))	245	450664	84592	13270	36466	3674	7114					
$N_{\text{selected leptons}} = 2$	245	427481	84037	9942	34808	2806	7086					
$25 < E^{miss} < 75 \text{ GeV}$	236	51853	62778	2424	2074	1678	84					
$110 < m_{vis} < 140 \text{ GeV}$	234	3170	19185	235	235	360	8					
$10 < m_{jj} < 60 \text{ GeV}$	232	2254	5577	202	10	341	4					
$N_{\rm jet~const~Durham~N=2}^{mean} > 5$	228	183	1447	66	10	0	0					
$70 < m_{ll} < 100 \text{ GeV}$	206	120	238	62	2	0	0					
$E_T^{miss} > 10 \text{ GeV}$	202	23	238	61	1	0	0					
$m_{rec} > 130 \text{ GeV}$	143	14	227	17	0	0	0					

$$S = 143 \qquad \frac{S}{\sqrt{B}} \sim 8.90 \qquad \frac{S}{B} \sim 0.55$$

$$\frac{S}{B} \sim 0.55$$

$$S_{\rm efficiency} \sim 0.58$$

 $B_{\rm efficiency} \sim 4.3 \ 10^{-3}$


Not optimal here because of the large cut on the dilepton mass => but useful to have more statistics and a better fit

Higgs in 4 jets final state

Difference in the analysis steps before any selections

- Pair of (high momentum) leptons coming from one on shell Z
 - => selection of leptons with **25**<**p**<**80GeV**, and filter to have a **preselection** of events having only **one leptonic Z candidate**, reconstructed by taking the lepton pair with the dilepton mass closest to the Z mass (**resonance builder** function)
- Pair of jets (coming from either the on shell or off shell Z of the Higgs)
 - => Jet reconstruction with **Durham-kt** algorithm in the FCC Analysis framework, njets mode with **njets** = **4**
 - => Function (resonance builder) **picking the pair of jets** with the dijet mass closest to the **Z mass** (and building its 4-vector), and building the off-shell Z from the leftover jets

ZH, Z(II)Z(jj)Z*(jj) final state - Feynman diagram and **signature**

Signature:

- leptonic mass around the Z mass
- leptonic recoil around Higgs mass
- A pair of jets with a dijet mass around the Z mass
- The invariant mass of the 4 jets around the Higgs mass
- No missing energy

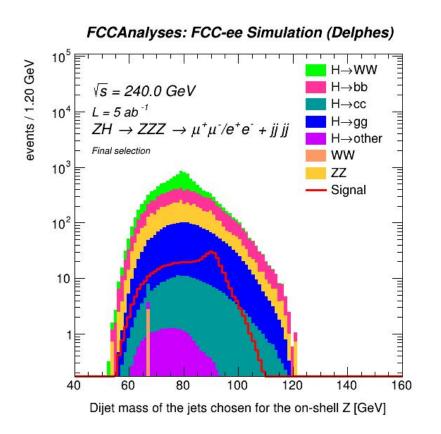
ZH, Z(II)Z(jj)Z*(jj) - Cutflow

Number of events for $L = 5ab^{-1}$												
Selection	H(ZZ)	ZZ	WW	H(WW)	H(bb)	H(cc)	H(gg)	H(other)				
No cut (one Z(ll))	801	419933	17753	12648	36443	1808	5119	2821				
$N_{\text{selected leptons}} = 2$	798	408700	17515	9784	34786	1791	5115	2320				
$81 < m_{ll} < 101 \text{ GeV}$	717	260722	3558	8734	31289	1611	4602	2058				
$124 < m_{rec} < 140 \text{ GeV}$	680	23358	1775	8279	29683	1530	4368	1945				
$E_T^{miss} < 13 \text{ GeV}$	664	22045	73	5824	25797	1460	4348	634				
$p_{\rm z, \ miss} < 15 {\rm \ GeV}$	659	16314	49	5651	25255	1443	4321	566				
$110 < m_{jjjj} < 138 \text{ GeV}$	638	9051	8	5205	22927	1392	4259	208				
$d_{34} > 60$	535	2840	8	4604	3930	231	2003	23				

Number of signal events left after selections:

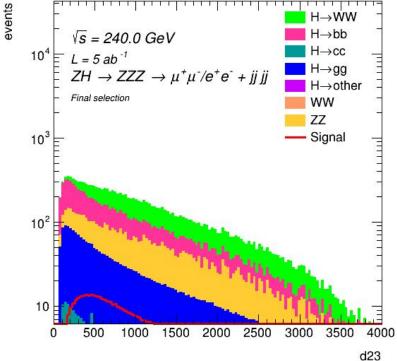
$$S = 535$$

$$\frac{S}{\sqrt{B}} \sim 4.58$$


$$\frac{S}{B} \sim 0.039$$

$$S_{\rm efficiency} \sim 0.67$$

 $B_{\rm efficiency} \sim 0.027$


$$B_{\rm efficiency} \sim 0.027$$

Bad signal over background ratio ? => why is it hard to get a better one?

Plots after selections

FCCAnalyses: FCC-ee Simulation (Delphes) H→bb $\sqrt{s} = 240.0 \text{ GeV}$ H→cc $L = 5 ab^{-1}$ H→gg $ZH \rightarrow ZZZ \rightarrow \mu^{+}\mu^{-}/e^{+}e^{-} + jj jj$ H→other Final selection

44

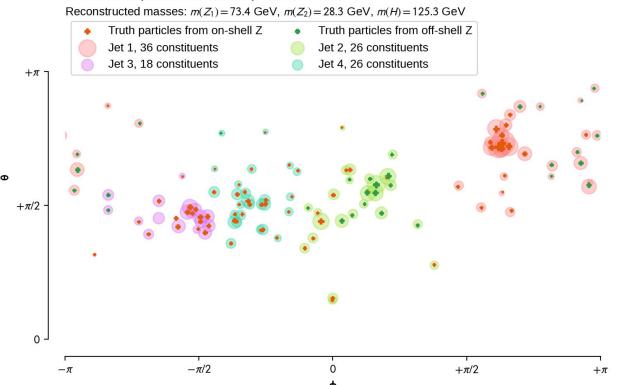
Problem 1: confusion between jets constituents for signal

Kinematic constraints => Higgs, and its decay (the two Zs) is almost **not boosted**

Particles from the 4 jets are mixed

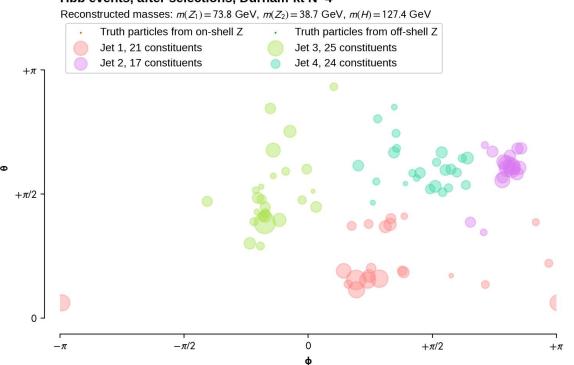
=> Confusion even at truth level for signal

Jet algorithm struggles to reconstruct the 4 jets correctly, and so the Zs


Bad dijet mass resolution

=> hard to reduce **H(WW*)** background (expected to be the dominant one after selections)

Confusion of the particles from the 2 Zs at the truth-level for signal



Bad association (of the jet algorithm) between the truth particles of the Zs and the reconstructed jets constituents

Problem 2: H(qq) background with 4-jets topology

Hbb events, after selections, Durham-kt N=4

Around **50 times** more H(bb) events than signal events (H(4j)) before cuts

After selection, still a lot of H(bb) events, having a **4 jets-events topology** (signal topology)

Conclusion on Z(II)Z(jj)Z*(jj)

