

Higgs self-coupling measurement at FCC-ee

Louis Portalès Jamboree FCC / Future colliders - APC 07/07/2023

The Higgs boson self coupling

The Standard Model predicts self-interaction for the Higgs boson

- → *Unique property of the Higgs boson!* Other SM interactions change particle identities
- → Appears in the Higgs potential:

\rightarrow Critical to the understanding of the past and future of our universe

- SM: $\lambda=rac{m_h^2}{2
 u^2}$, with already strong experimental constraints on m_h
- Deviations from the SM value required for a *first-order electroweak* phase transition
 - → Would provide an explanation for matter/anti-matter asymmetry !
 - ightarrow Requires high precision (~10%) on λ
- BSM values of λ could also *insure stability of the vacuum*
 - → SM at the edge of stable/meta-stable !

Measuring λ at the (HL-)LHC

Direct access to self-coupling through di-Higgs production

→ Rare process:

•

$$\begin{cases} \sigma_{\rm SM}^{\rm NNLO}(\rm ggF-HH) = 31.1 \ fb \\ \sigma_{\rm SM}^{\rm N^3LO}(\rm VBF-HH) = 1.73 \ fb \end{cases}$$

→ Experimentally challenging

 $\sqrt{s} = 13 \text{ TeV}$:

• Complex final state topologies to identify in busy collision environment

3/10

κλ

Measuring λ at FCC-ee

At FCC-ee, things will look much different

→ Two relevant datasets

- "ZH" run @ 240 GeV: ~2 million ZH events, ~40k VBF-H events w/ 4IP (10 ab⁻¹)
- "ttbar" run @ 365 GeV: ~500k ZH events, ~100k VBF-H events w/ 4 IP(3 ab⁻¹)
- → Below the requirement for HHZ production
 - No direct access to λ
- → BUT large ZH (@240 GeV) and VBF-H (@365 GeV) cross-sections

Can be probed in exclusive analyses targeting the specific Higgs decays

Can be probed in inclusive analysis (@ 2 CoM energies)

Inclusive λ measurement

Clean e⁺e[−] collision environment allows for fully inclusive study of ZH production

- → *Recoil technique:* Higgs boson mass can be inferred from Z boson kinematics and CoM energy
 - $M_{\rm rec.}^2 = s 2E_Z\sqrt{s} + M_Z^2$
 - Probed in different Z boson decay channels: $\mu^{+}\mu^{-}$, $e^{+}e^{-}$, $q\overline{q}$
- → Analysis setup:
 - Spring 2021 samples (older baseline w/ IDEA detector)
 → to be updated!
- → Categorization tuned for the two energy points (240, 365 GeV)
 - 18 orthogonal categories
 - \rightarrow 2x2 Z(ee/µµ)H categories *similar to mass & xsec analysis*
 - → 2x6 Z(qq)H categories *per qq flavor*
 - → Additional eeH(→bb) & vvH(bb) categories @ 365 GeV

Inclusive λ measurement – ZH selection

Ge/

8 2500

\$ 2000

1500

1000

500

\rightarrow Similar selection as inclusive mH/xsec analysis for Z \rightarrow ee/µµ $\frac{2}{8}$

- SF-OS lepton pair
- 86<m_{2lep}<96 GeV
- 20 <p_T^{2lep}<70 GeV (>70GeV @365GeV)
- |cos(θ_{miss})|<0.98

\rightarrow Tuned selection for $Z \rightarrow qq$

- 6 flavor categories (bb,cc,ll,bc,bl,cl)
 - \rightarrow Assuming ad-hoc tagging efficiencies:

	b jet	c jet	l jet	g jet
b tag	0.80	0.08	0.01	0.01
c tag	0.10	0.60	0.01	0.03
l tag	-	-	0.80	-

- \rightarrow Dedicated Z \rightarrow cc optimisation ongoing (@BNL)
- 86 < m_{qq} < 96 GeV, 120 < M_{rec} < 140 GeV
- |cos(θ_{miss})|< 0.90
- → BDT used for selection
 - One per flavor category
 - \rightarrow Using only Z \rightarrow qq kinematics

Inclusive λ measurement– VBF selection

→ Recoil mass not sufficient to properly isolate a Higgs peak in VBF

- Instead, looked at VBF H→bb
 - → Exclusive measurement, some model-dependance introduced
- → Defining selection adapted to VBF
 - No μμ pair reconstructed (ννΗ: no ee pair either)
 - 2 b-tagged jets
 - $H_T > 20 \text{ GeV}, |\Delta \eta_{bb}| < 3 (vvH: + \text{MET} > 20 \text{ GeV})$
 - $|M_{ee} M_Z| >= 6 \text{ GeV (eeH)}$
 - | M_{qq} M_H | <= 30 GeV (ννΗ)

\rightarrow Still using Mrec as template variable for the fit

• Cutting on BDT discriminants, using (b-)jet kinematics and multiplicity as inputs

7/10

Inclusive λ measurement – combined fit

- → Measuring cross-section & coupling modifier
 - Parametrised cross-section as a function of κ_{λ}
 - Fitting all categories (ZH + VBF) together
- → Assuming:
 - 0.1% luminosity uncertainty
 - 1% selection efficiency uncertainty
 - 2.8 MeV uncertainty on CoM energy
 - m_h = 125.38 +/- 0.14 GeV (latest CMS result)
 - Higgs decay BRs ($H \rightarrow bb$) fixed to SM values
- → Reaching $\delta \kappa_{\lambda} \sim 30\%$ (~20% with 10 ab⁻¹)
 - Combining with HL-LHC expected constraints
- Sensivity driven by Z(qq)H categories
- Adding ZH@365GeV resolves degerated minima
- Negligible impact from VBF-H (maybe due to Mrec issue)

8 / 10

Conclusion & final comments

Prospective sensitivity study to Higgs self coupling @ FCCee

- → **Combined analysis of ZH and VBF-H** production @ 240 GeV & 365 GeV
- → Reaching up to ~20% precision on coupling measurement with little assumptions on Higgs boson properties

Study is preliminary, with room for improvement and refined understanding

- → Analysis setup needs retuning
 - Esp. to be refreshed with state-of-the art tools (e.g. ParticleNet) & latest performance estimates/samples
 - Ad-hoc flavour-tagging performance (particle-net to be investigated)
- \rightarrow Detector requirements to be studied
 - Similar trends as for mH/xsec analysis to be expected in Zee/Zµµ channels
 - BUT sensitivity driven by Zqq categories → **Good physics usecase to compare calorimeter designs**

Not ultimate sensitivity?

- → Self-coupling constraints from model-dependent (combined) EFT fit could yield further improvement
 - ~ 14% (~24%) precision floating only λ (full EFT fit) from 2019 ECFA studies
 - Larger scale & more complex study, assuming ultimate precision already reached on m_H & g_Z

Back up