Corrections, s-Weights &

systematics
Common analysis techniques - 10/11/2023



Comparing data to MC

e \We use Monte Carlo (MC) simulation to understand our physical process and
separate signal from background
e But simulation is not perfect! Some reasons why?



Comparing data to MC

e \We use Monte Carlo (MC) simulation to understand our physical process and
separate signal from background

e But simulation is not perfect! Some reasons why (not exhaustive):
o Cross sections and branching ratios of different processes have yet to be measured
o Hard process simulation is not good enough (e.g. it is only calculated to some finite precision)
o Detector simulation is not yet optimal (material budget, dead channels, ...)
o Physics “behaves” differently than initially expected in a new energy range

Key:

' Everything + hadronisation




What can we do about it?



What can we do about it?

e Ideally: Improve simulation!

o Better description of our detector

o More precise theoretical predictions of the hard scattering process
o Input from new measurements
O



What can we do about it?

e Ideally: Improve simulation!

o Better description of our detector

o More precise theoretical predictions of the hard scattering process
o Input from new measurements
O

e But we don't live in an ideal world. In the meantime:
o Use our data in smart ways to correct the simulation!

BEAUTIFUL
EFFICIENCY,
FROM MC




Correcting simulation using data

e We will usually want to have our signal simulation as representative of the data as
possible
e But what is the main issue if we try to compare them?
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Correcting simulation using data

e We will usually want to have our signal simulation as representative of the data as
possible
But is the main issue if we try to compare them?

e Data is (almost always) an admixture of our signal process + a bunch of other stuff
(backgrounds)

e We want to “subtract” the background component(s) from our data
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S-weights: why?

e In the previous lectures, we fitted the invariant mass distributions of the B systems

to extract the CP violation

e But what if we want to extract information on other dimensions? For instance

o Lifetime, angular distributions

o Signal dependency on kinematics of the decay, typically needed for efficiency corrections
e One way to do this would be to have multi-dimensional fits

o Drawback: we need to have a suitable model of all our background components in all

dimensions of interest

e Alternative if modeling of background in n-dimensions is hard/undesirable:

s-weights!

Material from: https://arxiv.org/pdf/physics/0402083.pdf http://arogozhnikov.github.io/2015/10/07/splot.html
and https://hsf-training.github.io/analysis-essentials/advanced-python/60sPlot.html



http://arogozhnikov.github.io/2015/10/07/splot.html

S-weights: how?

e We have a signal and background component in our discriminant (m) and control
(kinematic variables such as p, decay time etc, denoted t) variables

What we would like to know What we have
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e Main requirement: our signal and background components need to be factorizable
in both and control variables



S-weights: how?

e Let’s look at our discriminant variable (example mass):

— signal
—  bck
—— sig + bck

10

e Fitting gives us a set of probabilities for each event to be signal or background
e sWeights: conversion to a probabilities of signal / background in each bin of
the control variable (in this example p)



S-weights: some maths

e p P and p,™P: unknown probabilities of signal/background in the
discriminant (control) variable in given bin

e Main requirement: our signal and background components need to be
factorizable in both discriminant and control variables -> p_s(b) don’t depend
on discriminant variable!

e Number of signal events in bin i of control variable : X = p_P Ns
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Since the previous equation should hold for all possible ps and pp, we get two equalities:
pst = Em Sws(w) psps(w)
0=>_, sws(z) pops()

After reduction:
Ny =Y, sw,(2) p.(x)
0=>_, sws(z) pp(z)



Under assumption of linearity:

assuming that sPlot weight can be computed as a linear combination of conditional probabilities:

sws(x) = a1pp(x) + azps(x)

We can easily reconstruct those numbers, first let’s rewrite our system:

> z(a1ps(z) + asps(z)) ps(z) =0
3 (a1ps(z) + asps(z)) po(z) = Niig

alv;)b + (12%3 =0
a1 Vb + aaVes = Nsig

Where Vy, = Y ps() Ds(), Vos = Voo = D ps(x) o(), Vo = D po(z) po()

Having solved this linear equation, we get needed coefficients



Custom Orthogonal Weight functions (COWSs)

Main requirement for sWeights: our signal and background components need to be
factorizable in both discriminant and control variables

What if that’s not the case? For example if we have a non-factorizable efficiency function

e(m’t) n n
Zkz() akgk(’n) =0 Ak[gl(’n)

Generalizing sWeights: w;(m) = => wi(m) =
g(m) I(m)

=Wuy= J—gk(m)g,(m) dm

e Where I(m) an arbitrary non-zero function (variance function) and A;'= 1(m)

Then the weights to project out hk(t) are:

_ - wik(m)
B Z e(m,t)

k=3

v — i wi(m)
. ; e(m,t)

Signal weight function Background weight function

and

No fitting needed, just:
1. Asignal density with large, preferably maximal, overlap with the true signal density

2. A background density modelled by a truncated sum of polynomials
3. Avariance function obtained directly from the data

More info in: paper, slides



https://arxiv.org/abs/2112.04574
https://indico.cern.ch/event/1148823/attachments/2426495/4154265/cows_phystat_v3.pdf

Reweighting Simulation

e \We saw how to separate our signal from our background in our dataset...

e And now we can compare our signal simulation to our “background-free” sWeighted data!
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e \We saw how to separate our signal from our background in our dataset...

e And now we can compare our signal simulation to our “background-free” sWeighted data!
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Reweighting Simulation

e \We saw how to separate our signal from our background in our dataset...

e And now we can compare our signal simulation to our “background-free” sWeighted data!
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Reweighting Simulation

e \We saw how to separate our signal from our background in our dataset...

e And now we can compare our signal simulation to our “background-free” sWeighted data!
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Reweighting Simulation

We can re-weight our simulation to look more like our data

ATTENTION: Reweighting should be handled with care, you want to make sure you
don’t introduce biases to your measurement - typically extract weights from similar
but orthogonal sample to your signal region

Most straightforward reweighting method: bin-based reweighting

In each bin of your i variable, you multiply the original distribution by: m . = Wiarget / W iginal

Wi rget and W igina) @€ the total weights in each bin for the target (data) and original (simulation)
distribution

Simple and fast!

But quickly breaks down when you need to reweight more than 1-2 variables

Also, reweighting one variable can make disagreement in another variable worse

Choice of which variables to use is not always obvious



Reweighting Simulation

We can re-weight our simulation to look more like our data

ATTENTION: Reweighting should be handled with care, you want to make sure you
don’t introduce biases to your measurement - typically extract weights from similar
but orthogonal sample to your signal region

Alternative: use MVA-based reweighting

You train a classifier to discriminate between data and MC -> you get probability weights that a
given event belongs to data or MC -> the ratio of these probabilities is an approximation of the
data/MC density ratio per bin (i.e. our weight)

Works well when you need to simultaneously correct in more than 1-2 variables

Many libraries out there (BDT, GBRweighter, ANN)

Usually doesn’t work very well when density ratio is high

Negative weights not always treated properly



Reweighting Simulation

If everything works well...
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Pro tip: you can use the typical MVA tools to check the quality of your training (Kolmogorov - Smirnov distance,
folding etc)



A word on data-driven corrections

e Sometimes we can bypass simulation all together
e And if we can, we should

©)
@)

No need to worry about data/simulation differences

Can take care of effects that the simulation doesn’t even
take into account

Not plagued by low generation statistics

e Unfortunately, we don’t know the truth about data, we
can only approximate it

O

O

Design regions of our data that give us a good
approximation of the true process we are studying

For instance, if we want to study a specific background, we
can apply cuts on our data that select it with high purity -
this is a Control Region/Sample

The main challenge is usually how to extrapolate to our
signal region - not a single recipe, mixture of data-driven
and simulation approaches used (and often combined)
Validation is key!
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An example

e \We would like to measure the CP asymmetry between
B’->K'mand B -> KT

e In the past two lectures, we saw how to setup the
selection and fit, so getting the asymmetry should be
simply getting the signal yields right?
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example

We would like to measure the CP asymmetry between
B’->K'mand B -> KT

In the past two lectures, we saw how to setup the
selection and fit, so getting the asymmetry should be
simply getting the signal yields right?

.. there might be other effects

Production asymmetry
Detection asymmetry
PID asymmetry



An example

e \We would like to measure the CP asymmetry between
B’->K'mand B -> KT

e In the past two lectures, we saw how to setup the
selection and fit, so getting the asymmetry should be
simply getting the signal yields right?

Well... there might be other effects

e Production asymmetry
Detection asymmetry
PID asymmetry

Need to account for these effects in our model when
extracting the asymmetry!



PID efficiency calculation

Most of our data come out of the pre-analysis processing step with PID cuts
already applied (in LHCDb, this is the so-called stripping)

Getting back the original number of candidates before the cut is not obvious

Use dedicated data samples (calibration) without PID cuts pre-applied -> apply
them on the fly and check the number of candidates before and after the PID
selection!

These samples are not necessarily the same decay channel or have different
kinematics than our decay of interest... So we need to extrapolate

Typically done via efficiency maps in key kinematic variables (P, ETA, track
multiplicity, but can be any other variable that is crucial to the analysis)



Corrections and why we want them

What do we want to correct?

e False assumptions that are present in MC - simulation is not perfect!
o Particularly important for estimates of efficiency

e F[alse assumptions that are present in our interpretation of data is also not perfect!
o Forinstance production/detection asymmetries, PID asymmetries

How do we correct?

e Compare data and MC and reweight where needed
o Need a data background-subtraction and reweighting methods
e Define data-driven control modes/regions to extract corrections

o Need to find regions that are orthogonal to our signal region + a way to extrapolate from
control region to signal region



Systematic uncertainties



What is a systematic uncertainty (or error)?



What is a systematic uncertainty (or error)?

° the uncertainty on estimating systematic effects such as background,
scanning efficiency, energy resolution, variation of counter efficiency with
beam position and energy, dead time, etc.

e Itis NOT: a reproducible inaccuracy introduced by faulty equipment,
calibration, or technique. This is a MISTAKE (and should be corrected)

Example

e If you measure a potential of 12.3 V as 12.4 V, with a voltmeter accurate to
0.1V, that is fine. Even if you measure 12.5 V. If you measure it as 124 V, that
is a mistake



How to find systematic uncertainties?

e Every time you make a choice in the life of your analysis you should ask
yourself:

e Is there an equally (or close-to-equally) valid alternative choice | could be
making ?

o Examples: Choice of fit model, binning scheme in calculation of efficiencies...

e \What is the effect of assuming the alternative?

e Stress on “equally”: exploring inappropriate alternatives does not make sense!



How to deal with them?

Various ways, depending on the type of systematic



How to deal with them?

Various ways, depending on the type of systematic

e [f they are continuous and explicitly relate to your measurement, you can
simply propagate them using standard algebra

o Forinstance: luminosity or efficiency uncertainty
o Don’t forget the correlations!



How to deal with them?

Various ways, depending on the type of systematic

e |[f they are continuous but do not explicitly relate to your measurement, you
cannot use algebra - what is typically done is to vary by +-sigma and see what
happens to your result

o Example: MC tuning parameters
o Ortake many Gaussian samples of parameter value and look at distribution of result. Nice,
if you have the computing capacity

20
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How to deal with them?

Various ways, depending on the type of systematic

e |[f they are discrete, usually one (or more) alternative points can be used to check
the difference in the final result

o Example: choice of fitting model, MC generator
o Important to understand if alternatives are equal or a preference exists

normalized
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Including systematic uncertainties in our model

e Nuisance parameters: parameters that we include in our fit model, but which we
don’t really care about - perfect for systematic uncertainties

e Assuming nuisance parameters Gj are independent, the total PDF is:

Csyst( 9 ,0) = H G(6?,6 Where 6, are the nominal values
jesu around which we vary 6

1
| e Systematic Parameters Fixed

e Usually one can assume a Gaussian
constraint

e Check out the lecture of Vitalii yesterday on
how to fit with nuisance parameters!

4} \ Including Systematic Uncertainties |

~Aln(L)
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Checking the analysis

e Systematic uncertainties are not mistakes. We saw how to find and evaluate
systematics... but what about mistakes?

e Statistical tools might give a hint for a mistake but not always
e That's where the analysis checks come in!

e Design null-tests of your analysis - tests that you expect to give the same result
as your main analysis strategy

Repeat analysis by splitting dataset by years, magnet polarity etc
Different selection cuts

Histogram binnings and fit settings

And whatever else you (or your reviewers) can think of!

o O O O



Checking the analysis

Tick the box and move on

No need to assign a systematic

uncertainty

@)
@)
@)

It's illogical
It inflates errors
It penalizes diligence

If the check fails the test :(

Worry! This could be a hint of bigger problem

Check that the problem is not the test itself
o Ifitis, fix it and repeat

Check the analysis and try to find the problem
o If you find it, fix it!
o If not, worry more, try to check with other
experiments

Only as a last resort, you should assign a
systematic uncertainty



The difference between evaluating a systematic and a
performing check

What's the difference between?

[Evaluating implicit systematic errors: vary lots of parameters, see what
\happens to the result, and include in systematic error

(Checks: vary lots of parameters, see what happens to the result, and don't
Jnclude in systematic error

(1) Are you expecting to see an effect? If so, it's an evaluation, if not, it's
a check

(2) Do you clearly know how much to vary them by? If so, it's an
evaluation. If not, it's a check.

Cover cases such as trigger energy cut where the energy calibration is
uncertain - may be simpler to simulate the effect by varying the cut.



Backup



Minimization of variation

Previous part allows one to get the correct result. But there is still no reason for linearity given, we just
assumed this..

Apart from having a correct mean, we should also minimize variation of any reconstructed variable.
Let's try to optimize it

VX = Z sws(z)* V loepin = Z sws(z)* (psps(z) + Pope(2)) (1 — paps(z) — Popo(z))

A bit complex, isn't it? Instead of optimizing such a complex expression (which is individual for each
bin), let’s minimize it's uniform upper estimate

VX = Z sws(x Vlmebm < sts a:)2



so if we are going to minimize this upper estimate, we should solve the following optimization problem
with constraints:

3, swy(z)? — min

Do Sws(z) py(z) =0

Do $Ws(2) Ps(z) = Niig

Let’s write lagrangian of optimization problem:

Z sws(x) pp(x)

After taking derivative with respect to sws(x) we get the equality:

oL
0= FanlE) 2swy(z) + Aipp(x) + Aops(z)

L= Z sws(z)® + Ap + A2 Z sws(z) ps(z) — Niig

which holds for every x. Thus, after renaming for convenience a; = —A1/2, ag = —A2/2, we
confirmed linear dependency.



