Let's talk about fits Vitalii

9 November 2023

Setting your expectations right

• This lecture is

- biased) flavour physics.
- Not a course in statistics. To make me happy, ask questions about physics instead :) did also not plan to talk about limit setting.
- that I survive 7 hours of talking.
- (should) have similar internal logic, so what you learn today can be applied elsewhere.
- Some of you are probably familiar with 95% of what I say (= are better experts than me)
 - My hope is that everyone learns something (remaining 5%)
- Please ask questions at any time. (Or I will ask them to you.)
 - My most likely answer will be "I don't know". But remember we have real experts among you.

• Not a lecture. I will be mostly live coding in front of you and dive into practical scenarios relevant for (LHCb-

• Not a polished course. It is the first time I try to teach this. But thank you for inviting! Let's keep in interactive so

• I will only cover RooFit (I am an old grumpy person). Many of you use alternative packages for fitting, but they

Warm-up: Q1

a typical plot from plasma physics?

Figure 1: Invariant mass distribution of Υ candidates in the kinematic range $p_{\rm T} \in [0, 20] \, {\rm GeV}/c$ and $y \in [2.0, 4.5]$. The result of the fit with three Crystal Ball functions for the signal plus an exponential function for the background is also shown.

What is the fundamental difference between a typical plot from particle physics and

Fig. 4. DC breakdown curve in N_2O for the interelectrode gap of 20 mm.

Warm-up: intermezzo

• Same histogram, different binnings

Warm-up: Q2

Based on https://www.nikhef.nl/~ivov/Statistics/PoissonError/2017_05_15_PoissonError_LHCb_lvovanVulpen.pdf

Warm-up: Q2

Based on https://www.nikhef.nl/~ivov/Statistics/PoissonError/2017 05 15 PoissonError LHCb IvovanVulpen.pdf See also code in https://www.nikhef.nl/~ivov/Statistics/PoissonError/PoissonError.C (loption=1)

Poisson distribution: probability to observe *n* events when λ is expected:

$$P(n \mid \lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$$

In the RooFit code: look for RooHist / RooHistError

4 events (or less) <16%

Note: 1-0.159-0.159 = 0.682 (1 sigma interval)

Find values of λ that are on border of Poisson probability being compatible with observed #events 0.14 λ=7.16 0.12 16% If $\lambda > 7.16$ then probability to observe 0.1 0.08 0.06 Note: also uses 'data you didn't observe', 0.04 0.02 i.e. a bit like definition of significance 12 14 16 10 8 6 Number of events smallest λ (>n) for which $P(n \le n_{obs} | \lambda) \le 0.159$

> largest λ (<n) for which $P(n \ge n_{obs} | \lambda) \le 0.159$

Fit basics: why?

- Choose a discrimination variable (signal/bkg separation)
 - Typically invariant mass, why?
- Create a model that describes the data, extract parameters of interest (e.g. signal yield)
- Estimate uncertainties on extracted parameters

Model = collection of Probability Density Functions (PDF): normalisation allows to interpret their fractions as yields. Challenge: calculate normalisation for nontrivial PDFs.

Fit basics: max likelihood

https://www.physi.uni-heidelberg.de/~reygers/lectures/2017/smipp/stat_methods_ss2017_05_parameter_estimation.pdf

Likelihood Function

Suppose we have a measurement of *n* independent values

$$\vec{x} = (x_1, x_2, \dots, x_n)$$

drawn from the distribution

$$f(x; \vec{\theta}), \quad \vec{\theta} = (\theta_1, \theta_2, ..., \theta_m)$$

The joint pdf for the observed values \vec{x} is given by:

$$L(\vec{x}; \vec{\theta}) = \prod_{i=1}^{n} f(x_i; \vec{\theta})$$
 "likelihood function"

We consider \vec{x} as constant. The maximum likelihood estimate (MLE) of the parameters are the values $\hat{\vec{\theta}}$ for which $L(\vec{x}; \vec{\theta})$ has a global maximum.

In other words, we ask the question:

"For which parameters do the observed data have the highest probability?"

Maximum Likelihood Example 1: Exponential Decay

Consider exponential pdf:

$$f(t; au) = rac{1}{ au}e^{-t/ au}$$

Independent measurements drawn from this distribution: $t_1, t_2, ..., t_n$

Likelihood function:
$$L(au) = \prod_{i=1}^n rac{1}{ au} e^{-t_i/ au}$$

 $L(\tau)$ is maximum when ln $L(\tau)$ is maximum:

$$\ln L(\tau) = \sum_{i=1}^n \ln f(t_i;\tau) = \sum_{i=1}^n \left(\ln \frac{1}{\tau} - \frac{t_i}{\tau} \right)$$

Find maximum:

$$\frac{\partial \ln L(\tau)}{\partial \tau} = 0 \quad \rightsquigarrow \quad \sum_{i=1}^{n} \left(-\frac{1}{\tau} + \frac{t_i}{\tau^2} \right) = 0 \quad \rightsquigarrow \quad \hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} \left(-\frac{1}{\tau} + \frac{t_i}{\tau^2} \right) = 0$$

Fit basics: chi2

https://www.physik.hu-berlin.de/de/gk1504/block-courses/autumn-2010/program_and_talks/Verkerke_part3/

A well known estimator – the χ^2 fit

Maximum Likelihood or χ^2 – What should you use?

- χ^2 fit is fastest, easiest
 - Works fine at high statistics
 - Gives absolute goodness-of-fit indication
 - Make (incorrect) Gaussian error assumption on low statistics bins
 - Has bias proportional to 1/N
 - Misses information with feature size < bin size
- Full Maximum Likelihood estimators most robust \bullet
 - No Gaussian assumption made at low statistics
 - No information lost due to binning
 - Gives best error of all methods (especially at low statistics)
 - No intrinsic goodness-of-fit measure, i.e. no way to tell if 'best' is actually 'pretty bad
 - Has bias proportional to 1/N
 - Can be computationally expensive for large N —
- Binned Maximum Likelihood in between $-\ln L(p)_{\text{binned}} = \sum_{i} n_{\text{bin}} \ln F(\vec{x}_{\text{bin-center}}, \vec{p})$
 - Much faster than full Maximum Likihood
 - Correct Poisson treatment of low statistics bins
 - Misses information with feature size < bin size
 - Has bias proportional to 1/N

Wouter Verkerke, UCSB

Minuit

Watch for correlated parameters, find ways to avoid them

E.g.: instead of using two correlated parameters, take the 1st one and the ratio of the two.

Fix some of them (iteratively) or constrain allowed ranges / starting values

A brief description of MINUIT functionality

MIGRAD

https://web2.ba.infn.it/~pompili/teaching/data_analysis_lab/Verkerke-RooFit-part2.pdf

- found
 - will print a line for each step through parameter space
- of function
- HESSE \bullet

 - (locally parabolic)

 $\hat{\sigma}(p)$

- floating parameters)
- MINOS
 - where Δ -log(L)=0.5
 - Reported errors can be asymmetric
 - Can be very expensive in with large number of floating parameters

 Find function minimum. Calculates function gradient, follow to (local) minimum, recalculate gradient, iterate until minimum

• To see what MIGRAD does, it is very instructive to do RooMinuit::setVerbose(1). It

Number of function calls required depends greatly on number of floating parameters, distance from function minimum and shape

Calculation of error matrix from 2nd derivatives at minimum

Gives symmetric error. Valid in assumption that likelihood is

$$(p)^{2} = \hat{V}(p) = \left(\frac{d^{2} \ln L}{d^{2} p}\right)^{-1}$$

Requires roughly N^2 likelihood evaluations (with N = number of

Wouter Verkerke, NIKHEF

Calculate errors by explicit finding points (or contour for >1D)

Beware of local minima: starting values might matter

Good approximation for large number of events

Useful in low-stats case

https://web2.ba.infn.it/~pompili/teaching/data_analysis_lab/Verkerke-RooFit-part2.pdf

Minuit

and non-parabolic behavior

Illustration of difference between HESSE and MINOS errors

• 'Pathological' example likelihood with multiple minima

Wouter Verkerke, NIKHEF

• Why are our mass peaks asymmetric?

Figure 1: Invariant mass distribution of Υ candidates in the kinematic range $p_{\rm T} \in [0, 20] \, \text{GeV}/c$ and $y \in [2.0, 4.5]$. The result of the fit with three Crystal Ball functions for the signal plus an exponential function for the background is also shown.

• Why are our mass peaks asymmetric?

Figure 1: Invariant mass distribution of Υ candidates in the kinematic range $p_{\rm T} \in [0, 20] \, \text{GeV}/c$ and $y \in [2.0, 4.5]$. The result of the fit with three Crystal Ball functions for the signal plus an exponential function for the background is also shown.

Landau Distribution

L. Landau, J. Phys. USSR 8 (1944) 201 W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253

Describes energy loss of a charged particle in a thin layer of material

tail with large energy loss due to occasional creation of delta rays

Add multiple scattering (not Gaussian either), hit resolution...

various $\Omega_c^* \to \Xi_c^+ K^-$

- Why do these B-meson mass peaks have different resolutions?
- Which final state is better for mass measurements?

(exact details differ slightly between "forward" and "cylindrical" detectors)

Second effect: multiple scattering (~const vs momentum, so relatively more important at low momentum)

• What is wrong with this procedure?

Measurements of $K_{\rm S}^0$, Λ and $\bar{\Lambda}$ production 120 GeV/c p + C interactions

The NA61/SHINE Collaboration

The signal model used is a Lorentzian:

$$f_{\rm s}(m;m_0,\Gamma) = rac{1}{\pi\Gamma} rac{1}{(m-r)}$$

Here m and m_0 are the invariant mass and offset from the accepted best-fit value, respectively, and Γ describes the distribution width. Central invariant masses were allowed to deviate from the known particle masses, to allow for momentum mis-reconstruction in certain regions of phase space.

 $\frac{\Gamma^2}{m_0)^2 + \Gamma^2}.$

(4)

• What is wrong with this procedure?

Measurements of $K_{\rm S}^0$, Λ and $\bar{\Lambda}$ production in 120 GeV/c p + C interactions

EVERY TIME YOU DO THIS:

The signal model used is a Lorentzian:

 $f_{
m s}(m;m_0,\Gamma)=rac{1}{\pi}$

Here m and m_0 are the invariant mass and offset from the accepted best-fit value, respectively, and Γ describes the distribution width. Central invariant masses were allowed to deviate from the known particle masses, to allow for momentum mis-reconstruction in certain regions of phase space. and if your "width" means "resolution"

A KITTEN DIES.

$$\frac{1}{\Gamma} \frac{\Gamma^2}{(m-m_0)^2 + \Gamma^2}.$$

(4)

