
Lectures on common analysis 
techniques in flavour physics

Event selection and
multivariate classification

Lorenzo Capriotti
Università di Ferrara and INFN Ferrara

IPHC, Strasbourg - 08/11/2023



Particle detectors



Particle detectors

General overview of a HEP detector

Several layers made with different 
materials, electronics, readout

Each of them with a different goal

Different particle species interact 
with the materials differently

They all leave hits in the detector

From hits we reconstruct tracks



The LHCb detector at CERN



The LHCb detector at CERN



The LHCb detector at CERN

Primary vertex Secondary vertex (or decay vertex)



Typical workflow of a HEP experiment

Detector response

Trigger

Objects 
reconstruction

Tracking 
algorithms

Clustering 
algorithms

Storage



Typical workflow of a HEP experiment

Detector response

Trigger

Objects 
reconstruction

Tracking 
algorithms

Clustering 
algorithms

Storage

Data analysis

Event selection
Procedure that loops over
all the signal candidates
and decides whether to

accept them or reject them

Signal 
extraction

Efficiencies
calculation

Parameters
estimation

Many other
funny things



Signal efficiency and background rejection
Almost all datasets contain an admixture of signal and background which are selected by the trigger. 
To tell apart the two categories we need to study their characteristics.
Two useful tools are the following:

● The signal efficiency of a selection is defined as ε=Sf/S0, where Sf is the number of signal 
candidates after the selection and S0 is the number of signal candidates before the selection.

● The background rejection of a selection is defined as R=(1-Bf/B0), where Bf is the number of bkg 
candidates after the selection and B0 is the number of bkg candidates before the selection.

Sf , So, and Bf , B0 are counted isolating regions where we have only signal or only background (it can be 
a simulated dataset - usually for signal - or a sideband - usually for background).

The perfect analysis is the one for which ε=1 and R=1 simultaneously for the full selection.



Signal efficiency and background rejection
Of course, sadly the perfect analysis does not exist…

We must always find a compromise

In special cases, one might choose 
“by eye” to exploit a certain feature

Usually there are better methods to 
choose the optimal point

They depend mainly on what we 
are trying to measure 



Cut-based selection and cut-flow



Cut-based selection and cut-flow

Signal
Background
Total



Bidimensional and multivariate selection



Bidimensional and multivariate selection

Signal
Background
Total



Bidimensional and multivariate selection

Signal
Background
Total



Bidimensional and multivariate selection

Signal
Background



Bidimensional and multivariate selection

Signal
Background



Bidimensional and multivariate selection

● In many cases, a cut-based selection is not enough 
 

● If we look at the bidimensional histogram of two variables, they might have some correlation that 
we can exploit
 

● A better selection is a linear combination of the two variables, i.e. a diagonal cut in the 2D plane
 

● …but it could also be a nonlinear combination (a curve in a 2D plane)

● In principle, one could extend this to a N-dimensional space…

● However, two major problems will ultimately lead to limitations to this method

Non-linear correlations 
between the discriminating 

variables

Increasing complexity and 
large number of 

combinations of variables



Score functions: statistical significance
In order to quantify the quality of a given cut or selection, we must first decide the best criterion.
This depends on the process (observation, rare process, limit setting…).

This criterion is called a score function or, alternatively, a figure of merit.

In the most general cases (for instance, a measurement of a known quantity with a decently populated 
dataset) we can use the following.

Let’s assume that, after applying a selection we 
are left with N candidates, which are the sum of 
S signal candidates and B background candidates:

Assuming that N is characterised by a Poissonian 
distribution, the uncertainty is:

in the hypothesis that we can estimate the value of B 
from MC or other sources with high precision and 
hence low uncertainty. 

…i.e. how many standard deviations 
is the signal away from zero



Types of background
There are several types of background that can affect the data distribution and obscure the signal.
Some of them are known and treatable; some are known but irreducible and some are unknown.

● Combinatorial background: in a proton-proton collision, hundreds of particles are created. 
When we select N tracks to form a decay chain, it is possible that some of them do not come 
from the decay we are interested in, but are instead just random tracks with similar kinematics 
and topology as the ones we are selecting. 
 

● Partially-reconstructed background: when selecting N tracks for a given decay chain, there is 
the possibility to include tracks which come from a more complex decay (with N+1, or even N+2 
particles) which we are only selecting partially. The shape of this background will likely not be a 
nice peak. In the worst case scenario it must be studied with dedicated MC.

● Misidentified background: it can happen that our particle ID algorithms assign the wrong 
particle type to a given track. In this case, since the mass of the particle is assigned along with 
its type, then the energy of the track will be wrong as well and also the invariant mass of the 
combination of tracks. This background usually manifests itself as a (somewhat larger) peak 
with respect to the one we are interested in, at the wrong value of invariant mass.



Types of background (partially reconstructed)



Types of background (combinatorial and misID)



MVA and machine learning algorithms



MVA and machine learning algorithms

Signal 
proxy

Background 
proxy

ML training ML testing Classification 
weights

Testing 
sample

Data 
classification

MC dataset

Schematic example of a supervised learning algorithm



Example of ML: artificial neural network (ANN)

ANN are inspired by a (simplified) model of 
neuron cells in the human brain.

The output is computed combining the 
responses of multiple nodes.

The input nodes are arranged into the 
input layer and they take the data as input.

The output of the first layer is passed onto 
the second layer, and so on until the last 
output layer. All layers between the input 
and output are called “hidden layers”. 

The output of each node is computed as 
weighted sum of its input variables; the 
weights themselves are optimised during 
the training phase of the algorithm.

w11
(1)

w12
(1)

w1J
(1)

w11
(2)

w12
(2)

w1K
(2)

w11
(3)

w12
(3)

w1M
(3)

w11
(4)

w21
(4)

w31
(4)

x1

x2

x3

x4

x5

xN

y(x)



Example of ML: artificial neural network (ANN)

The training is achieved by minimising a 
loss function to get the weights

and then calculating the output of the k-th 
node of the l-th layer as

where φ(z) is the node activation function, 
often taken as a sigmoid:

w11
(1)

w12
(1)

w1J
(1)

w11
(2)

w12
(2)

w1K
(2)

w11
(3)

w12
(3)

w1M
(3)

w11
(4)

w21
(4)

w31
(4)

x1

x2

x3

x4

x5

xN

y(x)



Example of ML: boosted decision tree (BDT)
BDT is one of the most used ML algorithms 
in HEP (but not necessarily the best)

A decision tree is a subsequent series of 
cuts on randomly selected variables.
After a certain number of steps, it stops and 
it classifies the selection as signal S or 
background B.

The cuts are chosen to optimise a FoM.

This is an example of weak classifier, as a 
single tree is basically an automated 
procedure to apply a series of cuts.

In order to boost the performances we need 
a higher level of complexity. Leaf



Example of ML: boosted decision tree (BDT)
This is achieved by the so-called Random Forest. 

A large number of trees contribute to the final 
output. For each input event, the output of all 
trees is considered and the final decision is 
calculated as the average of the single ones.

We could use the information of a tree into the 
training of another tree.

We can, therefore, create a forest by iteratively 
adding new trees which are optimised based on 
the decisions obtained in the previous iteration. 

This procedure is called boosting.



ROC curve and AUC discriminant
The ROC (Receiver Operating Characteristic) curve is a graphical system to assess the quality of a 
classifier and they are largely used with machine learning algorithms.

Perfect classifier

Random classifier

The area under the curve (AUC) is often used as discriminant to select which classifier works best in 
the specific situation



Undertraining and overtraining
Any ML algorithm suffers from two general potential problems: 
● Undertraining: the size of the training sample is not large enough to properly populate the hyperspace of the 

input variables, but the algorithm parameters are tuned to reflect this issue. In this case, the algorithm 
performances will be sub-optimal.

● Overtraining: if the parameters of the algorithm are tuned in an inadequate way with respect to the sample size, 
the training procedure might exploit artificial structures due to statistical fluctuations which are not 
representative of the expected distributions. This results in a wrong classification of signal and background 
events.



The Kolmogorov-Smirnov test
One way to assess the presence of overtraining in a training procedure is to use 
the Kolmogorov-Smirnov test: in order to do so, any MVA framework will split 
the input sample into a training sample and a testing sample.
After performing the training with the relative sample, the output weights are 
applied to the testing sample and the two distributions are compared.

The Kolmorov-Smirnov test calculates the maximum distance D*, over all bins, 
between the cumulative distributions of the multivariate algorithm output for 
the training set and the testing set, separately. 

This quantity is a random variable with an asymptotically uniform distribution 
between 0 and 1, after an opportune transformation is applied. 

Then, a set of N pseudoexperiments is generated from the training and testing 
distributions, and the test is repeated for all of them, obtaining each time a 
distance Dn.

The Kolmogorov-Smirnov probability pKS is then defined as the number of times 
that Dn > D* , divided by N.

If the two distributions are similar, then on average the fluctuations of the 
pseudoexperiments will be larger than the first case about half of the time. So if 
(pKS≃0) or (pKS≃1), then it is likely that the algorithm has been overtrained.


