

Measurement of time-dependent CP asymmetry using $B^0 \to K_S^0 \pi^+ \pi^- \gamma$ decays in Belle II

Petros Stavroulakis, on behalf of the IPHC Strasbourg Belle II group GDR-InF annual workshop at Mont Sainte-Odile, November 8th 2023

Photon polarization in $b \rightarrow s \gamma$

- \triangleright In the Standard Model (SM) the polarization of the photon in $b \to s\gamma$ transitions is predominantly left-handed but New Physics (NP) may modify this
	- Atwood et al., Phys. Rev. Lett. 79, 185
	- E. Kou et al., JHEP 12 (2013) 102 [1305.3173]
	- N. Haba et al., JHEP 03 (2015) 160 [1501.00668]
- \triangleright This polarization can be tested through a measurement of the time-dependent CP asymmetry of $B \to K_{\text{res}} \gamma$ decays

$$
\mathcal{M} \simeq -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \big[\big(C_{7\gamma}^{SM} + C_{7\gamma}^{NP} \big) \big(O_{7\gamma} \big) + C_{7\gamma}^{\prime NP} \big(O_{7\gamma}' \big) \big]
$$

TDCP asymmetry of $B^0 \to K_{res} \gamma \to K_S^0 \pi^+ \pi^- \gamma$ decays

$$
\mathcal{A}_{CP}(\Delta t) = \frac{\Gamma(B_{\text{tag}=\bar{B}^0}(\Delta t) \to f_{CP}) - \Gamma(B_{\text{tag}=\bar{B}^0}(\Delta t) \to f_{CP})}{\Gamma(B_{\text{tag}=\bar{B}^0}(\Delta t) \to f_{CP}) + \Gamma(B_{\text{tag}=\bar{B}^0}(\Delta t) \to f_{CP})} = S \cdot \sin(\Delta m_d \Delta t) - C \cdot \cos(\Delta m_d \Delta t)
$$

- \triangleright We are interested in measuring S of the CP-eigenstate: $B^0 \to K_{res} \gamma \to K_S^0 \rho^0 \gamma \to K_S^0 \pi^+ \pi^- \gamma$
- ➢ A dilution factor is needed to properly account for non-CP-eigenstates resulting from various interfering kaonic resonances:

$$
\mathcal{D} = \frac{S_{K_S^0 \pi^+ \pi^- \gamma}}{S_{K_S^0 \rho^0 \gamma}}
$$

 \triangleright Previous measurements:

- BaBar [PRD93 \(2015\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.052013) $S_{K_S^0 \pi^+ \pi^- \gamma} = 0.14 \pm 0.25 \pm 0.03$ (using 471×10^6 $B\overline{B}$ pairs)
- [Belle PRL101 \(2008\)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.251601) : $S_{K^0_S \pi^+ \pi^- \gamma} = 0.09 \pm 0.27 \pm 0.07$ (using 657 × 10⁶ BB pairs)
- ≻ We plan to do a combined measurement using the entire Belle (711 fb⁻¹) and current Belle II datasets (362 fb^{-1}

$\overline{\text{New constraints on } \mathcal{C}_7}$

- \triangleright Work by *S. Akar, et al.*, proposes new observables by dividing the dataset in the Dalitz-plane
- \triangleright The two new observables will provide orthogonal constraints to the real and imaginary parts of C_7^{\prime}/C_7 in the complex plane

➢ New observables:

$$
S_{K_S^0 \rho^0 \gamma}^+ = S^I + S^{\bar{I}}
$$

$$
S_{K_S^0 \rho^0 \gamma}^- = S^I - S^{\bar{I}}
$$

SuperKEKB & Belle II

- SuperKEKB: the "brightest" e^+e^- collider:
	- Current peak instantaneous luminosity: 4.7×10^{34} cm⁻²s⁻¹ (WR)
	- Target instantaneous luminosity: 6×10^{35} cm⁻²s⁻¹ (~30 times larger than at KEKB) achieved by nano-beam scheme
	- Already at 427 fb⁻¹ \approx BaBar dataset

Event Reconstruction

- ➢ After fully reconstructing and vertexing the CP-side B candidate, the tracks from the rest of the event are used to vertex the tag-side $\Rightarrow \Delta t$ measured indirectly using vertex positions
- \triangleright Then the Flavor Tagger is run on the rest of the event to determine the B flavor at the time of decay

Flavor Tagging at Belle II

- \triangleright B flavor currently estimated with a BDT classifier based on individual flavor estimators (i.e. high- p_T leptons, Kaons, etc.)
- \triangleright The Flavor Tagger provides the tag-B flavor $q = \pm 1$ and a confidence factor $r = 1 - 2w$, where w is the mistag fraction
- \triangleright 7 intervals of r: [0.0, 0.1, 0.25, 0.45, 0.6, 0.725, 0.875, 1.0] with the last bin corresponding to best flavor assignment
- ➢ Ongoing development to improve the Flavor Tagger based on deep learning techniques
- \triangleright Expected improvement on statistical uncertainty of S: \sim 10%

Calibrated Flavor Tagger parameters using 362 fb⁻¹ data

- ➢ Most dominant source of background is due to non-resonant $e^+e^- \rightarrow q\bar{q}$ events, with $q \in \{u, d, c, s\}$
- \triangleright Has a jet-like topology as opposed to $Y(4S) \rightarrow B\overline{B}$ events which have a spherically symmetric topology
- ➢ Train a BDT classifier to suppress continuum background using event-shape variables as inputs:
	- Cosine of the angle between the thrust axes of the event
	- Cosine of the B -momentum polar angle in the CMS
	- Fox-Wolfram moments

$$
H_l = \sum_{i,j} \frac{|p_i||p_j|}{E_{\text{event}}^2} P_l(cos \theta_{i,j})
$$

Selection Criteria

- ➢ Pre-selection:
	- $1.4 < E_{\gamma} < 4$ GeV
	- Loose event-level cuts regarding no. of tracks & calorimeter clusters
	- Rest-of-Event (RoE) cuts to remove tracks & clusters due to beam background
- ➢ Additional selections:
	- π^0 likeness of photon < 0.7
	- Prompt π^{\pm} pionID > 0.1
	- $M_{K_S \pi \pi} < 1.8 \text{ GeV}/c^2$
	- 0.6 $< M_{\pi\pi} < 0.9$ GeV/c² (ρ mass window)
	- " K_S selector" MVA classifier > 0.95 (optimised)
	- Continuum Suppression MVA classifier > 0.28 (optimised)
	- Single Candidate Selection (random)

*cumulative efficiencies in parentheses

Fit Strategy

- \triangleright Four separate fit components: signal, self crossfeed (SCF), continuum and $B\overline{B}$ background \rightarrow shape parameters of fit components obtained from fit to simulated M_{bc} and ΔE distributions
- ➢ Δt resolution model parameters determined from fit to Δt residual distribution of pure signal MC sample (more details on this shortly)
- \triangleright Signal and background yields extracted via a 2D fit to M_{bc} and ΔE
- \triangleright Subtract background in Δt using *sPlot* [arxiv.org/abs/physics/0402083] and then fit resulting Δt distribution for S and C

$$
M_{bc} = \sqrt{\frac{E_{beam}}{2} \cdot \frac{2}{2} - p_B^{*2}}
$$

$$
\Delta E = E_B^* - \sqrt{s}/2
$$

Shape parameters extraction

- ΔΕ : Double-sided Crystal Ball
- M_{bc} : Crystal Ball

• ΔΕ : Exponential

• M_{bc} : Argus

$$
\mathcal{P}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{2\tau_{B^0}} \{1 - q\Delta w + q\mu(1 - 2w) + \frac{1}{[q(1 - 2w) + \mu(1 - q\Delta w)][\mathbf{S}\sin(\Delta m_d \Delta t) - \mathbf{C}\cos(\Delta m_d \Delta t)]\}} \otimes \mathbf{R}_{\text{det}}
$$

$$
\mathcal{P}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{2\tau_{B^0}} \{1 - q\Delta w + q\mu(1 - 2w) + \frac{q(1 - 2w)\mu}{2\tau_{B^0}} \} \left[\mathbf{S} \sin(\Delta m_d \Delta t) - \mathbf{C} \cos(\Delta m_d \Delta t) \right] \} \otimes \mathbf{R}_{\text{det}}
$$
\n
$$
\mathbf{P}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{2\tau_{B^0}} \{1 - q\Delta w + q\mu(1 - 2w) + \mathbf{C} \cos(\Delta m_d \Delta t)\} \} \otimes \mathbf{R}_{\text{det}}
$$
\n
$$
\mathbf{P}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{2\tau_{B^0}} \{1 - q\Delta w + q\mu(1 - 2w) + \mathbf{C} \cos(\Delta m_d \Delta t)\} \} \otimes \mathbf{R}_{\text{det}}
$$

$$
\mathcal{P}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{2\tau_{B^0}} \{1 - \left[\frac{q\Delta w + q\mu(1 - 2w)}{q(1 - 2w) + \mu(1 - q\Delta w)}\right] \left[\mathbf{S} \sin(\Delta m_d \Delta t) - \mathbf{C} \cos(\Delta m_d \Delta t)\right] \} \otimes \mathbf{R}_{\text{det}}
$$

+
$$
\left[\frac{q(1 - 2w) + \mu(1 - q\Delta w)}{q(1 - 2w) + \mu(1 - q\Delta w)}\right] \left[\mathbf{S} \sin(\Delta m_d \Delta t) - \mathbf{C} \cos(\Delta m_d \Delta t)\right] \otimes \mathbf{R}_{\text{det}}
$$

$$
\mathcal{P}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{2\tau_{B^0}} \{1 - q\Delta w + q\mu(1 - 2w) + (q(1 - 2w)\mu)\left[\mathbf{S}\sin(\Delta m_d \Delta t) - \mathbf{C}\cos(\Delta m_d \Delta t)\right]\}\otimes \mathbf{R}_{\text{det}}
$$

where \mathcal{R}_{det} is the Δt resolution function, which models smearing effects due to the finite resolution of the detector in measuring the CP-side and tag-side B vertex positions, which are used to determine Δt

$$
\mathcal{P}(\Delta t, q = \pm 1) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{2\tau_{B^0}} \{1 - q\Delta w + q\mu(1 - 2w) +
$$

+
$$
[q(1 - 2w) + \mu(1 - q\Delta w)][S \sin(\Delta m_d \Delta t) - C \cos(\Delta m_d \Delta t)]\} \otimes \mathbf{R}_{\text{det}}
$$

where \mathcal{R}_{det} is the Δt resolution function, which models smearing effects due to the finite resolution of the detector in measuring the CP-side and tag-side B vertex positions, which are used to determine Δt

 \triangleright Similar model for \mathcal{R}_{det} to the one used in BaBar to account for detector resolution effects:

$$
\mathcal{R}(\delta \Delta t; \sigma) = (1 - f_{\text{OL}}) \mathcal{R}_{\text{core}}(\delta \Delta t; \sigma) + f_{\text{OL}} \mathcal{R}_{\text{OL}}(\delta \Delta t; \sigma)
$$

$$
\mathcal{R}_{\text{core}}(\delta \Delta t; \sigma) = (1 - f_{\text{tail}}) \cdot G(\delta \Delta t; \mu_{\text{main}} \cdot \sigma, s_{\text{main}} \cdot \sigma)
$$

$$
+ (1 - f_{\text{exp}}) \cdot f_{\text{tail}} \cdot G(\delta \Delta t; \mu_{\text{tail}} \cdot \sigma, s_{\text{tail}} \cdot \sigma)
$$

$$
+ f_{\text{tail}} \cdot f_{\text{exp}} \cdot G(\delta \Delta t; \mu_{\text{tail}} \cdot \sigma, s_{\text{tail}} \cdot \sigma)
$$

$$
\otimes ((1 - f_{\text{R}}) \exp_{-}(\delta \Delta t/c \cdot \sigma) + f_{\text{R}} \exp_{+}(-\delta \Delta t/c \cdot \sigma))
$$

Δt Residual fits

- \triangleright Δt resolution parameter values determined by fitting the distribution of δΔt = Δt^{reco} Δt^{true} in the pure signal MC sample simultaneously in r -bins 0-5 and 6
- \triangleright Resolution model parameter values noticeably different in two r-bin categories

Lifetime fits

 \triangleright One important check is to fit for the B lifetime (τ_{B^0}) without taking into account information on the B flavor

 \triangleright The Δt resolution model is convolved with the pure physics Δt model

Yield extraction

\triangleright We fit the product of M_{bc} and ΔE to extract the signal and background yields

the 362 fb $^{-1}$ real data sample

Δt fit

- \triangleright *sPlot* is used to subtract background in Δt
- \triangleright We fit the sWeighted Δt distribution of a sample that contains signal events generated with inputs $(C, S) = (0, 0.6)$
- \triangleright Procedure to fit for S^{\pm} already in place

sWeighted ∆t Fit, rbins 0-5

Linearity studies

- \triangleright We generate 1 million signal events with $C = 0$ and $S = [-0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6]$ using an implementation of SVP_CP model from EvtGen in the Belle II software
- ➢ We make 1000 bootstrapped replicas using our simulated sample and perform the full fit on each of them to try and identify potential biases in the fit procedure

Linearity studies

≻ No particular trend observed in the residual of $S = S^{fit} - S^{true}$

 \triangleright Expected uncertainty on S is ~0.15, which is ~36% larger than the one expected from the Belle analysis with half the dataset size

Systematics

➢ First few sources of systematic uncertainty already estimated (from MC)

08/11/2023 23

Conclusion & prospects

\checkmark Current fit strategy used for Belle II analysis seems robust

- Belle analysis is already in a mature state (not shown here)
- \checkmark Already started estimating systematics
- ➢ Next steps:
	- Control channel: $B^0 \to J/\psi K\pi$ for fit validation and data/MC corrections
	- Finish up systematics estimation (also for $S^{\pm})$

Questions?

Backup

CSMVA cut optimisation

Candidate Multiplicity

$\boxed{2D}$ residual – $B\bar{B}$ bkg

2D residual - Signal

 0.4 0.5 ΔE (GeV)

 $5.3 - 5$

 -0.4 -0.3 -0.2 -0.1 0

 0.1 0.2

 0.3

 -80

 0.4 0.5

 ΔE (GeV)

 $\overline{0}$

2D residual - SCF

2D residual - Continuum

 ΔE (GeV)

 ΔE (GeV)

$\overline{\mathbf{sWeights}}$ validation $-\Delta t$

sWeighted At distributions, rbin 6

sWeighted At distributions, rbins 0-5

 $Events / (1.5 ps)$ 120 $Events / (1.5 ps)$ $30¹$ sWeighted ↓ sWeighted \bullet 100 25 isSignal==1 isSignal==1 80 20 ь 60 15 40 10 20 5 O 0 $\frac{1}{15}$ -5 -10 5 10 15 $-1\overline{5}$ -10 -5 $\mathbf 0$ 5 10 15 Ω Δt (ps) Δt (ps) $\overline{\overline{\mathsf{P}}}$ P ull $4 \overline{E}$ 0 -2 -2 $-4\frac{6}{15}$ $-4\frac{6}{15}$ -10 $-\frac{5}{5}$ 10 $\overline{15}$ -10 10 $\frac{15}{\Delta t \text{ (ps)}}$ 0 5 -5 0 5 Δt (ps)

sWeights validation $-\sigma_{\Delta t}$

sWeighted $\sigma_{\lambda t}$ distributions, rbin 6

Dalitz plane halves At fits

Dalitz plane halves At fits

