Unitarity constraints and hadronic form factors within the Dispersive Matrix approach: the pion form factor case

Work in collaboration with Silvano Simula (PRD '23 [arXiv:2309.02135])

Ludovico Vittorio (LAPTh & CNRS, Annecy, France)

Many thanks to Guido Martinelli for discussions and suggestions

$$
a = a^{QED} + a^{weak} + a^{HVP} + a^{LBL}
$$

... and possibly, any sort of unknown particle

Measure precisely $a \rightarrow$ probe completeness of the Standard Model

Measure precisely $a \rightarrow$ probe completeness of the Standard Model

The Hadronic Vacuum Polarization (HVP) tensor is defined as

$$
\Pi_{\mu\nu}(Q^2) = \int d^4x e^{iQ\cdot x} \overline{\left(j_\mu(x)j_\nu(0)\right)} = (\delta_{\mu\nu}Q^2 - Q_\mu Q_\nu) \overline{\Pi(Q^2)}
$$
\nThrough the optical theorem and unitarity:

\n
$$
\overline{\int j_\mu(x)} = \sum_f q_f \bar{\psi}_f(x) \gamma_\mu \psi_f(x)
$$

$$
\text{Im } \Pi(s) = \frac{s}{4\pi\alpha} \sigma_{\text{tot}}(e^+e^- \to \text{hadrons}) = \frac{\alpha}{3} R_{\text{had}}(s)
$$

The Hadronic Vacuum Polarization (HVP) tensor is defined as

$$
\Pi_{\mu\nu}(Q^2) = \int d^4x e^{iQ\cdot x} \overline{\left(j_\mu(x)j_\nu(0)\right)} = (\delta_{\mu\nu}Q^2 - Q_\mu Q_\nu) \overline{\Pi(Q^2)}
$$
\nThrough the optical theorem and unitarity:

\n
$$
\overline{\left(j_\mu(x)\right)} \equiv \sum_f q_f \bar{\psi}_f(x) \gamma_\mu \psi_f(x)
$$

$$
\text{Im } \Pi(s) = \frac{s}{4\pi\alpha} \sigma_{\text{tot}}(e^+e^- \to \text{hadrons}) = \frac{\alpha}{3} R_{\text{had}}(s)
$$

Master formula for HVP contribution to a_{μ}

$$
a_{\mu}^{\text{HVP,LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{s_{\text{thr}}}^{\infty} ds \frac{\hat{K}(s)}{s^2} R_{\text{had}}(s)
$$

$$
R_{\text{had}}(s) = \frac{3s}{4\pi\alpha^2} \frac{s\sigma_e(s)}{s + 2m_e^2} \sigma(e^+e^- \to \text{hadrons}).
$$

L. Vittorio (LAPTh & CNRS, Annecy)

Hoferichter's talk @ LF(U)V Workshop '22 (see also for instance JHEP '19 [arXiv:1810.00007])

Among **all the hadronic contributions, for our purposes the most important case is** $\frac{h}{h}$ **ad =** $\pi\pi$ **! !**

The *new* g-2 puzzle

Comparison among the results of the lattice computations, the experiments («no New Physics») and the results of the dispersive analyses:

L. Vittorio (LAPTh & CNRS, Annecy) ⁴ **Giusti & Simula @ Lattice 2021**

 $\langle \pi^+(p^\prime)|J_\mu^{em}|\pi^+(p)\rangle = (p+p^\prime)_\mu \Big|F_\pi^V(Q^2)\Big|$

EM pion form factor (FF)

Its modulus is a crucial quantity governing the 2π contribution to the HVP of the muon anomalous magnetic moment, since

$$
R_{2\pi}(\omega) = \frac{1}{4} \left(1 - \frac{4M_\pi^2}{\omega^2} \right)^{3/2} |F_\pi^V(\omega)|^2 \quad \left\{ \omega^2 \ge 4M_\pi^2 \right\}.
$$

Finally, the pion charge radius is defined as

$$
\left\langle r_{\pi}^2 \right\rangle \equiv -6 \frac{d F_{\pi}^V(Q^2)}{d Q^2} \Big|_{Q^2=0}
$$

 $\left\{ \begin{array}{c} Q^2 \equiv -q^2 \end{array} \right\}$

FUNDAMENTAL ISSUE: there is a strong (positive) correlation among the value of aHVP and the pion charge radius!!

which is based on different determinations:

i) $\langle r_{\pi} \rangle = 0.656 \pm 0.005$ fm from an average of dispersive analyses of timelike (e+e−) and spacelike data ii) $\langle r_{\pi} \rangle = 0.663 \pm 0.023$ fm from **spacelike data from the F2 experiment** iii) $\langle r_{\pi} \rangle = 0.663 \pm 0.006$ fm from spacelike data from the NA7 experiment at CERN iv) $\langle r_{\pi} \rangle = 0.65 \pm 0.08 \text{ fm}$ from spacelike data from the SELEX experiment at FNAL **Colangelo et al, JHEP '19 [1810.00007] Ananthanarayan et al, PRL '17 [1706.04020] Dally et al, PRL '82 Amendolia et al (NA7 Coll.), NPB '86 Gough Eschrich et al (SELEX Coll.), PLB '01 [hep-ex/0106053]**

$$
\left\{ \overline{\langle r_{\pi} \rangle} \equiv \sqrt{\langle r_{\pi}^2 \rangle} \right\}
$$

which is based on different determinations:

i) $\langle r_{\pi} \rangle = 0.656 \pm 0.005$ fm from an average of dispersive analyses of timelike (e+e−) and spacelike data ii) $\langle r_{\pi} \rangle = 0.663 \pm 0.023$ fm from **spacelike data from the F2 experiment** iii) $\langle r_{\pi} \rangle = 0.663 \pm 0.006$ fm from spacelike data from the NA7 experiment at CERN iv) $\langle r_{\pi} \rangle = 0.65 \pm 0.08 \text{ fm}$ from spacelike data from the SELEX experiment at FNAL **Colangelo et al, JHEP '19 [1810.00007] Ananthanarayan et al, PRL '17 [1706.04020] Dally et al, PRL '82 Amendolia et al (NA7 Coll.), NPB '86 Gough Eschrich et al (SELEX Coll.), PLB '01 [hep-ex/0106053]**

SPOILER:
$$
\langle r_{\pi} \rangle_{DM} = 0.703 \pm 0.027
$$
 fm

The Dispersive Matrix (DM) method

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach to describe the FFs in the whole kinematical region!

> **- Pioneering works from S. Okubo [PRD, 3 (1971); PRD, 4 (1971)], C.′Bourrely et al [NPB, 189 (1981)] and L. Lellouch [NPB, 479 (1996)] - New developments in PRD '21 (2105.02497)**

The resulting description of the FFs

- **is entirely based on first principles (LQCD evaluation of 2- and 3-point Euclidean correlators)**
- **is independent of any assumption on the functional dependence of the FFs on the momentum transfer**
- **can be applied to theoretical calculations of the FFs, but also to experimental data**

No HQET, no series expansion, no perturbative bounds with respect to the well-known other parametrizations

How does it work?

Let us focus on a generic FF *f*: **we will determine f(t) with f(ti) known at positions ti (i=1, …, N)**

How? We define

- inner product

$$
\langle h_1 | h_2 \rangle = \int_{|z|=1} \frac{dz}{2\pi i z} \bar{h}_1(z) h_2(z)
$$

$$
g_t(z) \equiv \frac{1}{1 - \bar{z}(t)z}
$$

$$
z(t) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}
$$

$$
t_+ = 4M_\pi^2 \qquad t_0 = 0
$$

$$
t: \text{momentum transfer}
$$

- auxialiary function

Let us focus on a generic FF *f*: **we will determine f(t) with f(ti) known at positions ti (i=1, …, N)**

How? We define

- inner product

- inner product
\n- auxiliary function
\n
$$
g_t(z) \equiv \frac{dz}{1 - \bar{z}(t)z}
$$
\n-

$$
z(t) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}
$$

$$
t_+ = 4M_\pi^2 \qquad t_0 = 0
$$

$$
t: momentum transfer
$$

 $\sqrt{1-\epsilon}$

We build up the matrix M of the scalar products of ϕ **f,** g_t **,** g_{t1} **, ...,** g_{tn} **:**

$$
\mathbf{M} = \left(\begin{array}{cccc} \langle \phi f | \phi f \rangle & \langle \phi f | g_t \rangle & \langle \phi f | g_{t_1} \rangle & \cdots & \langle \phi f | g_{t_n} \rangle \\ \langle g_t | \phi f \rangle & \langle g_t | g_t \rangle & \langle g_t | g_{t_1} \rangle & \cdots & \langle g_t | g_{t_n} \rangle \\ \langle g_{t_1} | \phi f \rangle & \langle g_{t_1} | g_t \rangle & \langle g_{t_1} | g_{t_1} \rangle & \cdots & \langle g_{t_1} | g_{t_n} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle g_{t_n} | \phi f \rangle & \langle g_{t_n} | g_t \rangle & \langle g_{t_n} | g_{t_1} \rangle & \cdots & \langle g_{t_n} | g_{t_n} \rangle \end{array}\right)
$$

 $\sqrt{1-\epsilon}$

A lot of pioneering works in the past:

L. Lellouch, NPB, 479 (1996), p. 353-391

26/09/2018 Pagina 14 **C. Bourrely, B. Machet, and E. de Rafael, NPB, 189 (1981), pp. 157 – 181**

E. de Rafael and J. Taron, PRD, 50 (1994), p. 373-380 L. Vittorio (LAPTh & CNRS, Annecy) 9

A lot of pioneering works in the past:

L. Lellouch, NPB, 479 (1996), p. 353-391

26/09/2018 Pagina 15 **C. Bourrely, B. Machet, and E. de Rafael, NPB, 189 (1981), pp. 157 – 181**

L. Vittorio (LAPTh & CNRS, Annecy) 9 **E. de Rafael and J. Taron, PRD, 50 (1994), p. 373-380**

The susceptibility
$$
\chi_{T}
$$

\n
$$
\chi_{T}(\overline{Q}_{0}^{2}) \equiv \frac{1}{4} \int_{0}^{\infty} d\tau \tau^{4} \frac{j_{1}(\overline{Q}_{0}\tau)}{\overline{Q}_{0}\tau} V_{2\pi}(\tau)
$$

Two ways of computing it numerically:

i) Direct lattice determination of the Euclidean correlator $V_{2\pi}$

ii) Data-driven determination of the Euclidean correlator V_{2 π} through e+e- data: in fact

$$
V(\tau) = \frac{1}{12\pi^2}\int_{2M_{\pi}}^{\infty}d\omega \omega^2 R_{had}(\omega)e^{-\omega \tau} \text{ , where } \ R_{had}(\omega) = \frac{3\omega^2}{4\pi\alpha_{em}^2}\sigma_{had}(\omega)
$$

The susceptibility
$$
\chi_{T}
$$

\n
$$
\chi_{T}(\overline{Q}_{0}^{2}) \equiv \frac{1}{4} \int_{0}^{\infty} d\tau \tau^{4} \frac{j_{1}(\overline{Q}_{0}\tau)}{\overline{Q}_{0}\tau} V_{2\pi}(\tau)
$$

Two ways of computing it numerically:

i) Direct lattice determination of the Euclidean correlator $V_{2\pi}$

ii) Data-driven determination of the Euclidean correlator V_{2 π} through e+e- data: in fact

$$
V(\tau) = \frac{1}{12\pi^2} \int_{2M_{\pi}}^{\infty} d\omega \omega^2 R_{had}(\omega) e^{-\omega \tau}, \text{ where } R_{had}(\omega) = \frac{3\omega^2}{4\pi \alpha_{em}^2} \sigma_{had}(\omega)
$$

$$
\chi_T(\overline{Q}_0^2) = \frac{1}{24\pi^2} \int_{2M_{\pi}}^{\infty} d\omega \,\omega^{-3} \left(1 - \frac{4M_{\pi}^2}{\omega^2}\right)^{3/2} \frac{1}{\left(1 + \overline{Q}_0^2/\omega^2\right)^3} |F_{\pi}^V(\omega)|^2
$$

The susceptibility
$$
\chi_{T}
$$

\n
$$
\chi_{T}(\overline{Q}_{0}^{2}) \equiv \frac{1}{4} \int_{0}^{\infty} d\tau \tau^{4} \frac{j_{1}(\overline{Q}_{0}\tau)}{\overline{Q}_{0}\tau} V_{2\pi}(\tau)
$$

Two ways of computing it numerically:

i) Direct lattice determination of the Euclidean correlator $V_{2\pi}$

ii) Data-driven determination of the Euclidean correlator V_{2 π} through e+e- data: in fact

$$
V(\tau) = \frac{1}{12\pi^2} \int_{2M_{\pi}}^{\infty} d\omega \omega^2 R_{had}(\omega) e^{-\omega \tau}, \text{ where } R_{had}(\omega) = \frac{3\omega^2}{4\pi\alpha_{em}^2} \sigma_{had}(\omega)
$$

$$
\chi_T(\overline{Q}_0^2) = \frac{1}{24\pi^2} \int_{2M_{\pi}}^{\infty} d\omega \,\omega^{-3} \left(1 - \frac{4M_{\pi}^2}{\omega^2}\right)^{3/2} \frac{1}{\left(1 + \overline{Q}_0^2/\omega^2\right)^3} |F_{\pi}^V(\omega)|^2}
$$

The susceptibility χ_{\top}

Study of spacelike data

Study of spacelike data

ONLY ELECTROPRODUCTION DATA AS INPUTS

ALL DATA AS INPUTS

SPACER:
$$
\langle r_{\pi} \rangle_{DM} = 0.703 \pm 0.027
$$
 fm

i) $\langle r_{\pi} \rangle = 0.656 \pm 0.005$ fm from an average of dispersive analyses of timelike (e+e−) and spacelike data ii) $\langle r_{\pi} \rangle = 0.663 \pm 0.023$ fm from **spacelike data from the F2 experiment** iii) $\langle r_{\pi} \rangle = 0.663 \pm 0.006$ fm from spacelike data from the NA7 experiment at CERN iv) $\langle r_{\pi} \rangle = 0.65 \pm 0.08 \text{ fm}$ from spacelike data from the SELEX experiment at FNAL

SPACER:
$$
\langle r_{\pi} \rangle_{DM} = 0.703 \pm 0.027
$$
 fm

i) $\langle r_{\pi} \rangle = 0.656 \pm 0.005$ fm from an average of dispersive analyses of timelike (e+e−) and spacelike data ii) $\langle r_{\pi} \rangle = 0.663 \pm 0.023$ fm from spacelike data from the F2 experiment iii) $\langle r_{\pi} \rangle = 0.663 \pm 0.006$ fm from spacelike data from the NA7 experiment at CERN iv) $\langle r_{\pi} \rangle = 0.65 \pm 0.08$ fm from spacelike data from the SELEX experiment at FNAL

$$
\text{MONOPOLE:}
$$
\n
$$
\langle r_{\pi} \rangle = 0.656 \pm 0.008 \text{ fm}
$$
\n
$$
\chi^2 / (d.o.f.) \simeq 1.0
$$

MONOPOLE: MONOPOLE+DIPOLE:

$$
\langle r_{\pi} \rangle = 0.699 \pm 0.024 \text{ fm}
$$

$$
\chi^2 / (d.o.f.) \simeq 1.0
$$

Significative model dependence !!

SPACER:
$$
\langle r_{\pi} \rangle_{DM} = 0.703 \pm 0.027
$$
 fm

i) $\langle r_{\pi} \rangle = 0.656 \pm 0.005$ fm from an average of dispersive analyses of timelike (e+e−) and spacelike data

 $\langle r_{\pi} \rangle \, = \, 0.656 \pm 0.005 \, \text{ fm} \;$ from an average of dispersive analyses of timelike (e+e−) and spacelike data \vert

 $\langle r_{\pi} \rangle \, = \, 0.656 \pm 0.005 \, \text{ fm} \;$ from an average of dispersive analyses of timelike (e+e−) and spacelike data \vert

SPACER:
$$
\langle r_{\pi} \rangle_{DM} = 0.703 \pm 0.027
$$
 fm

i) $\langle r_{\pi} \rangle = 0.656 \pm 0.005$ fm from an average of dispersive analyses of timelike (e+e−) and spacelike data

3 important comments:

- i) the use of the **very precise and dense timelike e+e− data leads to the accurate result** for the pion charge radius
- ii) the **DM band** is **in better agreement with the spacelike CERN data** w.r.t. to the blue one
- iii) it is extremely interesting to see **what could be the possible impact of the recent CMD3 experimental data (arXiv:2302.08834 [hep-ex]) obtained in the timelike region on the dispersive estimate of the pion charge radius** …

Conclusions

The **experimental data on the em form factor of charged pions available at spacelike momenta** have been analyzed using **the DM approach, which describes the momentum dependence of hadronic form factors without introducing any explicit parameterization and includes properly the constraint coming from unitarity and analyticity**.

Main take-home messages :

i) Our value of the pion charge radius is higher than the PDG

ii) Unitarity and model-independence matter!!

iii) If we analyze separately spacelike and timelike data, we obtain different values of the pion charge radius… What about CMD-3 (arXiv:2302.08834) ?

iv) The Importance Sampling (IS) procedure allows to include an arbitrarily high number of input data

Conclusions

For those who are interested: in the paper two other technical issues have been analyzed in detail (no time to tell you this in detail here):

i) Comparison among the DM method and BGL/BCL fitting procedures

ii) Impact of non-zero values of Q_0

iii) Issue of the onset of pQCD at large spacelike momenta (sensitivity study)

iv) (related to ii)) Insight on the pre-asymptotic effects related to the scale dependence of the pion distribution amplitude

THANKS FOR YOUR ATTENTION!

BACK-UP SLIDES

Some basic definitions:

$$
a^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dQ^2 K(Q^2) \left[\Pi(Q^2) - \Pi(0)\right]
$$

The Hadronic Vacuum Polarization (HVP) tensor is defined as

$$
\Pi_{\mu\nu}(Q^2) = \int d^4x e^{iQ\cdot x} \overline{\left(j_\mu(x)j_\nu(0)\right)} = (\delta_{\mu\nu}Q^2 - Q_\mu Q_\nu) \overline{\Pi(Q^2)}
$$

$$
\overline{j_\mu(x)} = \sum_f q_f \overline{\psi}_f(x) \gamma_\mu \psi_f(x)
$$

Dispersion relations:

$$
\Pi_{\text{ren}} = \Pi(k^2) - \Pi(0) = \frac{k^2}{\pi} \int_{s_{thr}}^{\infty} ds \frac{\text{Im } \Pi(s)}{s(s - k^2)}
$$

L. Vittorio (LAPTh & CNRS, Annecy)

The *new* g-2 puzzle

Many lattice computations are now compatible with BMW Collaboration:

The positivity of the original inner products guarantee that $\det \mathbf{M} \geq 0$: the solution of this inequality can be computed analitically, bringing to

$$
\beta(z) \equiv \frac{1}{\phi(z)\underline{d(z)}} \sum_{i=1}^{N} \phi_i f_i \underline{d_i} \frac{1-z_i^2}{z-z_i} \qquad \gamma = \frac{1}{\underline{d^2(z)}\phi^2(z)} \frac{1}{1-z^2} \left[\chi - \sum_{i,j=1}^{N} f_i f_j \phi_i \phi_j \underline{d_i d_j} \frac{(1-z_i^2)(1-z_j^2)}{1-z_iz_j} \right]
$$

UNITARITY FILTER: unitarity is satisfied if γ is semipositive definite, namely if

$$
\chi \geq \sum_{i,j=1} N f_i f_j \phi_i \phi_j d_i d_j \frac{(1-z_i^2)(1-z_j^2)}{1-z_iz_j} \qquad \text{Unitarity is}
$$

Statistical and systematic uncertainties

How can we finally combine all the N_U lower and upper bounds of both the FFs??

One bootstrap event case:

after a single extraction, we have one value of the lower bound f_l and one value of the upper one f_l for each FF. Assuming that the true value of each FF can be **everywhere inside the range** $(f_U - f_L)$ **with equal probability**, we associate to the FFs a *flat* distribution

$$
P(f_{0(+)}) = \frac{1}{f_{U,0(+)} - f_{L,0(+)}} \Theta(f_{0(+)} - f_{L,0(+)}) \Theta(f_{U,0(+)} - f_{0(+)})
$$

Many bootstrap events case:

how to mediate over the whole set of bootstrap events? Since the lower and the upper bounds of a generic FF are deeply correlated, we will assume a multivariate Gaussian distribution:

$$
P(f_L, f_U) = \frac{\sqrt{\det \rho}}{2\pi} \exp \left[-\frac{\rho_{up, up} (f_U - \langle f_U \rangle)^2 + \rho_{lo, lo} (f_L - \langle f_L \rangle)^2 + 2\rho_{lo, up} (f_U - \langle f_U \rangle) (f_L - \langle f_L \rangle)}{2} \right]
$$

In conclusion, we can combine the bounds of each FF in a final mean value and a final standard deviation, defined as

$$
\langle f \rangle = \frac{\langle f_L \rangle + \langle f_U \rangle}{2},
$$
\n
$$
\sigma_f = \frac{1}{12} (\langle f_U \rangle - \langle f_L \rangle)^2 + \frac{1}{3} (\sigma_{f_{lo}}^2 + \sigma_{f_{up}}^2 + \rho_{lo, up} \sigma_{f_{lo}} \sigma_{f_{up}})
$$

Parametrization of pion FF in CHS '19

$$
\frac{F_{\pi}^V(s) = \Omega_1^1(s) G_{\omega}(s) G_{\text{in}}^N(s)}{\Omega_1^1(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\delta_1^1(s')}{s'(s'-s)}\right\}} \bigg|_{\substack{\text{Omega,} \\ (\delta_1^1 \text{ is the phase shift of elastic } \pi\pi \text{ scattering)} \\ \rho \text{-}\omega \text{ mixing} \\ \Omega_{\omega}(s) = 1 + \frac{s}{\pi} \int_{9M_{\pi}^2}^{\infty} ds' \frac{\text{Im } g_{\omega}(s')}{s'(s'-s)} \left(\frac{1 - \frac{9M_{\pi}^2}{s'}}{1 - \frac{9M_{\pi}^2}{M_{\omega}^2}}\right)^4 \qquad g_{\omega}(s) = 1 + \epsilon_{\omega} \frac{s}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^2 - s}}
$$

$$
G_{\text{in}}^{N}(s) = 1 + \sum_{k=1}^{N} c_k (z^k(s) - z^k(0))
$$

Further inelastic scattering (starting from $16M_\pi$ **^2)**

With a «large» input dataset, unitarity is a strong filter!

A very delicate compensation in γ is required and this naturally implies specific correlations among the form factor points

 $d(z) \equiv \prod_{m=1}^N \frac{1-zz_m}{z-z_m} \hspace{0.5cm} d_i \equiv \prod_{m=1}^N$

The basic idea is a substitution of the usual probability density function (PDF) adopted in our analyses:

$$
PDF(f_i) \propto e^{-\frac{1}{2} \sum_{i,j=0}^{N} (f_i - F_i) C_{ij}^{-1} (f_j - F_j)}
$$

$$
PDF_{DM}(f_i) \propto PDF(f_i) \cdot e^{-\frac{s}{\sqrt{2} \sqrt[3]{Q_0^2}} \times DM(\overline{Q}_0^2)}
$$

$$
\beta - \sqrt{\gamma} \le f(z) \le \beta + \sqrt{\gamma}
$$
\n
$$
\beta = \frac{1}{d(z)\phi(z)} \sum_{j=1}^{N} f_j \phi_j d_j \frac{1 - z_j^2}{z - z_f} \quad \gamma = \frac{1}{d^2(z)\phi^2(z)} \frac{1}{1 - z^2} \left[\chi - \left[\sum_{i,j=1}^{N} f_i f_j \phi_i \phi_j d_i d_j \frac{(1 - z_i^2)(1 - z_j^2)}{1 - z_i z_j} \right] \right]
$$
\nL. Vittorio (LAPTh & CNRS, Annecy)

The basic idea is a substitution of the usual probability density function (PDF) adopted in our analyses:

$$
\left[PDF_{DM}(f_i) \propto e^{-\frac{1}{2}\sum_{i,j=0}^{N}(f_i-\widetilde{F}_i)\widetilde{C}_{ij}^{-1}(f_j-\widetilde{F}_j)}\right]
$$

In short: a new set of input data $\{\widetilde{F}_i,\widetilde{C}_{i j}\}$ is introduced in order to increase the likelihood of small values of χ DM !

$$
\beta - \sqrt{\gamma} \le f(z) \le \beta + \sqrt{\gamma}
$$
\n
$$
\beta = \frac{1}{d(z)\phi(z)} \sum_{j=1}^{N} f_j \phi_j d_j \frac{1 - z_j^2}{z - z_f} \quad \gamma = \frac{1}{d^2(z)\phi^2(z)} \frac{1}{1 - z^2} \left[\chi - \left[\sum_{i,j=1}^{N} f_i f_j \phi_i \phi_j d_i d_j \frac{(1 - z_i^2)(1 - z_j^2)}{1 - z_i z_j} \right] \right]
$$
\nL. Vittorio (LAP111 & CINRS, Annecy)

Recall that the **DM** remains a **fitting procedure with a vanishing value of the χ2-variable in a frequentist language**! Then, we have to monitorate the deviation of the new input data from the initial ones thorugh the quantities

$$
\Delta \equiv \left\{ \frac{1}{N+1} \sum_{i,j=0}^{N} (\widetilde{F}_i - F_i) C_{ij}^{-1} (\widetilde{F}_j - F_j) \right\}^{1/2}
$$

$$
\eta \equiv \left\{ \frac{1}{N+1} \sum_{i=0}^N \frac{\widetilde{F}_i^2}{F_i^2} \right\}^{1/2}
$$

$$
\epsilon \equiv \left\{\frac{1}{N+1}\sum_{i=0}^N \frac{\widetilde{C}_{ii}}{C_{ii}}\right\}^{1/2} = \left\{\frac{1}{N+1}\sum_{i=0}^N \frac{\widetilde{\sigma}_i^2}{\sigma_i^2}\right\}^{1/2}
$$

∆ < 1 means that on average the new data deviate from the original ones by less than one standard deviation

The value of η can be less or larger than unity depending on whether the new data are (on average) less or larger than original ones

Same physical meaning of η, but now referred to the uncertaintities of the new data in comparison to the original ones

Using the events surviving to the unitarity filter, I compute new data $\{\overline{F}_i,\overline{\sigma}_i\}$, with which we are finally able to get rid off the problem of unitarity and to compute the **final DM band for the em pion form factor**!

 0.5

 θ

 -0.5

 -1

0.5

 $\overline{0}$

 -0.5

 -1

 $\overline{\rho}_{ij} \equiv \overline{C}_{ij}/(\overline{\sigma}_i\overline{\sigma}_j)$

Original covariances of data $C = \left(\begin{array}{cc} C^{\text{CERN}} & 0 \ \ 0 & C^{\text{JLAB}-\pi} \end{array}\right)$

$$
C_{ij}^{\text{\tiny J-}\pi}=\sigma_i^2\delta_{ij}
$$

 $C_{ij}^{\text{CERN}} = \sigma_i^2 \delta_{ij} + F_i F_j \delta r^2$

SPACER:
$$
\langle r_{\pi} \rangle_{DM} = 0.703 \pm 0.027
$$
 fm

$$
M(Q^{2}) = \frac{1}{1 + \langle r_{\pi}^{2} > Q^{2}/6}
$$
\n
$$
M\&D(Q^{2}) = \frac{a_{1}}{1 + \langle r_{\pi}^{2} > Q^{2}/6} + \frac{1 - a_{1}}{(1 + KQ^{2})^{2}}
$$
\n
$$
M\&D(Q^{2}) = \frac{a_{1}}{1 + \langle r_{\pi}^{2} > Q^{2}/6} + \frac{1 - a_{1}}{(1 + KQ^{2})^{2}}
$$
\n
$$
MONOPOLE: MONOPOLE+DIPOLE:
$$
\n
$$
\langle r_{\pi} \rangle = 0.699 \pm 0.024 \text{ fm}
$$
\n
$$
\chi^{2}/(d.o.f.) \simeq 1.0
$$
\nSignificative model
\ndependence *II*

Non-zero values of \overline{Q}_0 affect both the susceptibility χ and the kinematical functions ϕ :

$$
4M_{\pi}^{2}\overline{\chi}_{T}(\overline{Q}_{0}^{2}) \equiv \frac{4M_{\pi}^{2}\chi_{T}(\overline{Q}_{0}^{2})}{(1-\overline{z}_{0})^{6}} , \qquad \qquad \left[(1-\overline{z}_{0}) = 4M_{\pi}/\overline{Q}_{0} + \mathcal{O}(1/\overline{Q}_{0}^{2}) \right]
$$
\n
$$
\overline{\phi}(z,\overline{Q}_{0}^{2}) \equiv \frac{\phi(z,\overline{Q}_{0}^{2})}{(1-\overline{z}_{0})^{3}} = \frac{1}{\sqrt{1536\pi}} (1+z)^{2} \frac{\sqrt{1-z}}{(1-\overline{z}_{0}z)^{3}} .
$$
\n
$$
\overline{\beta}(z) - \sqrt{\overline{\gamma}(z)} \leq F_{\pi}^{V}(z) \leq \overline{\beta}(z) + \sqrt{\overline{\gamma}(z)} ,
$$
\n
$$
\overline{\beta}(z) = \frac{1}{\overline{\phi}(z,\overline{Q}_{0}^{2})d(z)} \sum_{i=0}^{N} \overline{\phi}_{i}F_{i}d_{i} \frac{1-z_{i}^{2}}{z-z_{i}} ,
$$
\n
$$
\overline{\gamma}(z) = \frac{1}{(1-z^{2})\overline{\phi}^{2}(z,\overline{Q}_{0}^{2})d^{2}(z)} \left[4M_{\pi}^{2}\overline{\chi}_{T}(\overline{Q}_{0}^{2}) - \overline{\chi}_{\mathrm{DM}}(\overline{Q}_{0}^{2}) \right]
$$
\n**ACHTUNG:**

\n
$$
4M_{\pi}^{2}\overline{\chi}_{T}(\infty) = \frac{1}{1536\pi^{2}} \int_{2M_{\pi}}^{\infty} \frac{d\omega}{2M_{\pi}} \left(\frac{\omega}{2M_{\pi}} \right)^{3} \left(1 - \frac{4M_{\pi}^{2}}{\omega^{2}} \right)^{3/2} |F_{\pi}^{V}(\omega)|^{2}
$$
\nL Vittorio (LAPTh & CNRS, Annecy)

For increasing \overline{Q}_0 , the impact of the electroproduction data increases!

ACHTUNG 2: pion form factor is the Fourier transform of a charge distribution proportional to the square of the pion wave function, thus zeros of the FFs have to be excluded!

