Measurement of the branching fraction of $B \rightarrow \overline{D}^{(*)}K^-K^{(*)0}$ and $B \rightarrow D^{(*)}D_s^-$ decays using the 2019-2022 Belle II data sample

GDR-InF annual workshop 2023

INTENSITY

frontier

Valerio Bertacchi, Karim Trabelsi

Mont Sainte-Odile, 7 November 2023

***** The DKK sector is **mostly unexplored**

- In Belle II MC: $(B^+ \to DKK) \simeq 6\%$ (where $D = D^{\pm,0,*}$, $K = K^{\pm,0,*}$)
- Measurements from a single paper [Belle, Phys.Lett.B,542(2002)] 29.4 fb⁻¹, 5 modes (BR=0.28%)
- The remaining is generated by Pythia

***** The DKK sector is **mostly unexplored**

- In Belle II MC: $(B^+ \to DKK) \simeq 6\%$ (where $D = D^{\pm,0,*}$, $K = K^{\pm,0,*}$)
- Measurements from a single paper [Belle, Phys.Lett.B,542(2002)] 29.4 fb⁻¹, 5 modes (BR=0.28%)
- The remaining is generated by Pythia

* A better knowledge of this sector can be very useful to **extend the b-tagging modes**

***** The DKK sector is **mostly unexplored**

- In Belle II MC: $(B^+ \to DKK) \simeq 6\%$ (where $D = D^{\pm,0,*}$, $K = K^{\pm,0,*}$)
- Measurements from a single paper [Belle, Phys.Lett.B,542(2002)] 29.4 fb⁻¹, 5 modes (BR=0.28%)
- The remaining is generated by Pythia

* A better knowledge of this sector can be very useful to extend the b-tagging modes

- **Hadronic B-tagging:** full reconstruction of the tag side using $B \rightarrow$ hadron modes
- Anly a **small set of modes** contributes to the hadronic Belle II b-tagging efficiency:

•
$$B \to D^{(*)}(n)\pi^{\pm}, B \to D^{(*)}(n)\pi^{\pm}\pi^{0}, n<4$$

 $B \rightarrow DKK$ modes has very hight purity: their contribution to b-tagging can be relevant

semi-inclusive approaches ($B \rightarrow DKKX$) can also be developed, obtained result similar to semileptonic B-tagging

Measured 0.28

***** The DKK sector is **mostly unexplored**

- In Belle II MC: $(B^+ \to DKK) \simeq 6\%$ (where $D = D^{\pm,0,*}$, $K = K^{\pm,0,*}$)
- Measurements from a single paper [Belle, Phys.Lett.B,542(2002)] 29.4 fb⁻¹, 5 modes (BR=0.28%)
- The remaining is generated by Pythia

* A better knowledge of this sector can be very useful to **extend the b-tagging modes**

*The Belle II integrated luminosity (362 fb⁻¹) already recorded allows:

- to improve over the Belle measurement with **higher precision**
- to observe additional 3 new $B \rightarrow DKK_S^0$ modes (2-3 sigmas in Belle paper)
- to understand the resonant contribution (a_1, ρ' ...) of this class of decays
- to perform the world best measurement of the four $B
 ightarrow D_s^- D^{(*)}$ channels

Measured

Belle studied the K^-K^{*0} mass distribution

- far from 3 body phase-space
- compatible with resonant $a_1^- \to K^- K^{*0}$ resonance
- angular analysis K^-K^{*0} : $J^P = 1^+$ (agrees with a_1)
- Also $m(K^-K_S^0)$ far from phase-space

*****The Belle II integrated luminosity (**B6**2 fb⁻¹) already recorded allows:

- to improve over the Belle measurement with **higher precision**
- to **observe additional 3 new** $B \rightarrow DKK_S^0$ modes (2-3 sigmas in Belle paper)
- to understand the resonant contribution (a_1, ρ' ...) of this class of decays
- to perform the world best measurement of the four $B
 ightarrow D_s^- D^{(*)}$ channels

Analysis strategy

- Efficiency as a 2D map $\mathcal{E}(m_{K-K^{(*)}}, m_{D^{(*)}K^{(*)}})$
- Signal yield: ΔE fit: signal + background ($q\overline{q}, B\overline{B}...$), where $\Delta E = E_R^* \sqrt{s/2}$
- **Branching Fractions:**
 - Event by event efficiency correction, as a function of $(m_{K-K^{(*)}}, m_{D^{(*)}K^{(*)}})$

- Invariant Masses/angular variables:
 - s-Plot is performed on the required variable: $\Delta E \times \text{Var} \rightarrow \text{Var}$ bkg free
 - Event by event efficiency Correction, as a function of $(m_{K-K^{(*)}}, m_{D^{(*)}K^{(*)}})$

bkg-subtracted and efficiency corrected yield (i=bins of efficiency map)

Analysis strategy

- Efficiency as a 2D map $\mathcal{E}(m_{K-K^{(*)}}, m_{D^{(*)}K^{(*)}})$
- **Signal yield:** ΔE fit: signal + ba
- **Branching Fractions:**
 - Event by event efficiency co
- - only
- $\mathscr{B} = \frac{1}{2f_{+-,00}N_{B\overline{B}}} \cdot \mathscr{B}(\text{inter}) \bullet$ arXiv:2305.01321
- Invariant Masses/angular variances.
 - s-Plot is performed on the required variable: $\Delta E \times \text{Var} \rightarrow \text{Var}$ bkg free
 - Event by event efficiency Correction, as a function of $(m_{K-K^{(*)}}, m_{D^{(*)}K^{(*)}})$

Reconstruction and selection

Decay chain

 $B \to D^{(*)} K^- K^{(*)0}_{(S)}$ • $K_{\rm S}^0 \to \pi^+ \pi^-$ • $K^{*0} \rightarrow K^+ \pi^ D^0 \rightarrow K^- \pi^+$ $D^+ \rightarrow K^- \pi^+ \pi^+$ $D^{*0} \to D^0 \pi^0$ • $\pi^0 \rightarrow \gamma \gamma$ $D^{*+} \rightarrow D^0 \pi^+$

BB and $q\overline{q}$ suppression

0.6

0.7

0.8

•
$$M_{bc} = \sqrt{(\sqrt{s/2})^2 - \vec{p}_B^{*2}} > 5.272$$

• $B \to DD_{c}^{-}(\to KK)$ veto: \Rightarrow $|m_{D_s} - m_{KK}| > 20 \,\mathrm{MeV}$

Best candidate selection: min $|M_{bc} - M_B|$

$$|M_{K^*}^{
m reco} - M_{K^*}^{
m PDG}| < 50 \,{
m MeV}$$

• ... /see backup for full details and definitions/

Peaking background in $B^- \rightarrow D^{*0} K^- K_c^0$

• [More details in backup]

Yield extraction (K_{S}^{0} channels)

- Signal: gaussian+asymmetric gaussian
- **Bkg**: exponential+constant
- Dedicated peaking bkg channels and $D^{*0}KK_{S}^{0}$ channel
- Result preliminary validated on MC and with 10^3 toys

[from <u>arXiv:2305.01321</u>]

Efficiency estimation

- Estimated using signal MC
- model of the MC
- Two examples of the maps:

• differential in $\mathcal{E}(m_{K^-K^{(*)}}, m_{D^{(*)}K^{(*)}})$ --> to be independent from the Dalitz

Branching fractions and syst. unc. (K_{S}^{0} channels)

Channel	Yield	Integrated $\varepsilon^{\text{corr.}}$	$\mathcal{B}\left[10^{-4} ight]$	Significance (σ)	Belle measurement (r
$B^- \rightarrow D^0 K^- K^0_S$	$209\pm\!17$	0.1034 ± 0.0001	$1.84{\pm}0.16{\pm}0.10$	18	$2.75 \pm 0.7 \pm 0.15$ (5.5
$\overline{B}^0 \to D^+ K^- K^0_S$	$105\pm\!14$	0.0480 ± 0.0001	$0.83{\pm}0.12{\pm}0.05$	10	$0.8 \pm 0.4 \pm 0.15 \; (2.6)$
$B^- \rightarrow D^{*0} K^- K^0_S$	50 ± 9	0.0415 ± 0.0001	$1.46 {\pm} 0.27 {\pm} 0.12$	8	$2.6 \pm 1.35 \pm 0.6 \; (2.5)$
$\overline{B}^0 \to D^{*+} K^- K^0_S$	37 ± 7	0.0408 ± 0.0001	$0.91 {\pm} 0.19 {\pm} 0.06$	9	$1.0 \pm 0.75 \pm 0.2 \; (2.5)$

Source	$D^0 K^- K^0_S$	$D^+K^-K^0_S$	$D^{*0}K^{-}K^{0}_{S}$	$D^{*+}K^{-}K$
Eff MC sample size	0.8	1.5	1.7	1.6
Eff tracking	0.7	1.0	0.7	1.0
Eff π^+ from D^{*+}	-	-	-	2.7
Eff K_S^0	3.6	3.6	3.8	3.4
Eff PID	1.3	1.5	0.5	0.6
Eff π^0	-	-	5.1	-
Signal model	1.5	3.4	2.9	2.6
Bkg model	0.8	1.1	< 0.1	0.7
$DKK\pi$ bkg	-	-	-	-
D^{*0} peaking bkg	-	-	< 0.1	-
$N_{B\overline{B}}, f_{+-,00}$	2.7	2.8	2.7	2.8
Intermediate $\mathcal{B}s$	0.7	1.7	1.6	1.1
Total systematic	5.2	6.5	7.9	6.2
Statistical	8.8	14.5	18.2	20.6

 \tilde{s}^0_S

- Observation of 3 new decay channels
- All channels are statistically limited
- highlighted dominant systematic uncertainties

[from <u>arXiv:2305.01321</u>]

Invariant masses (K_{S}^{0} channels)

- Clear discrepancy with phase**space** distribution (from MC)
- Can be compatible with a lowmass **resonance** ρ' -like (See for instance: [arXiv:2201.06881])
- NB: Efficiency correction <u>not</u> applied in the $m(KK_{S}^{0})$ shown here

[from <u>arXiv:2305.01321</u>]

Reconstructed sample composition - K^{*0} channels

[MC Simulation]

- all the channels are very clean
- some off-peak feed across
- All the channels have a $B \rightarrow DKK\pi$ peaking bkg [next slides]
- The $D^{*0}KK^{*0}$ has an additional peaking bkg, likewise the K_{c}^{0} case

$B \rightarrow DKK\pi$ background

- Do not apply the cut in $m(K^+\pi^-)$
- **perform a fit in** ΔE to separate $q\overline{q}/B\overline{B}$ bkg
- use the sPlot to obtain the $m(K^+\pi^-)$ distribution, free from $q\overline{q}/BB$ bkg
- fit the resulting $m(K^+\pi^-)$ _distribution
 - Signal: BW phase-space corrected, with mean= $m_{K^{*0}}$ and free width
 - Bkg: 3rd degree Chebyshev polynomial (parameters fixed)
 - veto on $m(K^+\pi^-) \approx m_D$ for $B \rightarrow D^{(*)}DK$ + veto [1.25] GeV,1.60 GeV] for additional K* resonances
- Extract the fraction $R_{NR} = N_{DKK\pi}/N_{DKK*}$ in signal region (under the K* peak)
- applying the cut $|m(K^+\pi^-) m_{K^*}| < 50 \text{ MeV}$
- **Perform the** ΔE **fit**, including the NR $DKK\pi$ component

$B \rightarrow DKK\pi$ background: results

- NR fraction estimated on MC
- Since we know that the MC is not-realistic, we also use data in the $m(K^*)$ sideband merged with data in signal region to obtain a more reliable expectation (value never used only for systematic uncertainties estimation)
- Only statistical error shown

Channel	Non-resonant fraction (MC) [%]	Non-resonant fraction (Data-sideband) [%]
$B^- ightarrow D^0 K^- K^{*0}$	7.0 ± 0.7	2.2 ± 0.4
$\bar{B}^0 \rightarrow D^+ K^- K^{*0}$	9.0 ± 0.8	0.5 ± 0.4
$B^- \to D^{*0} K^- K^{*0}$	4.8 ± 0.8	1.4 ± 0.5
$\bar{B}^0 \rightarrow D^{*+} K^- K^{*0}$	7.6 ± 1.3	2.4 ± 0.8

$B \rightarrow DKK^{*0}$ channels

Channel	Yield	TopoAna-matched Yield	Integrated ε	\mathcal{B} [10 ⁻⁴]	Monte Carlo \mathcal{B} [10 ⁻⁴]
$\overline{B^- \to D^0 K^- K^{*0}}$	454 ± 22	422 ± 21	0.0499 ± 0.0001	$8.86 \pm 0.45 \pm 0.41$	8.07 ± 0.06
$\overline{B}^0 \to D^+ K^- K^{*0}$	475 ± 23	447 ± 21	0.0243 ± 0.0001	$8.54 \pm 0.44 \pm 0.41$	8.83 ± 0.06
$B^- \rightarrow D^{*0} K^- K^{*0}$	195 ± 16	200 ± 14	0.0194 ± 0.0001	$14.87 \pm 1.27 \pm 1.14$	14.93 ± 0.09
$\overline{B}^0 \to D^{*+} K^- K^{*0}$	148 ± 12	149 ± 12	0.0180 ± 0.0001	$12.40 \pm 1.2 \pm 0.63$	13.00 ± 0.08

- Good agreement with the expected values
- modelled also the $DKK\pi$ non-resonant bkg
- efficiency corrected $m(KK^{*0})$ distributions

Angular analysis

- Validated with generator level distribution from signal MC (normalized to the same integral)
- Tested all the spin-pairity hypothesis of Belle
- NB: the generic MC is phase space

from Belle paper

The angular distributions of the K^-K^{*0} system with $J^P =$ $0^{-}, 1^{-}, 1^{+}$. The values of $\chi^2/n.d.f.$ were obtained from fits to the experimental angular distributions (see Fig. 4)

	D meso	n modes	D^* m	D^* meson modes		
J^P	θ_{KK}	$ heta_{K^*}$	θ_{KK}	$ heta_{K^*}$	$\chi^2/n.$	
0-	const	$\cos^2 \theta_{K^*}$	const	$\cos^2 \theta_{K^*}$	71.7/1	
1-	$\sin^2 \theta_{KK}$	$\sin^2 \theta_{K^*}$	_	_	37.3/ 8	
1^{+}	const	const	const	const	20.7/1	

- + differential in bin of mKK

0.9-1.7 GeV 1.7-2.6 GeV 2.6-3.5 GeV

Control channel: $B \rightarrow D^{(*)}D_{s}^{-}(\rightarrow K^{-}K^{(*)}_{(s)})$

- Pro: very clean channel, no Pythia, same efficiency
- Cons: lower yield ($BR(D_S^- \rightarrow K^- K_S^0) \simeq 1.5\%$)
- Reconstruction: reverted the cut $|m_{D_s} - m_{KK}| > 20 \text{ MeV} \longrightarrow |m_{D_s} - m_{KK}| < 20 \text{ MeV}$
- Result: branching fraction statistically limited, with **precision** compatible with the world average

Branching Fractions

Channel	Yield	Average $\varepsilon(K^{*0}/K_S^0)$	\mathcal{B} [10 ⁻⁴]	World average $\mathcal{B} \; [10^{-4}]$
$B^- ightarrow D^0 D^s$	343 ± 19	0.011/0.05	$96\pm5\pm4$	90 ± 9
$\overline{B}^0 \to D^+ D^s$	333 ± 19	0.06/0.02	$82\pm5\pm4$	72 ± 8
$B^- ightarrow D^{*0} D^s$	90 ± 11	0.04/0.02	$99\pm12\pm7$	82 ± 17
$\overline{B}^0 \to D^{*+} D^s$	88 ± 10	0.05/0.02	$81\pm9\pm4$	80 ± 11

Conclusions

- $8 B \rightarrow D^{(*)} K K^{(*)0}_{(S)}$ channels: **5** *(expected)* world best measurement, **3** new observations
 - Interesting resonant structures in $K_{\rm S}^0$ channels observed
 - Resonant structures in K^{*0} channels expected (from Belle)
- $4 B \rightarrow D^{(*)}D_s^-$ channels: **4** (expected) world best measurements, statistically limited

• *Status*: the analysis is within the internal review phase, the result will be submitted to the journal and public presented in the next months

BACKUP SLIDES

Previous measurements (Belle)

Decay mode	BR (10^{-4})	Signif. (σ)
$B^- \to D^0 K^- K^{*0}$	$7.5\pm1.3\pm1.1$	8.0
$\overline{B}^0 \to D^+ K^- K^{*0}$	$8.8\pm1.1\pm1.5$	10.4
$B^{o} \to D^{*0} K^- K^{*0}$	$15.3\pm3.1\pm2.9$	6.7
$\overline{B}^0 \to D^{*+} K^- K^{*0}$	$12.9\pm2.2\pm2.5$	9.5
$B^- \rightarrow D^0 K^- K^0$	$5.5\pm1.4\pm0.8$	5.5

[Belle, Phys.Lett.B,542(2002)]

Decay mode	BR (10^{-4})	Signif. (σ)
$\begin{aligned} \overline{B}^0 &\to D^+ K^- K^0 \\ B^- &\to D^{*0} K^- K^0 \\ \overline{B}^0 &\to D^{*+} K^- K^0 \end{aligned}$	$egin{aligned} 1.6 \pm 0.8 \pm 0.3 \ 5.2 \pm 2.7 \pm 1.2 \ 2.0 \pm 1.5 \pm 0.4 \end{aligned}$	$2.6 \\ 2.5 \\ 2.5$

Full reconstruction and selection

- K^+ : PID(K) > 0.6
- π^+ : PID(π) > 0.6
- γ: eff40_May2020Fit collection $T_{cluster} < 100 \,\mathrm{ns}$ hadronicSplitOffSuppression>0.1

• π^0 : pi0:eff40 May2020Fit collection $|m_{\pi^0}^{\text{reco}} - m_{\pi^0}^{\bar{P}DG}| < 15 \text{ MeV}$

- $K_{\rm S}^0$: K_S0:merged collection $|m_{K_{c}^{0}}^{\text{reco}} - m_{K_{c}^{0}}^{PDG}| < 10 \text{ MeV} (3\sigma)$ $R_{\pi\pi-IP} > 0.4 \text{ cm}$ $\cos \theta > 0.8$, θ = angle between $\vec{p}_{K_{s}^{0}}$ and $\vec{v}_{K_{s}^{0}}$
- $K^{*0} \rightarrow K^+ \pi^$ with $|M_{K^*}^{\text{reco}} - M_{K^*}^{\text{PDG}}| < 50 \text{ MeV}$
- $D^+ \rightarrow K^- \pi^+ \pi^+$, $D^0 \rightarrow K^- \pi^+$ with $|M_D^{\text{reco}} - \dot{M}_D^{\text{PDG}}| < 15 \text{ MeV} (3\sigma)$ mass and vertex kinematic fit
- $D^{*+} \rightarrow D^0 \pi^+$ with $|M_{D*}^{\text{reco}} - M_{D*}^{\text{PDG}}| < 1.5 \text{ MeV} (3\sigma)$
- $D^{*0} \rightarrow D^0 \pi^0$ with $|M_{D^*}^{\text{reco}} - M_{D^*}^{\text{PDG}}| < 3 \text{ MeV} (3\sigma)$

- $M_{hc} > 5.272 \, \text{GeV}$
- $-0.12 \, \text{GeV} < \Delta E < 0.3 \, \text{GeV}$
- $B \to DD_{s}^{-}(\to KK)$ bkg suppression: \Rightarrow $|m_{D_{c}} - m_{KK}| > 20 \,\mathrm{MeV} \,(4\sigma)$
- $q\overline{q}$ and BB backgrounds suppression:
 - $R_2 = FWM(2)/FWM(0) < 0.5$ (FWM=foxwolfram moment)
 - $|\cos \theta_{T_R T_0}| < 0.85$, where $\theta_{T_R T_0}$ = angle between B thrust axis and the thrust axis of the ROE (restof-event)
 - $|\cos \theta_{p_B p_{\text{beam}}}| < 0.9$, where $\theta_{p_B p_{\text{beam}}} =$ angle between B momentum and beam direction
- Best candidate selection: $\min |M_{hc} M_R|$

Efficiency - all the maps

[MC Simulation]

NB: z scale is not the same

30

$$N_{D^0}^{\rm bkg} \propto BR(B^- \to D^0 K^- K_S^0) \varepsilon_{B^- \to D^0 K^- K_S^0} \cdot f_{\pi^0},$$

$$V_{D^{*+}}^{\mathrm{bkg}} \propto BR(\overline{B}^0 \to D^{*+}K^-K_S^0) \varepsilon_{\overline{B}^0 \to D^0K^-K_S^0} \text{ from } \overline{B}^0 \to D^{*+}K^-K_S^0 \cdot f_{\pi^0},$$

$$\varepsilon_{\overline{B}{}^{0} \to D^{0}K^{-}K^{0}_{S} \text{ from } \overline{B}{}^{0} \to D^{*+}K^{-}K^{0}_{S}} = \varepsilon_{B^{-} \to D^{0}K^{-}K^{0}_{S}},$$

$$N_{D^{*+}}^{\rm bkg} = \frac{BR(\overline{B}^0 \to D^{*+}K^-K_S^0)}{BR(B^- \to D^0K^-K_S^0)} \cdot N_{D^0}^{\rm bkg}.$$

(3)

(4)

(5)

	<i>D</i> *0
	 Signal: as other mode (core Gaussian+tail Gaussian)
	 Background: as other mode (exponential+constant)
	• D0 feed across: asymmetric gaussian (widths fixed from MC, $\mu = \mu_{ m signal} + \Delta \mu$ fixed, yield f
an, fudge n D0 channel) arameters)	 D*+ feed across: asymmetric gaussian (fixed width, mean 0, yield constrained from assumption)
	• Signal: same as $D^{*0}K^-K^0_S$
	 Free fudge factor
N	• Background : same as $D^{*0}K^-K_S^0$ + gause with width and mean as the core one, any yield constrained by R_{NR}

Yield extraction

Yield extraction: Toys validation

- Generated 10^3 toys from generic MC fit PDF
- Scaled the signal yield of generic MC fit in the range [0.1,2] to test linearity
- No discrepancy from linear trend observed

Systematic uncertainties

Source	$D^0 K^- K^0_S$	$D^+K^-K^0_S$	$D^{*0}K^{-}K^{0}_{S}$	$D^{*+}K^-K^0_S$	$D^0 K^- K^{*0}$	$D^{+}K^{-}K^{*0}$	$D^{*0}K^{-}K^{*0}$	$D^{*+}K^{-}K^{*0}$	
Eff MC sample size	e 0.3	0.5	0.6	0.6	0.5	0.7	0.9	1.2	
Eff tracking	0.7	1.0	0.7	1.0	1.0	1.2	1.0	1.2	
Eff π^+ from D^{*+}	-	-	-	2.7	-	-	-	2.7	
Eff K_S^0	4.3	4.5	4.0	4.1	-	-	-	-	
Eff PID	1.4	1.7	0.5	0.7	3.7	3.1	1.7	2.0	
Eff π^0	-	-	5.4	-	-	-	5.7	-	
Signal model	0.7	1.4	3.0	1.2	0.8	0.7	2.6	0.6	
Bkg model	1.3	0.4	0.6	0.1	1.6	0.05	0.02	0.1	
D^{*0} peaking bkg	-	-	2.2	-	-	-	2.0	-	
$DKK\pi$ bkg	-	-	-	-	1.2	0.5	0.6	1.4	
$N_{B\overline{B}}, f_{+-,00}$	2.7	2.8	2.7	2.8	2.7	2.8	2.7	2.8	
Intermediate \mathcal{B}_{s}	0.7	1.7	1.6	1.1	0.8	1.7	1.6	1.1	
Total systematic	5.9	6.1	8.4	6.1	4.6	4.9	7.6	5.1	
Statistical	3.9	3.1	8.0	6.9	5.1	5.1	8.5	9.7	
Exp. stat. (Belle).	5.9	8.9	9.5	12.3	5.1	5.1	8.5	9.7	
Source 1	$B^- \to D^0 D_s^-$	$B^0 \rightarrow D^+ D_2^-$	$B^s B^- \to I$	$D^{*0}D_s^- B^0$	$\rightarrow D^{*+}D_s^-$				
Eff MC sample size	$<\!\!0.1$	$<\!\!0.1$	$<\!\!0$.1	< 0.1				
Eff tracking	0.8	1.0	0.8	8	1.0				
Eff π^+ from D^{*+}	-	-	-		2.7				
Eff K_S^0	1.7	1.8	1.'	7	1.8				
Eff PID	1.9	2.0	1.2	2	1.3				
Eff π°	-	-	5.1		-				
Signal model	<0.1	0.3	0.9	9	0.4				
Bkg model D^{*0} model	0.6	0.6	0.2	2	< 0.1				
D = peaking bkg	-	- ? 2	0.0	ן 7	- 28				
Intermediate \mathcal{B}_{s}	1.8	2.0	2.0)	1.8				
Total systematic	4.3	4.6	6.0	 6	4.9				
Statistical	5.8	5.7	14.	2	11.0				

IMC Simul	а
	M

Relative systematic uncertainties in %]

B-Factory basics

- $\sqrt{s} = m(\Upsilon(4S)) = 10.58 \text{ GeV} \simeq 2m_B \Rightarrow$ constrained kinematics
- Hermetic detector \Rightarrow complete event reconstruction

- Asymmetric collider \Rightarrow **Boost of center-of-mass**
- Excellent vertexing performance ($\sigma \sim 15 \ \mu m$)

- coherent *BB* pairs production
- Excellent flavour tagging performance

