Studies in non-leptonic B meson decays

Gilberto Tetlalmatzi-Xolocotzi

Based on: T. Huber and GTX, 2111.06418 Eur.Phys.J.C 81 (2021) 7, 658

A. Biswas, S Decotes-Genon, J. Matias and GTX, 2301.10542 JHEP 06 (2023) 108

CPPS, Theoretische Physik 1, Universität Siegen,

Université Paris-Saclay, CNRS/IN2P3, IJCLab,

Laboratoire de Physique des 2 Infinis

TRR 257 - Particle Physics Phenome: after the Higgs Discovery

QCF Factorization of non-leptonic decays

A first principle technique to calculate transition amplitudes in non-leptonic decays is QCD-Factorization

Beneke et al: 9905312 Beneke et al: 0308039

Naive Factorization

 $\langle K\pi{\scriptstyle\perp} Q{\scriptstyle\perp} B\,\rangle{\sim}\,F_{\scriptscriptstyle B\to\scriptscriptstyle K}f$ π

QCF Factorization of non-leptonic decays

A first principle technique to calculate transition amplitudes in non-leptonic decays is QCD-Factorization

Beneke et al: 9905312 Beneke et al: 0308039

Naive Factorization

 $\langle K\pi\mathsf{I} Q\mathsf{I} B\rangle$ ~ $\langle F \overline{B\rightarrow K} f\rangle$ π

QCF Factorization of non-leptonic decays Factorization

A first principle technique to calculate transition amplitudes in non-leptonic decays is QCD-Factorization

Beneke et al: 9905312 Beneke et al: 0308039

Naive Factorization

 $\langle K\pi{\scriptstyle\perp} Q{\scriptstyle\perp} B\,\rangle{\sim}\,F_{\scriptscriptstyle B\to{\scriptscriptstyle\,} K} f$ π

QCF Factorization of non-leptonic decays

Naive factorization special case of

$$
\langle M_1 M_2 | \hat{Q}_i | B \rangle = \underbrace{\sum_j F_j^{B \to M_1}(0) \int_0^1 du T_{ij}^I(u) \Phi_{M_2}(u) + (M_1 \leftrightarrow M_2)}_{j} + \int_0^1 d\xi du dv T_i^{II}(\xi, u, v) \Phi_B(\xi) \Phi_{M_1}(v) \Phi_{M_2}(u).
$$

QCD-Factorization offers a systematic way to disentangle short from long distance physics considering $\Lambda_{QCD} \ll m_b$

QCF Factorization of non-leptonic decays

The transition amplitudes are expressed in terms of subamplitudes addressing different ''topologies''

$$
T(\bar{B}_d \to \bar{K}^0 K^0) = A_{\bar{K}^K K} [\alpha_4^u - \frac{1}{2} \alpha_{4, EW}^u + \beta_3^u + \beta_4^u - \frac{1}{2} \beta_{3, EW}^u - \frac{1}{2} \beta_{4, EW}^u]
$$

+ $A_{K \bar{K}} [\beta_4^u - \frac{1}{2} \beta_{4, EW}^u],$

$$
P(\bar{B}_d \to \bar{K}^0 K^0) = A_{\bar{K}^K K} [\alpha_4^c - \frac{1}{2} \alpha_{4, EW}^c + \beta_3^c + \beta_4^c - \frac{1}{2} \beta_{3, EW}^c - \frac{1}{2} \beta_{4, EW}^c]
$$

+ $A_{K \bar{K}} [\beta_4^c - \frac{1}{2} \beta_{4, EW}^c],$

Weak annihilation contributions are non-factorizable

QCF Factorization decomposition

Weak annihilation contributions are non-factorizable

One of the main drawbacks of QCDF

These contributions are power suppressed Λ*QCD* /*m^b*

To address this problem educated Ansatz are made

$$
X_A = \left(1 + \rho_A e^{i\phi_A}\right) \ln \frac{m_B}{\Lambda_h}
$$

$$
0 < \rho_A < 1
$$
\n
$$
\Lambda_h \approx \mathcal{O}(\Lambda_{QCD})
$$

WHAT CAN WE LEARN ABOUT THE ANNIHILATION CONTRIBUTIONS FROM DATA?

WHAT IS THE SIZE OF THESE TERMS AS REQUIRED BY PHENOMENOLOGICAL OBSERVATIONS?

TO ADDRESS THESE QUESTIONS WE USE FLAVOUR SYMMETRIES TO PARAMETRIZE THE RELEVANT DECAYS

Non-leptonic B meson decays

We will concentrate in the case of B meson decaying into paira of light pseudoscalar mesons

 $P P$

 $R - (R^+ R^0 R^0)$

The light pseudoscalar mesons are bound states of light quarks $[u, d, s]$ (SU(3) symmetry)

$$
q_{i} \otimes \overline{q_{j}} \rightarrow 3 \otimes \overline{3} = 8 \oplus 1 \qquad M = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{q}}{\sqrt{2}} + \frac{\eta_{q}'}{\sqrt{2}} & \pi^{-} & K^{-} \\ \frac{\pi^{+}}{\sqrt{2}} + \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{q}}{\sqrt{2}} + \frac{\eta_{q}'}{\sqrt{2}} & \overline{K}^{0} \\ K^{+} & K^{0} & K^{0} & \eta_{s} + \eta_{s}' \end{pmatrix}
$$

Topological decomposition

 $\mathcal{T}^{TDA} = \underline{T} B_i(M)^i_i \bar{H}^{jl}_k(M)^k_l + \underline{C} B_i(M)^i_i \bar{H}^{lj}_k(M)^k_l + \underline{A} B_i \bar{H}^{il}_i(M)^j_k(M)^k_l$ $+E B_i \bar{H}_i^{li}(M)_{k}^j(M)_l^k + T_{ES} B_i \bar{H}_l^{ij}(M)_{i}^l(M)_{k}^k + T_{AS} B_i \bar{H}_l^{ji}(M)_{i}^l(M)_{k}^k$ $+T_{S}B_{i}(M)^{i}_{i}\bar{H}_{l}^{lj}(M)^{k}_{k}+T_{P}A B_{i}\bar{H}_{l}^{li}(M)^{j}_{k}(M)^{k}_{i}+T_{P}B_{i}(M)^{i}_{i}(M)^{j}_{k}\bar{H}_{l}^{lk}$ $+T_{SS}B_i\bar{H}_l^{li}(M)^j_i(M)^k_k,$

SU(3) Flavour $[u, d, s]$

$$
B = (B^+, B_d^0, B_s^0) \qquad \qquad M = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta_q}{\sqrt{2}} + \frac{\eta_q'}{\sqrt{2}} & \pi^- & K^-\\ \pi^+ & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta_q}{\sqrt{2}} + \frac{\eta_q'}{\sqrt{2}} & \bar{K}^0\\ K^+ & K^0 & \eta_s + \eta_s' \end{pmatrix}
$$

$$
\bar{H}_1^{12} = \lambda_u^{(d)}, \quad \bar{H}_1^{13} = \lambda_u^{(s)},
$$

Topological decomposition

 $\mathcal{T}^{TDA} = \underline{T} B_i(M)^i_i \bar{H}^{jl}_k(M)^k_l + \underline{C} B_i(M)^i_i \bar{H}^{lj}_k(M)^k_l + \underline{A} B_i \bar{H}^{il}_i(M)^j_k(M)^k_l$ $+E B_i \bar{H}_i^{li}(M)_{k}^j(M)_l^k + T_{ES} B_i \bar{H}_l^{ij}(M)_{i}^l(M)_{k}^k + T_{AS} B_i \bar{H}_l^{ji}(M)_{i}^l(M)_{k}^k$ $+T_{S}B_{i}(M)^{i}_{i}\bar{H}_{l}^{lj}(M)^{k}_{k}+T_{P}A B_{i}\bar{H}_{l}^{li}(M)^{j}_{k}(M)^{k}_{i}+T_{P}B_{i}(M)^{i}_{i}(M)^{j}_{k}\bar{H}_{l}^{lk}$ $+T_{SS}B_i\bar{H}_l^{li}(M)^j_i(M)^k_k,$

SU(3)-Irreducible decomposition

 $\mathcal{T}^{IRA} = A_3^T B_i (\bar{H}_3)^i (M)_k^j (M)_j^k + C_3^T B_i (M)_i^i (M)_k^j (\bar{H}_3)^k + B_3^T B_i (\bar{H}_3)^i (M)_k^k (M)_j^j$ $+D_3^T B_i(M)_j^i (\bar{H}_3)^j (M)_k^k + A_6^T B_i(H_6)_k^{ij} (M)_l^l (M)_l^k + C_6^T B_i(M)_j^i (\bar{H}_6)_k^{jl} (M)_l^k$ $+B_6^T B_i (\bar{H}_6)^{ij}_{k}(M)^{k}_{i}(M)^{l}_{l}+A_{15}^T B_i (\bar{H}_{\overline{15}})^{ij}_{k}(M)^{l}_{i}(M)^{k}_{l}+C_{15}^T B_i (M)^{i}_{i}(\bar{H}_{\overline{15}})^{jk}_{l}(M)^{l}_{k}$ $+ B_{15}^T B_i (\bar{H}_{\overline{15}})^{ij}_{k}(M)^{k}_{i}(M)^{l}_{l}.$

SU(3) Flavour $[u, d, s]$

$$
B = (B^+, B_d^0, B_s^0) \qquad \qquad M = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta_q}{\sqrt{2}} + \frac{\eta_q'}{\sqrt{2}} & \pi^- & K^-\\ \pi^+ & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta_q}{\sqrt{2}} + \frac{\eta_q'}{\sqrt{2}} & \bar{K}^0\\ K^+ & K^0 & K^0 & \eta_s + \eta_s' \end{pmatrix}
$$

$$
\bar{H}_1^{12} = \lambda_u^{(d)}, \quad \bar{H}_1^{13} = \lambda_u^{(s)},
$$

Equivalence of the decompositions

$$
\bar{H}_{k}^{ij} = \frac{1}{8} (H_{\overline{15}})_{k}^{ij} + \frac{1}{4} (H_6)_{k}^{ij} - \frac{1}{8} (H_{\overline{3}})^i \delta_k^j + \frac{3}{8} (H_{\overline{3}'})^j \delta_k^i
$$

Topological to SU(3)

X.-G. He and W. Wang: 1803.04227

$$
A_3^T = -\frac{A}{8} + \frac{3E}{8} + T_{PA},
$$

\n
$$
B_3^T = T_{SS} + \frac{3T_{AS} - T_{ES}}{8},
$$

\n
$$
C_3^T = \frac{1}{8}(3A - C - E + 3T) + T_P,
$$

\n
$$
D_3^T = T_S + \frac{1}{8}(3C - T_{AS} + 3T_{ES} - T)
$$

\n
$$
A_6^T = \frac{1}{4}(A - E),
$$

\n
$$
B_6^T = \frac{1}{4}(T_{ES} - T_{AS}),
$$

\n
$$
A_{15}^T = \frac{A + E}{8},
$$

\n
$$
B_{15}^T = \frac{T_{ES} + T_{AS}}{8},
$$

\n
$$
C_{15}^T = \frac{C + T}{8},
$$

SU(3) amplitudes from data Perform a x^2 fit *10 Tree complex amplitudes* A_3^T , C_3^T , A_6^T , C_6^T , A_{15}^T , C_{15}^T , B_3^T , B_6^T , B_{15}^T , D_3^T *and 10 Penguin complex amplitudes (replace T for P above)* The combinations $C_6^T - A_6^T$ and $B_6^T + A_6^T$ always appear together (analogously for penguins) $C_6^T - A_6^T \rightarrow C_6^T$ $C_6^P - A_6^P \rightarrow C_6^P$ **Redefine** $B_6^T + A_6^T \rightarrow B_6^T$ $B_6^P + A_6^P \rightarrow B_6^P$ Absorb a global phase by taking C_3^P as a real parameter 35 parameters + θ_{FKS} = 36 parameters to fit.

SU(3) amplitudes from data

ľ Best fit point (modulus in GeV^3)

$\vert A_3^T\vert=0.029,$	$\delta_{A_3^T} = -3.083,$	$\label{eq:25} C^T_3 = 0.258,$	$\delta_{C_3^T} = -0.105,$
$\label{eq:2.1} C_6^T =0.235,$	$\delta_{C_6^T} = -0.079,$	$ A_{15}^T = 0.029,$	$\delta_{A_{15}^T} = -3.083,$
$ C_{15}^T = 0.151,$	$\delta_{C_{15}^T} = 0.061,$	$ B_3^T = 0.034,$	$\delta_{B_3^T} = 3.087$
$ B_6^T = 0.033,$	$\delta_{B_6^T} = -0.286,$	$ B_{15}^T = 0.008,$	$\delta_{B_{15}^T} = -1.892$
$ D_3^T =0.055,$	$\delta_{D_3^T} = 2.942,$		
$ A_3^P = 0.014,$	$\delta_{A_3^P} = -1.328,$	$ C_6^P = 0.145,$	$\delta_{C_6^P} = -2.881,$
$ A_{15}^P = 0.003,$	$\delta_{A_{15}^P} = 2.234,$	$ C_{15}^P = 0.003,$	$\delta_{C_{15}^P} = -0.608,$
$ B_3^P = 0.043,$	$\delta_{B_3^P} = 2.367,$	$ B_6^P = 0.099,$	$\delta_{B_6^P} = 0.353,$
$ B_{15}^P = 0.031,$	$\delta_{B_{15}^P} = -0.690,$	$ D_3^P = 0.030,$	$\delta_{D_3^P} = 0.477,$

Annihilation amplitudes below 10%.

 $\chi^2/d.o.f. = 0.851$

$$
\begin{aligned}\n\text{QCF Factorization decomposition} & \text{decomposition} \\
A^{\text{QCDF}} = i\frac{G_F}{\sqrt{2}} \sum_{p=u,c} A_{M_1M_2} \left\{ B M_1 \left(\alpha_1 \delta_{pu} \hat{U} + \alpha_4^p \hat{I} + \alpha_{4,EW}^p \hat{Q} \right) M_2 \Lambda_p \right. \\
&\quad + B M_1 \Lambda_p \cdot \text{Tr} \left[\left(\alpha_2 \delta_{pu} \hat{U} + \alpha_3^p \hat{I} + \alpha_{3,EW}^p \hat{Q} \right) M_2 \right] \\
&\quad + B \left(\beta_2 \delta_{pu} \hat{U} + \beta_3^p \hat{I} + \beta_{3,EW}^p \hat{Q} \right) M_1 M_2 \Lambda_p \right. \\
&\quad + B \Lambda_p \cdot \text{Tr} \left[\left(\beta_1 \delta_{pu} \hat{U} + \beta_4^p \hat{I} + b_{4,EW}^p \hat{Q} \right) M_1 M_2 \right] \\
&\quad + B \left(\beta_{S2} \delta_{pu} \hat{U} + \beta_{S3}^p \hat{I} + \beta_{S3,EW}^p \hat{Q} \right) M_1 \Lambda_p \cdot \text{Tr} M_2 \right. \\
&\quad + B \Lambda_p \cdot \text{Tr} \left[\left(\beta_{S1} \delta_{pu} \hat{U} + \beta_{S4}^p \hat{I} + b_{S4,EW}^p \hat{Q} \right) M_1 \right] \cdot \text{Tr} M_2 \right\} \\
\Lambda_p & = \begin{pmatrix} 0 \\ \lambda_p^{(d)} \\ \lambda_p^{(s)} \end{pmatrix}, \qquad \qquad \hat{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\
\hat{Q} = \frac{3}{2} Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix}, \qquad \qquad \hat{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \qquad \text{Benseke et
$$

QCF Factorization-Topological Equivalence We consider the following results

 $\alpha_3^u = \alpha_3^c = \alpha_3$, $\alpha_{3,EW}^u = \alpha_{3,EW}^c = \alpha_{3,EW}$, $\beta_i^u = \beta_i^c = \beta_i$, $b_i^u = b_i^c = b_i$ $|\alpha_{4,EW}^c - \alpha_{4,EW}^u| < 10^{-3}$ $|\alpha_4^c - \alpha_4^u| \sim 2\%$ NNLO
NNLO
Poll Bonels Huber 1 *Bell, Beneke, Huber, Li:2002.03262* QCDF to topological transformation rules $T=A_{M_1M_2}\alpha_1,$ $E=A_{M_1M_2}\beta_1,$ $C = A_{M_1M_2}\alpha_2,$ $A = A_{M_1M_2}\beta_2,$ $T_{AS} = A_{M_1M_2}\beta_{S1},$ $T_{ES} = A_{M_1M_2}\beta_{S2},$

$$
S = -A_{M_1M_2} \Big[\alpha_3 + \beta_{S3} - \frac{\alpha_{3,EW}}{2} - \frac{\beta_{S3,EW}}{2} \Big],
$$

\n
$$
P = -A_{M_1M_2} \Big[\alpha_4^c + \beta_3 - \frac{\alpha_{4,EW}^c}{2} - \frac{\beta_{3,EW}}{2} \Big],
$$

\n
$$
A_{M_1M_2} = (1.25 \pm 0.17) \text{ GeV}^3
$$

SU(3) Confidence Regions

The real and imaginary components of the weak annihilation amplitudes as allowed by data can be between 4% and 30%.

Optimized Observables

Another way to deal with the power corrections is to construct optimized observables

Use a ratio involving as initial state *Bs* (numerator) vs *Bd* (denominator) to benefit from flavour symmetry

$$
L_{K^*\bar{K}^*} = \rho(m_{K^{*0}}, m_{K^{*0}}) \frac{\mathcal{B}(\bar{B}_s \to K^{*0} \bar{K}^{*0})}{\mathcal{B}(\bar{B}_d \to K^{*0} \bar{K}^{*0})} \frac{f_L^{B_s}}{f_L^{B_d}} = \frac{|A_0^s|^2 + |\bar{A}_0^s|^2}{|A_0^d|^2 + |\bar{A}_0^d|^2}
$$

since the final states are vector states only the longitudinal amplitude is free from infrared divergences at LO. S. Descotes, J. Matias, et al [2011.07867] A Biswas, S. Descotes, J. Matias, GTX et al [2301.10542]

$$
f_L^{B_s}, f_L^{B_d}
$$

 $\rho(m_{K^{*0}}, m_{K^{*0}})$

, Longitudinal polarization fractions

Phase space function

Optimized Observables

$$
L_{K^* \bar{K}^*} = \frac{|A_0^s|^2 + |\bar{A}_0^s|^2}{|A_0^d|^2 + |\bar{A}_0^d|^2} = \kappa \left| \frac{P_s}{P_d} \right|^2 \left[\frac{1 + |\alpha^s|^2 \left| \frac{\Delta_s}{P_s} \right|^2 + 2 \text{Re} \left(\frac{\Delta_s}{P_s} \right) \text{Re} (\alpha^s)}{1 + |\alpha^d|^2 \left| \frac{\Delta_d}{P_d} \right|^2 + 2 \text{Re} \left(\frac{\Delta_d}{P_d} \right) \text{Re} (\alpha^d)} \right]
$$

$$
\kappa = \left| \frac{\lambda_u^s + \lambda_c^s}{\lambda_u^s + \lambda_c^s} \right|^2 = 22.91^{+0.48}_{-0.47},
$$

\n
$$
\alpha^d = \frac{\lambda_u^d}{\lambda_u^d + \lambda_c^d} = -0.0135^{+0.0123}_{-0.0124} + 0.4176^{+0.0123}_{-0.0124}i,
$$

\n
$$
\alpha^s = \frac{\lambda_u^s}{\lambda_u^s + \lambda_c^s} = 0.0086^{+0.0004}_{-0.0004} - 0.0182^{+0.0006}_{-0.0006}i.
$$

S. Descotes, J. Matias, et al [2011.07867]

2.6 σ discrepancy between theory and experiment

Explaining the tensions via NP

Solutions for C^{NP}_{4s} and C^{NP}_{6s} combined Notice that C_{6s}^{NP} requires $C_{4s}^{NP} \neq 0$

Summary and Outlook

- Power corrections are a major source of uncertainty in our determinations for non-leptonic B meson decays.
- By fitting to data we have determined bounds for different QCDF amplitudes.
- The real and imaginary components of the weak annihilation amplitudes as allowed by data can be between 4% and 30%.
- Another way of dealing to reduce our sensitivity towards these effects is by using optimized observables based on ratios of squared amplitudes.

Acknowledgements

 This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945422

Anomalies in and B→*D K B*→*D* π

(Units of 10^{-3} for $b \to c\bar{u}d$ and 10^{-4} for $b \to c\bar{u}s$ decays)

The state of the art experimental and theory determinations are in strong statistical tension (up to 7 to 9 standard deviations).

Decay Amplitudes Parameterizations

Consider the process $B \rightarrow PP$

where P is a charmless pseudoscalar meson

The physical amplitude can be decomposed as

$$
\mathcal{A}^{TDA} = i \frac{G_F}{\sqrt{2}} \Big[\mathcal{T}^{TDA} + \mathcal{P}^{TDA} \Big]
$$

$$
\lambda_p^{(q)} = V_{pb} V_{pq}^* \qquad \lambda_u^{(q)} \qquad \lambda_t^{(q)} \qquad q = d, s
$$

$$
\lambda_u^{(q)} + \lambda_c^{(q)} + \lambda_t^{(q)} = 0
$$

Anomalies in and B→*D K B*→*D* π

(Units of 10^{-3} for $b \to c\bar{u}d$ and 10^{-4} for $b \to c\bar{u}s$ decays)

These processes are particularly clean from theory uncertainties that affect most of the hadronic decays (annihilation)

SU(3) amplitudes from data

The physical amplitudes can be expressed as linear combinations of the SU(3) sub-amplitudes

SU(3) amplitudes from data

Include η contributions in the Feldmann–Kroll–Stech scheme

 θ_{FKS} mixing angle τ . Feldmann et al: 9802409

