Search of LFV decays at Belle II

Part II.1 : $\tau \rightarrow I K_S^0$ at Belle & Belle II

GDR-InF, Strasbourg, 07.11.2023

Klemens Lautenbach

Motivation

07.11.2023

GDR-InF lautenbach@cppm.in2p3.fr

Analysis flow

A first expected UL calculated on 362/fb Belle II data showed no improvement compared to the the current limits set by Belle

- \rightarrow Decision was made to perform a Belle/Belle II analysis
 - \rightarrow 1362/fb of data

Reconstruction – tagged approach

Photons •

Used for bremsstrahlung correction, event shape

- E > 0.02 GeV and corresponding variables
- -0.8660 < cosTheta < 0.9563
- Cluster hits > 1.5
- **Neutral Pions** .
 - E, > 0.1 GeV
 - -0.8660 < cosTheta < 0.9563
 - Cluster hits > 1.5
 - 0.115 < M < 0.152 GeV

Ks

- Vertex fit
- Good pion tracks

Same reconstruction for Belle/Belle II Only small difference in Bremsstrahlung correction

 $e^{\pm}\nu_{e}$

 π^{\pm}

- **Tracks** •
 - pT > 0.1, -3.0 < dz < 3.0, dr < 1.0
 - Not used for KS0 list
- **ParticleID**
 - e:
 - electronID > 0.9•
 - muonID < 0.95
 - μ:
 - muonID > 0.95
 - $electronID \le 0.9$
 - π:
 - $muonID \le 0.95$ •
 - $electronID \le 0.9$
- Event

 $e^{\pm}u^{\pm}$

- CorrectBrems: angleThreshold=0.150
 - Belle: $E_v > 50$ MeV, angleThresh=0.05
- 20 δ signal region around M(τ) and Δ E
- Number of total tracks == 4

GDR-InF lautenbach@cppm.in2p3.fr

 π^+

 K_S^0

 au_{sig}

Hennisohere separation

τ_{tag}

 ν_{τ}

to thrust axis

 π

Definition of signal regions

Fit signal tau candidates in •

- Mass
- ΔE _
- **Signal definition:** •
- al definition: _ MCtruth matched
- **Fit functions:** •
 - **Crystal Ball** _
 - 2 Gaussian _

07.11.2023

GDR-InF lautenbach@cppm.in2p3.fr

Definition of signal regions

- 20 δ SR : area in which data/MC comparison is performed (3δ SR blinded)
- 3 δ SR : BDT optimization
- RSB : Used to extract the expected background in SR (elliptical SR)

Pre-selections

Data/MC after pre-selection ~ 1.04 .

.

•

•

from qqbar

GDR-InF lautenbach@cppm.in2p3.fr

BDT optimization

- BDT is trained on 3/ab and then applied on 2/ab validation sample
- Optimization process:
 - Optimize parameters with optuna
 - Select BDT which performs best in 3 δ SR (FOM optimized)

FOM

- BDT is separately trained on electron and muon channel
 - 29 variables are in use
 - No separation on tag-side during training
 - Only trained on qqbar, taupair, BBbar sample
 - Used to reject qqbar backgrounds
 - exlcuding low multiplicity backgrounds (bhabha, eell, eehh, μμ, etc...)
 - \rightarrow almost completely removed by pre-selections
 - Overtraining checks performed with logloss
- BDT is applied on statistically independent 2/ab test sample and data for final UL calculation

Elliptical SR

• Optimize SR with elliptical approach instead of rectangular region in reconstructed tau mass and ΔE

$$\frac{\left[(M-\mu_M)\cdot sin(\boldsymbol{\alpha})-(\Delta E-\mu_{\Delta E})\cdot cos(\boldsymbol{\alpha})\right]^2}{\boldsymbol{a}\cdot\boldsymbol{\sigma}_M^2}+\frac{\left[(M-\mu_M)\cdot cos(\boldsymbol{\alpha})-(\Delta E-\mu_{\Delta E})\cdot sin(\boldsymbol{\alpha})\right]^2}{\boldsymbol{b}\cdot\boldsymbol{\sigma}_{\Delta E}^2}<\rho$$

- μ_M , $\mu_{\Delta E}$, σ_M , $\sigma_{\Delta E}$ taken from fits to signal MC
- Parameters in red are iterated in different ranges
- Best ellipse is optimized on the train + validation sample (5/ab)
 - Vary BDT_cut from 0.01 to 1 for each ellipses on the three tag-sides
 - Take the combination [ellipse, BDT_cuts] which yields highest FOM

Extraction of expected events in elliptical SR

- The number of expected events in the elliptical SR after pre-selection and BDT is extracted by a linear fit to the reduced sideband (RSB) assuming a linear background.
- RSB is shown in green bands
- Take events inside RSB in bins of rectangular SR (green hashed area) for estimation of expected events in SR

07.11.2023

GDR-InF lautenbach@cppm.in2p3.fr

Extraction of expected events in elliptical SR

• Before we extract the number of expected events, we ensure to have a good data to MC agreement

Belle II preliminary, $\tau \rightarrow eK_{s}^{0}$, $\int \mathcal{L} = 362 \text{ fb}^{-1}$

07.11.2023

lautenbach@cppm.in2p3.fr

Extraction of expected events in elliptical SR

- Fit linear through those points for data and MC, the central 3δ SR bin is not taken into account for the fit
- The number of expected events in the rectangular SR is then estimated with the mean of the fitted value
- To get the number of expected events in the elliptical SR, we multiply with the ratio of ellipse SR over rectangular SR
- As error we take the 90 % confidence interval of the fit

	Belle, 980/fb		
	e-channel	µ-channel	
$N_{\text{exp}}{}^{\text{MC}}$	0.46 +/- 0.22	0.71 +/- 0.68	
$N_{\text{exp}}^{\text{Data}}$	0.54 +/- 0.13	0.65 +/- 0.21	

	Belle II, 362/fb		
	e-channel	µ-channel	
$N_{\text{exp}}{}^{\text{MC}}$	0.22 +/-0.15	0.33 +/- 0.06	
$N_{\text{exp}}^{\text{Data}}$	0.42 +/- 0.14	0.28 +/- 0.22	

lautenbach@cppm.in2p3.fr

Input values for UL calculation

• Belle

- K_S0 systematic taken from old Belle paper (https://arxiv.org/abs/1003.1183v1)
- Trigger efficiency taken from Belle note

	quantity	sour	ce	eK_S^0	μK_S^0
		Lepton Identification		2.3~%	2.4~%
		Trac	king efficiency	1.05~%	1.05~%
$\epsilon_{lK^0_S}$ Tri		Trigg	Trigger efficiency		0.9~%
		$K_S^0 \epsilon$	efficiency	4.5~%	$4.5 \ \%$
		BDT	efficiency	4.04~%	7.12~%
	L	Luminosity		1.4~%	1.4~%
	$\sigma_{ au au}$	Tau-	pair cross-section	n 0.3 %	0.3~%
		eK_S^0	μK_S^0	μK_S^0	
D/MC in 20 δ SB		1.02	1.04	1.04	
Signal Efficiency		$10.3 \pm 0.68~\%$	9.82 ± 0	0.87~%	
MC in RSB		$8.6^{+4.05}_{-2.87}$	$15.77^{+5.05}_{-3.93}$		
Data in RSB		$10^{+4.27}_{-3.11}$	$13^{+4.7}_{-3.56}$		
N_{exp}		0.54 ± 0.13	0.65 ± 0	0.21	

• Belle II

quantity	source		eK_S^0	μK_S^0		
	Lepton Identification		0.7~%	1.3~%		
	Tracking efficiency		0.72~%	0.72~%		
$\epsilon_{lK_S^0}$	Trigger efficiency		0.79~%	0.79~%		
5	K_S^0 efficiency		3.1~%	3.1~%		
	BDT efficiency		6.7~%	6.4~%		
L	Luminosity		0.6~%	0.6~%		
$\sigma_{\tau\tau}$	Tau-pair cross-section		0.3~%	0.3~%		
N_{exp}	Momentum scale		0.3~%	0.2~%		
		eK_S^0	μK_S^0			
D/MC in 20 δ SB		1.004	0.95			
Signal Efficiency		$10.61 \pm 0.79~\%$	$10.23 \pm 0.74~\%$			
MC in RSB		$4.55^{+3.29}_{-2.05}$	$8.69^{+4.06}_{-2.89}$			
Data in RSB		$5^{+3.38}_{-2.16}$	$7^{+3.77}_{-2.58}$			
N_{exp}		0.42 ± 0.14	0.28 ± 0.22			

Numbers from old Belle paper (@671/fb): $\ \epsilon_{\rm e}$ = 10.2% , $\ \epsilon_{\mu}$ =10.7%

 $\epsilon_e = 10.2\%$, $\epsilon_\mu = 10.7\%$ N^e_{exp} = 0.18, N^µ_{exp} = 0.35

New UL calc with K_S0 and BDT systematics

- Calculate UL with pyhf in 2 bins, one for Belle and one for Belle II
 - Belle expected (@671/fb) is calculated with the signal efficiency and background level from the old Belle paper for better comparison
 - Belle observed is the observed UL from the above paper

lautenbach@cppm.in2p3.fr

Search of LFV decays at Belle II

Part II.2 : $\tau \rightarrow I \varphi$

Finished conference paper – $\tau \rightarrow I \phi$

Offline selections

Tag Side

XGBoost BDT

D/MC comparison Systematics extraction Branching Fraction Upper Limit

II X X

4 Data

0.4

0.6

11X X

Data

 ΔE_{τ} [GeV]

MCstat.erre

Review process

- Analysis is inclusive → tag side not reconstructed
 - Higher Signal efficiency (~32% improvement), more background, use of ROE variables
- 190/fb of Belle II data
 Set of pre-selections to reject mainly low multiplicity backgrounds
- BDT training

07.11.2023

- XGBoost library
- Parameters optimized manually

GDR-InF lautenbach@cppm.in2p3.fr

0.4

 ΔE_{τ} [GeV]

0.2

Finished conference paper – $\tau \rightarrow I \phi$

Reconstruction

Offline selections

XGBoost BDT

D/MC comparison Systematics extraction

- UL calculation
 - Expected background events evaluated in rectangular signal regioon of M(τ) vs. ΔE
 - Observed UL:
 - Electron channel : 1.0x10⁻⁷
 - Muon channel : 6.6x10⁻⁸
 - No improvement compared to Belle and BaBar findings due to small dataset

Experiment	$\mathcal{B}_{\rm UL}^{90}(e\phi) \; (\times 10^{-8})$ exp. / obs.	$\mathcal{B}_{\mathrm{UL}}^{90}(\mu\phi) \ (\times 10^{-8})$ exp / obs.	
BaBar	5.0 / 3.1	8.2 / 19	
Belle	4.3 / 3.1	4.9 / 8.4	

Babar : 451/fb Belle : 854/fb <u>This analysis : 190/fb</u>

Leonard Polat, Laura Zani, Justine Serrano https://arxiv.org/abs/2305.04759

GDR-InF lautenbach@cppm.in2p3.fr

07.11.2023

Summary

- Tagged tau \rightarrow K_S0 I analysis performed for Belle and Belle II
- Total integrated luminosity 1342/fb
- Systematics calculated, except for BDT uncertainty and trigger systematic for Belle
 - Both not expected to change UL dramatically
 - Trigger systematic for Belle needs implementation of trigger lines in b2bii
- First combined version of internal note
 - Start of review inside tau group
 - Review commitee will start after working group review has converged

	eK_S^0	μK_S^0
Belle expected (@671 fb^{-1})	$2.85\cdot 10^{-8}$	$2.53\cdot 10^{-8}$
Belle observed (@671 fb^{-1})	$2.6 \cdot 10^{-8}$	$2.3 \cdot 10^{-8}$
Belle & Belle II expected (@1342 $\rm fb^{-1})$	$1.05\cdot 10^{-8}$	$1.21\cdot 10^{-8}$

- $\tau \rightarrow 1 \phi$ analysis was performed on 190/fb of Belle II data : https://arxiv.org/abs/2305.04759
 - not competitive so far \rightarrow will be updated with more data

_

