GDR-InF Annual Workshop 2023 LFV $\tau \rightarrow \ell \ell \ell$ decays at Belle II

Arthur Thaller Robin Leboucher, Justine Serrano, Laura Zani, Giampiero Mancinelli

Aix Marseille Univ, CNRS/IN2P3, CPPM

November 7, 2023

LFV and τ decays

- Lepton flavor is conserved in the SM (although "accidentally")
 - Except for neutrino oscillations
 - Typically for LFV lepton decays : ${\cal B}(LFV) \sim 10^{-50}$
- LFV can be linked to some anomalies, i.e. tensions in LFU measurements
- Many new physics models predict LFV around $10^{-8} 10^{-10} \rightarrow$ in Belle II's reach !
- τ decays are a good place to look for LFV, since τ is the heaviest lepton

Belle II

- e^+e^- collider, 10.58 GeV $\rightarrow \Upsilon(4S)$ resonnance \rightarrow B-factory
- Record instantaneous luminosity $4.7 \times 10^{34} cm^{-2} s^{-1}$
- Clean environnement, collision energy is well known
- \bullet Hermetic detector \rightarrow good missing energy resolution
- τ pair production cross section is quite high (0.92 nb) w.r.t B meson production $\rightarrow \tau$ -factory !

$\tau \to \ell \ell \ell$

- $\tau^+ \rightarrow \ell^+ \ell^- \ell^+$ +cc, I = e, μ
- 6 modes : $\mu^+\mu^-\mu^+$, $e^+e^-e^+$, $e^+e^-\mu^+$, $e^+\mu^-e^+$, $\mu^+e^-\mu^+$, $\mu^+\mu^-e^+$
- $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$: Analysis done by previous PhD student in Marseille (Robin Leboucher), almost unblinded
- Using full LS1 dataset : 424 fb $^{-1}$
 - $\tau \bar{\tau}$ production cross section is extremely close : $\sigma_{\tau \bar{\tau}} = 0.919^* \left(\frac{10.58}{E_{off-res}}\right)^2$

Quantity to be measured :

 $\mathcal{B}_{UL}(au
ightarrow 3\ell) = rac{N_{obs} - N_{exp}}{\mathcal{L} imes 2\sigma_{ au ilde{ au}} imes \epsilon_{sig}}$

Belle	results	at	782	fb^{-1}

Mode	ε (%)	$N_{\rm BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}(\times 10^{-8})$
$\tau^- \to e^- e^+ e^-$	6.0	$0.21{\pm}0.15$	9.8	0	$<\!2.7$
$\tau^- \to \mu^- \mu^+ \mu^-$	7.6	$0.13{\pm}0.06$	7.4	0	$<\!2.1$
$\tau^- \to e^- \mu^+ \mu^-$	6.1	$0.10{\pm}0.04$	9.5	0	$<\!2.7$
$\tau^- \to \mu^- e^+ e^-$	9.3	$0.04{\pm}0.04$	7.8	0	< 1.8
$\tau^- \to e^+ \mu^- \mu^-$	10.1	$0.02{\pm}0.02$	7.6	0	< 1.7
$\tau^- \to \mu^+ e^- e^-$	11.5	$0.01{\pm}0.01$	7.7	0	$<\!1.5$

Untagged analysis

We perform an untagged analysis : we don't explicitly reconstruct the other τ , instead we use information from the Rest of Event (ROE).

- 1-prong (+ neutrals) τ decays : $\tau \rightarrow \pi \nu$, $\tau \rightarrow \ell \nu \nu \sim 80\%$
- Add 3-prong : $au
 ightarrow 3\pi
 u$
- 30% gain in signal efficiency w.r.t. tagged (1-prong tag) analysis (Belle and BaBar)
- More background also reconstructed

$\tau^+ \to \ell^\pm \ell^\mp \ell^+$ +cc event selection

- Require that all tracks come from the IP
- Leptons : apply loose selection on the leptons particle identification variables (PID) for each mass hypothesis
 - muon : muonID > 0.5
 - electron : electronID > 0.5
- Use thrust to define 2 hemishperes : plane orthogonal to thrust axis separates the events in 2 halves
 - $T = max_{n_T}(\frac{\Sigma_i |p_i \cdot n_T|}{\Sigma_i |p_i|})$
- Require that the 3 leptons are on the same side of the event, and that everything else is on the other sideparticle
 - Additional photons, clusters, tracks...

- Use $(\Delta E_{3\ell}, M_{3\ell})$ plane to define signal region and reduce background $(\Delta E = \frac{E_{beam}}{2} E_{3\ell})$
- Get signal region by fitting ΔE_{3ℓ} and M_{3ℓ} distributions with asymetric gaussians.

Signal distribution in $(\Delta E_{3\ell}, M_{3\ell})$ for $\tau^+ \to \mu^+ \mu^-_{6/11} \mu^+_{6/11}$

Background rejection

Various background sources after event selection, depending on the mode :

- $q\bar{q}$: light quark pair (q = u,d,c,s)
- \bullet QED backgrounds : 2ℓ and 4ℓ events
- Mis-modeled contributions, radiative events with pair conversion and di-photons events

Background rejection is done mode by mode, first applying cut-based selection and further rejecting background using BDT.

- $au o \mu^+ \mu^- \mu^+$: Fully muonic final state, extremely clean, background is mainly q ar q
- Other modes, due to presence of electrons, have much more QED background.
- In principle these background contributions can be removed using physics considerations, mainly from the fact that there is no missing momentum
- However in the end, we achieve better sensitivity by using BDT classifier.

Background rejection

- Cut based preselection : target obvious peaking backgrounds and mismodeled contributions
 - Missing momentum aligned with the beam axis from di-photons
 - Low invariant mass of dilepton systems : radiative events with pair conversion
 - High thrust values : QED background
 - Refine PID selections : rank the same flavor lepton PID variables and cut tighter on the leading one.
- For $\tau \rightarrow 3\mu$, $q\bar{q}$ is the remaining background : train a BDT on simulated $q\bar{q}$ to reject remaining events.
- For the other modes, QED background is the main issue : train a BDT on data using enriched sidebands.
 - Invert PID requirements in the sidebands for training

PhotonC InvMass 1213

Results

After application of every selection :

	e ⁺ e ⁻ e ⁺	$e^+e^-\mu^+$	${ m e}^+ \mu^- { m e}^+$	$\mu^+ e^- \mu^+$	$\mu^+\mu^-e^+$	$\mu^+\mu^-\mu^+$
ϵ_{sig}	16.9%	21.5%	20.1%	24.5%	19.7%	20.4%
N_{bg}^{exp}	2.4	1.01	1.28	0.97	1.14	$0.5^{+1.38}_{-0.5}(stat)$

- ϵ_{sig} : Final signal efficiency in the signal
- N_{bg}^{exp} : Expected number of background events in the signal region, rescaling the observed number of events in data sidebands.
 - For τ → eℓℓ, we are studying the possible sensitivity gain by fitting background in the signal region, for background estimation and signal yield extraction.
- $\tau \to e \ell \ell$ modes background rejection is yet to be finalized.

$\tau \to \mu^+ \mu^- \mu^+$ results

ABCD method

Fully data-driven method

- 1. Define a 2D plane: Distance from the peaking signal in SR plane VS BDT output
- 2. Define 4 regions ABCD

$$D = \pm 5\delta \text{ sr with } p(BDT) > 0.9$$

$$N^{expected} = N$$

$$R_{\rm D}^{\rm expected} = N_{\rm C} \times R_{\rm B/A}$$

$$\begin{array}{c|c} R_{B/A} & 0.50^{+0.77}_{-0.40} stat \\ N_C & 1.00^{+2.30}_{-0.83} \\ N_D^{expected} & 0.50^{+1.38}_{-0.50} \end{array}$$

Systematic uncertainties:

Quantity	Source	Value	Relative Systematic uncertainties (%)	
			Low	High
	PID	20.42%	2.106	2.359
Esig	Tracking	20.42%	1.018	1.018
	Trigger	20.42%	0.7	0.7
	BDT	20.42%	1.5	1.5
L		424	0.6	0.6
$\sigma_{\tau\tau}$		0.919	0.326	0.326
N ^{SB} data	Momentum Scale	1.00	2.13	1.06

Validated with simulations

$au ightarrow \mu^+ \mu^- \mu^+$ with Belle II dataset :

Expected upper-limit on branching fraction at 90% CL: 1.46 \times 10 $^{-8}.$

	Belle with 782 fb ^{-1}				
	\mathcal{B}_{UL}	ε_{sig} (%)	N _{bkg}	Nobs	
2	1×10^{-8}	7.6	0.13	0	10

Conclusion

Unblinding soon

 $\tau \rightarrow \mu^+ \mu^- \mu^+$ with Belle II dataset :

Expected upper-limit on branching fraction at 90% CL:	
$1.46 imes 10^{-8}$.	

Belle with 782 fb $^{-1}$					
\mathcal{B}_{UL} $arepsilon_{sig}$ (%) N_{bkg} N_{ob}					
$2.1 imes10^{-8}$	7.6	O.13	0		

- $\tau \to \ell \ell \ell$ analysis, untagged method, which allows us to be competitive (better!) with Belle's result despite lower statistics
- Unblinding $au
 ightarrow 3\mu$ soon, publication will follow
- $\tau \rightarrow e\ell\ell$ modes suffer from non-simulated background \rightarrow data-driven background rejection is promising (work in progress)
- We can expect to be competitive with Belle's result for eee and $\mu^+\mu^-e^+$ modes
- ullet Systematics need to be evaluated ; should be of the same order than for 3μ mode
- We aim at finishing all the modes for Moriond 2024

BACKUP

Belle numbers

Mode	ε (%)	$N_{\rm BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}(\times 10^{-8})$
$\tau^- \to e^- e^+ e^-$	6.0	$0.21{\pm}0.15$	9.8	0	$<\!2.7$
$\tau^- \to \mu^- \mu^+ \mu^-$	7.6	$0.13{\pm}0.06$	7.4	0	$<\!2.1$
$\tau^- \to e^- \mu^+ \mu^-$	6.1	$0.10{\pm}0.04$	9.5	0	$<\!2.7$
$\tau^- \to \mu^- e^+ e^-$	9.3	$0.04{\pm}0.04$	7.8	0	<1.8
$\tau^- \to e^+ \mu^- \mu^-$	10.1	$0.02{\pm}0.02$	7.6	0	< 1.7
$\tau^- \to \mu^+ e^- e^-$	11.5	$0.01 {\pm} 0.01$	7.7	0	<1.5

At 782 fb^{-1}

PID variables, $e^+e^-\mu^+$

Asymmetric error bars

Asymmetric error bars on data yields ("vanilla case")

- after discussion at past tau meeting, we assign asymmetric uncertainties to yields in data and MC
 - \circ before computed as symmetrical Poisson uncertainties sqrt(N), for N entries in bin,
- adopt frequentist approach and find iteratively $\lambda 1$, $\lambda 2$ so that P(n<=N_{bin}| $\lambda 1$) <=0.16 and P(n>=N_{bin}| $\lambda 2$) <= 0.16

- in each bin error bars are defined as:
 - err_stat_up= λ1-N_{bin},
 - err_stat_low = N_{bin} - $\lambda 2$

L.Zani - Marseille 2023.03.06 - Tau to lepton phi unboxing

R.Leboucher τ WG meeting, 19/09/2023

7

$e^+e^-\mu^+$ data-driven selection

Right after recontruction :

$e^+\mu^-e^+$ data-driven selection Right after recontruction :

lluu 362 fb (0018) Evel 1.00 InvMass_I112 0.25 0.50 0.75 1.25 1.50 Data / MC 0.25 0.75 Belle II Simulation $\int dt = 362 \text{ fb}^{-1}$ $\tau \rightarrow e^{\pm} \mu^{\mp} e^{\pm}$ (Lµµ 200 tu 150 () stu 100 0.75 1.00 InvMass.J2l3 1.50Data / MC 0.75 1.00 1.25 1.50 1.75

$\mu^+ e^- \mu^+$ + data-driven selection

$\mu^+\mu^-e^+$ data-driven selection Right after recontruction :

Unfitted signal region for $\tau \to e\ell\ell$

For signal region we use the 2D plane $(M_{\ell\ell\ell}, \Delta E_{\ell\ell\ell})$:

- First rotate it into $(M'_{\ell\ell\ell}, \Delta E'_{\ell\ell\ell})$ to decorrelate the variables
- Build a fully asymmetric ellipse from $M'_{\ell\ell\ell}$ and $\Delta E'_{\ell\ell\ell}$: all four semi-axis are different
- All the axes are taken such that they correspond to a 90% coverage on their respective side of the distributions
- $\blacktriangleright\,$ Signal coverage is a bit lower than 81% (90% \times 90%) since variables are not fully decorrelated $\sim75\%$
- In the same way : hide ellipse whose axis correspond to 99% signal efficiency
 - Safe to look at data outside the blind ellipse

