of $\bm{\tau}$ τ *s* and μ *s*

An LFV review from an EFT perspective

Sacha DavidsonIN2P3/CNRS, France

 $\boldsymbol{1:}\,$ intro:

why is LFV interesting? what do we know?

2: comparing μ \leftrightarrow e and τ \leftrightarrow l (expt and) theory interpretation

 $(3:$ can $\mu {\leftrightarrow} e$ data rules models out?)

 $\mathsf{LFV} \equiv \mathsf{FCNC}$ of charged leptons, $\mathit{eg}\ \mu \!\rightarrow\! \mathit{e}\gamma$ $\textsf{EFT} \Rightarrow \textsf{NP}$ heavy, so neglect $\mu \rightarrow ea$, etc data

Reasons to like LFV

- ${\bf 3.}$ leptons do not have strong interactions
- **2.** leptons can generate the baryon asym. without proton decay(via non-perturbative SM B+L)
- $\boldsymbol{1}.~[m_{\nu}]$ says there is NP in lepton sector, that must give LFV:

calculate loops with m_ν and EW bosons, $predict$ $LFV>0$ $\nu{}ippec.$

Reasons to like LFV

- ${\bf 3.}$ leptons do not have strong interactions
- **2.** leptons can generate the baryon asym. without proton decay(via non-perturbative SM B+L)
- $\boldsymbol{1}.~[m_{\nu}]$ says there is NP in lepton sector, that must give LFV:

calculate loops with m_ν and EW bosons, $predict~LFV>0$ \longrightarrow $kipee!$ But ugh : get GIM for m_ν renorm, and for non-renorm. EFT gives result \approx GIM:

$$
A_{LFV} \sim \frac{m_{\nu}^2}{16\pi^2 v^2} \quad , \quad BR_{LFV} \sim 10^{-55}
$$

 $...$ lets hope LFV $\not\propto m_{\nu}^{2}$, because at diff scales or have diff couplings

("logGIM" occurs for quarks, but masses/charges not allow log $(m_{\nu}/m_W))$

1807.060501912.09862

What we know is bounds: categories of LFV data

 $\Delta L F = 1, \Delta Q F = 0 \, .$ $\mu A \rightarrow eA$, $\tau \rightarrow 3l$, $h \rightarrow \tau^{\pm} l^{\mp}$... ($l \in \{e, \mu\}$)

> $\Delta L F=2$ $\mu \overline{e} \rightarrow e \overline{\mu}, \quad \tau \rightarrow e e \overline{\mu} ... \nonumber \ \lambda \geq 25 v \vert \quad \lambda \geq 60 v \vert$ $\Lambda \stackrel{\scriptstyle >}{_{\sim}} 25v|_u,$ $\gtrsim 25 v|_\mu, \ \ \Lambda \gtrsim$ $\stackrel{>}{_{\sim}} 60v|_{\tau}$

 $\Delta L F = \Delta Q F = 1$ $K\to\mu\bar{e}, B_s\to\tau\bar{\mu},...$

categories \approx independent below ${\bf \Lambda}_{\rm LFV}$

ArduDavidson

Heeck

what we know about LFV : bounds/upcoming reach $\Delta L F = 1, \Delta Q F = 0 \quad (\Delta L F = \Delta Q F = 1)$, $(\Delta L F = 2)$

Recall that: τ and μ bounds are restrictive...

$$
\text{...because } \mu \text{ and } \tau \text{ decay weakly}: \quad BR(\mu \to e\bar{e}e) = \frac{\Gamma(\mu \to e\bar{e}e)}{\Gamma(\mu \to e\bar{\nu}\nu)}
$$
\n
$$
\text{if write } \delta \mathcal{L} = \frac{1}{v^2} (\overline{e}\gamma P_L \mu)(\overline{\nu}\gamma P_L \nu) + \frac{1}{\Lambda_{LFV}^2} (\overline{e}\gamma P_L \mu)(\overline{e}\gamma P_L e)
$$
\n
$$
\text{so } BR(\mu \to e\bar{e}e) \approx \frac{v^4}{\Lambda_{LFV}^4} \Rightarrow BR \lesssim \begin{cases} 10^{-12} \Rightarrow \Lambda_{LFV} \sim 10^3 v \simeq 200 \text{ TeV} \\ 10^{-16} \Rightarrow \Lambda_{LFV} \sim 10^3 v \simeq 2000 \text{ TeV} \end{cases}
$$

Recall that: τ and μ bounds are restrictive...

...because
$$
\mu
$$
 and τ decay weakly : $BR(\mu \to e\bar{e}e) = \frac{\Gamma(\mu \to e\bar{e}e)}{\Gamma(\mu \to e\bar{\nu}\nu)}$

if write
$$
\delta \mathcal{L} = \frac{1}{v^2} (\overline{e} \gamma P_L \mu) (\overline{\nu} \gamma P_L \nu) + \frac{1}{\Lambda_{LFV}^2} (\overline{e} \gamma P_L \mu) (\overline{e} \gamma P_L e)
$$

so
$$
BR(\mu \to e\bar{e}e) \approx \frac{v^4}{\Lambda_{LFV}^4} \Rightarrow BR \lesssim \begin{cases} 10^{-12} \Rightarrow \Lambda_{LFV} \sim 10^3 v \simeq 200 \text{ TeV} \\ 10^{-16} \Rightarrow \Lambda_{LFV} \sim 10^3 v \simeq 2000 \text{ TeV} \end{cases}
$$

 \int Compare to decays of $\Upsilon(2s)$ electromagnetically decaying $\bar b b$ state

$$
BR(\Upsilon \to \tau^{\pm} \mu^{\mp}) = \frac{\Gamma(\Upsilon \to \tau^{\pm} \mu^{\mp})}{\Gamma(\Upsilon \to \mu \bar{\mu})} \sim \left| \frac{m_{\Upsilon}^2 / \Lambda_{LFV}^2}{e^2 Q_b} \right|^2 \le \frac{6 \times 10^{-6}}{2.5 \times 10^{-2}}
$$

which excludes $\Lambda_{LFV} \stackrel{<}{_{\sim}} 100$ GeV. Similarly, $BR(\pi^0\to e^\pm \mu^\mp) < 3.6\times 10^{-10}$ gives $\Lambda_{LFV} \stackrel{<}{{}_\sim}$ few TeV. $\Big)$

$$
\star \quad \text{Also recall} \quad BR(\tau \to 3l) = \frac{\Gamma(\tau \to 3l)}{\Gamma(\tau \to \mu \bar{\nu} \nu)} \frac{\Gamma(\tau \to \mu \bar{\nu} \nu)}{\Gamma(\tau \to \text{all})} \simeq 0.18 \frac{\Gamma(\tau \to 3l)}{\Gamma(\tau \to \mu \bar{\nu} \nu)}
$$

Lets compare $\tau \!\leftrightarrow\! l$ and $\mu \!\leftrightarrow\! e$ reach: more restrictive BRs for $\mu \! \leftrightarrow \! e$ than $\tau \! \leftrightarrow \! l$ $\#$ constraints: exptal bounds on more $\tau \!\leftrightarrow\! l$ processes

Compare reach in Λ_{LFV} — at tree level

$$
\tau \leftrightarrow l \qquad 5 \times BR(\tau \leftrightarrow l) \sim 10^{-7} \to 10^{-9} \quad \Rightarrow \quad \Lambda_{\text{LFV}} \sim (50 \to 200)v
$$
\n
$$
\mu \leftrightarrow e \qquad BR(\mu \leftrightarrow e) \quad \lesssim \quad 10^{-12} \to 10^{-16} \quad \Rightarrow \quad \Lambda_{\text{LFV}} \sim (10^3 \to 10^4)v
$$

 $\Rightarrow \mu \!\leftrightarrow \! e$ can probe to higher scales at tree level...(?)promising for discovery(?)

$$
(\mu \leftrightarrow e \text{ can have interesting sensitivity to some } (\mu \to \tau) \times (\tau \to e) \text{ operators:}
$$
\n
$$
BR(\mu \leftrightarrow e) \propto |... + \frac{C^{\tau \mu Q q} C^{'e \tau q Q}}{16\pi^2}|^2 \lesssim 10^{-12} \to 10^{-16}
$$
\ncan have complementary sensitivity to direct bounds $|C^{\tau l Q q}|^2 \leq ...$ for 3rd Gen *Q*, 1st gen *q*.)

Count number of constraints from $\mu \rightarrow e\gamma, \mu \rightarrow e\bar{e}e, \mu A \rightarrow eA$ (want to compare # constraints in $\mu \leftrightarrow e$ vs $\tau \leftrightarrow l$)

(want to compare $\#$ constraints in $\mu \! \leftrightarrow \! e$ vs $\tau \! \leftrightarrow \! l)$

 $\mu A\!\rightarrow\!eA=\mu\rightarrow e$ conversion on nucleus ${\sf A}\text{:} \hspace{1cm}$ (talk:C Carloganu)

target $(Z=13, A=27, J=5/2)$

(can obtain some μ polarisation: KunoNagamineYamazaki)

- \bullet μ^- captured by Al nucleus, tumbles down to $1s$. ($r\sim Z\alpha/m_\mu$ $\stackrel{\textstyle >}{{\sim}} r_{Al})$
- \bullet in SM: muon capture $\mu + p \rightarrow \nu + n$

Count number of constraints from $\mu \rightarrow e\gamma, \mu \rightarrow e\bar{e}e, \mu A \rightarrow eA$ (want to compare # constraints in $\mu \leftrightarrow e$ vs $\tau \leftrightarrow l$)

(want to compare $\#$ constraints in $\mu \! \leftrightarrow \! e$ vs $\tau \! \leftrightarrow \! l)$

 $\mu A\!\rightarrow\!eA=\mu\rightarrow e$ conversion on nucleus A:

target $(Z=13, A=27, J=5/2)$

- (can obtain some μ polarisation: KunoNagamineYamazaki) \bullet μ^- captured by Al nucleus, tumbles down to $1s$. ($r\sim Z\alpha/m_\mu$ $\stackrel{\textstyle >}{{\sim}} r_{Al})$
- \bullet in SM: muon capture $\mu + p \rightarrow \nu + n$
- $\bullet\;\;$ bound μ interacts with nucleus, converts to $e\;(E_e\approx m_\mu)$

 \approx WIMP scattering on nuclei

 $1)$ "Spin Independent" rate,, grows with A (amplitude $\propto \sum_N \sim A)$ KitanoKoikeOkada1 $BR \propto |\sum C_D, C_{SI}^{nn}, C_{SI}^{pp}|^2$ HaxtonEtal2 $\propto\sum_{N}\sim A)$ $BR \propto |\sum C_D, C_{SI}^{nn}, C_{SI}^{pp}|^2$ |

Czarnecki,MarcianoEtalKitanoKoikeOkada10

HaxtonEtal22

..) subdominant("Spin Dependent"...), neglected

count 4 constraints: exptal bounds on $\left\{\frac{\text{light(Al,Ti)}}{\text{heavy(Au)}}\right\}$ targets $\times\{$ $\boldsymbol{\mu}$ μ_L, μ_I $R\big\}$

Probably yes : (modulo cancellations) SM loops ensure almost every $\Delta QF=0,$ $\mu \to e$ interaction with ≤ 4 legs, contributes $\stackrel{>}{_\sim} {\cal O}(10^{-3})$ to amplitudes $\mu \! \to \! e \gamma$,
 $\mu \! \to \! e \bar e e$ and /or $\mu A \! \to \! e \, A$ $\mu\!\rightarrow\!e\bar{e}e~$ and/or $\mu\!A\!\rightarrow\!eA$ 2010.00317

that is: current bounds sensitive to $\Lambda_{\rm LFV}\stackrel{<}{_\sim} \left\{\begin{array}{l} \sim 10^3 v \quad \text{ at tree}\ \, &\lesssim 100 v \quad \text{ at loop}\end{array}\right.$ $\lesssim 100v$ at loop

 μ

 μ e

 $+...$

The $\tau \leftrightarrow l$ **sector**: marvellous place to observe LFV

many processes: current data ^give indep bounds on magnitude of (almost) all operator $\mathsf{coeffs},$ with $\Lambda_{\rm LFV} \sim 10$ TeV

 \Rightarrow promising for distinguishing models (+insensitive to most loops \approx theoretically simple)

expected sensitivity of BelleII: BR $\lesssim 10^{-9} \rightarrow 10^{-10} \Leftrightarrow \Lambda_{\rm LFV} \sim 30$ TeV.

(taken from BanerjeeEtal, Snowmass WPaper 2203.14919). Axis $=$ $v^2/(2\sqrt{2}\Lambda_{\rm{LFV}}^2)$ dipole as $C_\gamma v{\cal O}_D$

If see ^µ↔e*, can we learnsomething about the model?* recall three processes: $\mu \rightarrow e$, $\Delta F_Q = 0$

 $\{C\}$ are $\mathcal{O}(1)$ dimless numbers that can be measured (∃ more info than just rates) O_{Alight} =combo of 4fermion operators probed by light targets (Al,Ti) $O_{Aheavy\perp}$ = indep. combo of 4fermion ops probed by heavy targets (Au)

if see $\mu\!\rightarrow\! e\gamma$, $\mu\!\rightarrow\! e\bar e e$, or $\mu\!A\!\rightarrow\! eA$...?can distinguish models? ...model predictions studied for decades...

EFT recipe to study this: (not scan model space—no measure)

- \bullet data is a "12-d" ellipse/box in coefficient-space (in an ideal theorist's world)
- \bullet with RGEs, can take ellipse to $\Lambda_{\rm LFV}$
- \bullet are there parts of ellipse that a model $\it cannot$ fill? If yes, model can be distinguished/ruled out by $\mu \leftrightarrow e$ data.

Apply recipe to three models around TeV:

- 1) type II seesaw
- 2) singlet LQ for R_D^\ast
- 3) inverse seesaw

 $\displaystyle{^* None}$ of the models fills the ellipse:

- seesaws: not generate LFV among singlet (RH) leptons (NP talks to doublets)
- \bullet typeII predicts dipole $<$ at least one four-fermion coeff.
- LQ cannot generate scale 4-lepton operators...

Summary

LFV is NP that exists... but we don't see it yet

 $\mu \leftrightarrow e$ is an EFT playground: a few processes constrain coefficients of a few
operators to be very small: $\Lambda_{\rm LENZ}\geq 10^3 v$ now. $\Lambda_{\rm LENZ}\sim 10^4 v$ upcoming operators to be very small: $\Lambda_{\rm LFV} \stackrel{>}{_\sim} 10^3 v$ now, $\Lambda_{\rm LFV} \sim 10^4 v$ upcoming.

 \star include RGEs at leading order, to give $\emph{sensitivity}$ to almost every μ \leftrightarrow e operator (in chiral basis) with ≤ 4 legs (at $\Lambda_{\rm LFV}\stackrel{<}{{}_\sim} 10^2 v)$

 \star matching a few models onto this exptally accessibly subspace, shows $\mu \leftrightarrow e$
observations could rule out models observations could rule out models

 $\tau \leftrightarrow l$ processes currently set moderate $constraints$ on (almost) all $\tau \leftrightarrow l$ operator
coefficients : $\Lambda_{\tau \to \tau} \geq 50 v$ $\mathsf{coefficients} : \Lambda_{\mathrm{LFV}} \gtrsim$ Marvellous place to reconstruct NP model of lepton sector

But to reconstruct $\mu \to e$ bottom-up, need all data?
 $eg\ BR(\pi^0\to e^\pm \mu^\mp) < 3.6\times 10^{-10}$, or $BR(\Upsilon\to l_1\bar{l}_2) \stackrel{<}{{}_\sim} 10^{-6} ?$

Ummm:
$$
\mu
$$
 decays weakly $\Leftrightarrow \tau_{\mu} \sim 10^{-6}$ sec.
vs $\tau_{\pi^0} \sim 10^{-16}$ sec (loop-suppressed QED), or $\tau_{\Upsilon} \sim 10^{-20}$ sec (tree QED/QCD)

Compare $weak~\mu$ decays to $anomalous~QED~\pi_0$ decay (write $\delta {\cal L} \sim \frac{1}{\Lambda_{\rm LFV}^2} (\bar{e}\mu) (\bar{q}q) + \frac{1}{\Lambda_{\rm LFV}^2} (\bar{e}\gamma\mu) (\bar{e}\gamma e))$:

$$
BR(\mu \to e\bar{e}e) = \frac{\Gamma(\mu \to e\bar{e}e)}{\Gamma(\mu \to e\bar{\nu}\nu)} \sim \left| \frac{m_{\mu}^2/\Lambda_{\rm LFV}^2}{m_{\mu}^2 G_F} \right|^2 \sim \frac{v^4}{\Lambda_{\rm LFV}^4} \lesssim 10^{-12} \Rightarrow \Lambda_{\rm LFV} \gtrsim 10^5 \text{GeV}
$$

$$
BR(\pi_0 \to \bar{e}\mu) = \frac{\Gamma(\pi_0 \to \bar{e}\mu)}{\Gamma(\pi_0 \to \gamma\gamma)} \sim \left| \frac{m_{\pi}^2/\Lambda_{\rm LFV}^2}{\alpha/4\pi} \right|^2 \sim \left(\sqrt{\frac{4\pi}{\alpha} \frac{m_{\pi}}{\Lambda_{\rm LFV}}}\right)^4 \Rightarrow \Lambda_{\rm LFV} \gtrsim \text{TeV}
$$

 \dots rare μ processes have exceptional $sensitivity$, because μ decay weak. $\textsf{Other}\; \mu \rightarrow e$ processes constrain "orthogonal" operator coefficients, less well.

...but: uncertainties in matching to quarks

suppose measure coefficients of LFV ops with vector and scalar currents of n or p , from $\mu A \rightarrow e A$ on different targets
Then match to quarks: Then match to quarks:

$$
\left(\begin{array}{c} C^{pp}_{V,L} \\ C^{nn}_{V,L} \\ C^{pp}_{S,R} \\ C^{nn}_{S,R} \end{array}\right) = \left[\begin{array}{cccc} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & G^{pu}_S & G^{pd}_S \\ 0 & 0 & G^{nu}_S & G^{pd}_S \\ 0 & 0 & G^{nu}_S & G^{nd}_S \end{array}\right] \left(\begin{array}{c} C^{uu}_{V,L} \\ C^{dd}_{V,L} \\ C^{uu}_{S,R} \\ C^{dd}_{S,R} \end{array}\right)
$$

- \bullet But for scalar ops, $\ G^{p,u}_S=G^{n,d}_S\simeq G^{p,d}_S\simeq G^{n,u}_S$ so need great precision to differentiate LFV ops with scalar currents of u or d :(
- \bullet and…curent determinations of G s from lattice and pions disagree by 50%

Climbing the mountain for $\mu \rightarrow e \colon \sf{EFT}$

Renormalisation Group Eqns/matching/scheme-dep./...

(conceptually simple, technically involved)

Can't we do without RGEs, etc?

in discovery mode for LFV+electroweak loops are small...include later?

counterex: $\mu A {\,\rightarrow\,} eA$ in model giving tensor $2\sqrt{2}G_F C_T^{uu}(\overline{e}\sigma P_R \mu)(\overline{u}\sigma u)$ at weak scale

 ${\bf 1:}$ forget loops quark tensor matches to nucleon spin $\bar N \gamma \gamma_5 N$: $(N\in\{n,p\})$

 $\Rightarrow BR(\mu A \to e A)$ $\approx BR_{SD} \approx \frac{1}{2}$ $\frac{1}{2}|C^{uu}_T|$ |2 (CiriglianoDKuno) Hoferichter etal

2: include QED loops $m_W\to 2$ GeV:

Then, scalar ops have enhanced nuclear matrix elements, and are SpinIndep:

$$
BR(\mu A \to e A) \approx BR_{SI} \sim Z^2 |2C_T^{uu}|^2 \sim 10^3 BR_{SD}
$$

loops can change Lorentz structure/external legs \Rightarrow different operator whose
coefficient better constrained. Important for $u \to e$. (?not $\tau \to l$?) coefficient better constrained. Important for $\mu \rightarrow e.$ $(?$ not $\tau \rightarrow l?)$

operators $+$ **RGEs:** everything to which data could be sensitive

operator basis: below m_W , all gauge invariant operators with ≤ 4 legs ≈ 100 ops.
add to \mathcal{L}_{max} as $\delta \mathcal{L} = 2\sqrt{2}C_{\text{max}}e^{\mu ee}$ (zew)(zero) i add to \mathcal{L}_{SM} as $\delta \mathcal{L} = 2\sqrt{2} G_F C_{V,LL}^{e\mu ee} (\overline{e}\gamma\mu)(\overline{e}\gamma e) + ...$

(not dim6: bottom-up perspective/ operator dim. not preserved in matching) above m_W : dim 6 $+$ selected dim 8 (guess by powercounting)
^{ArduD:} ArduDavidson

ex: $(\bar e\mu)G_{\alpha\beta}G^{\alpha\beta}$ is dim7 $< m_W$, dim8 in SMEFT. But
• dim6 boary quark scalar ans $(\bar e\mu)(\bar O O)$ match to $(\bar e\mu)$ • \bullet dim6 heavy quark scalar ops $(\bar{e}\mu)(\bar{Q}Q)$ match to $(\bar{e}\mu)GG$ at m_Q (coef. $C_{QQ}/(m_Q\Lambda_{\rm LFV}^2)$):

• gluons contribute most of the mass of the nucleon ShifmanVainshteinZahkarov $\langle N|m_NNN|N\rangle =\sum_{q\in\{u,d,s\}}\langle N|m_q\overline{q}q|N\rangle \;\;\;-\frac{\alpha_s}{8\pi}\beta_0\langle N|GG|N\rangle$ ⇒ dim7 $(\bar{e}\mu)GG$ contributes significantly to $\mu A \rightarrow eA$ via scalar $\mu \rightarrow e$ interactions
with nucleons N $\mathsf{with}\ \mathsf{nucleons}\ N.$

operators $+$ **RGEs:** everything to which data could be sensitive

operator basis: below m_W , all gauge invariant operators with ≤ 4 legs ≈ 100 ops.
add to \mathcal{L}_{max} as $\delta \mathcal{L} = 2\sqrt{2}C_{\text{max}}e^{\mu ee}$ (zew)(zero) i add to \mathcal{L}_{SM} as $\delta \mathcal{L} = 2\sqrt{2} G_F C_{V,LL}^{e\mu ee} (\overline{e}\gamma\mu)(\overline{e}\gamma e) + ...$

(not dim6: bottom-up perspective/ operator dim. not preserved in matching) above m_W : dim 6 $+$ selected dim 8 (guess by powercounting)
^{ArduD:} ArduDavidson

RGEs+matching: at "leading order"[≡] largest contribution of each operator ${\sf to~each~observable.}~~$ (2GeV \rightarrow $\!m_W$:resum LL QCD, $\alpha_e\log$, some $\alpha_e^2\log^2,\alpha_e^2\log^2$

why not just 1-loop RGEs?

- \bullet expand in loops, hierarchical Yukawas, $1/\Lambda_{\rm LFV}^2,...$ largest effect maybe not 1-loop (ex: Barr-Zee)
- sometimes 1-loop vanishes...eg: 2-loop $\Delta a_\mu|_{EW}\simeq$ 1-loop $\Delta a_\mu|_{EW}$.
or 2-loop log-enhanced
	- $=$ mixing vector ops to dipole in 2-loop RGEs.

What can one learnin bottom-up EFT?

.

But 3 processes, $\sim\!\!100$ operators \Rightarrow zoo of flat directions?

DKunoYamanaka

Count constraints: (write
$$
\delta \mathcal{L} = C_{Lorentz, XY}^{flavour}/v^n \mathcal{O}_{Lorentz, XY}^{flav}
$$
, $X, Y \in \{L, R\})$

 $\mu \rightarrow e \gamma:$ $\gamma: \qquad BR(\mu\!\rightarrow\! e\gamma) = 384\pi^2(|C_{D,L}|^2 + |C_{D,R}|^2) \quad \Rightarrow \textbf{2 constraints}$

 $\mu \rightarrow e \bar{e} e$: $\bar{\bm{e}} \bm{e}$ $\bm{:} \quad$ $(e$ relativistic \approx chiral, neglect interference between $e_L, e_R)$

$$
BR = \frac{|C_{S,LL}|^2}{8} + 2|C_{V,RR} + 4eC_{D,L}|^2 + (64 \ln \frac{m_{\mu}}{m_e} - 136)|eC_{D,L}|^2
$$

+ $|C_{V,RL} + 4eC_{D,L}|^2 + \{L \leftrightarrow R\}$ \Rightarrow 6 more constraints

 $\mu A \!\rightarrow \! eA: (S_A^N, V_A^N\!\!=\!\!$ integral over nucleus A of N distribution \times lepton wavefns, **different** for diff. $A)$ $BR_{SI} \sim Z^2 |V_A^p \tilde{C}_{V,L}^p + S_A^p \tilde{C}_{S,R}^p + V_A^n \tilde{C}_{V,L}^n + S_A^b \tilde{C}_{S,R}^n + D_A C_{D,R} |^2 + |L \leftrightarrow R|^2$ $BR_{SD} \sim |\tilde{C}_A^N + 2\tilde{C}_T^N|^2$

SI bds on Au, Ti, $(+$ SD on ?Ti, Au?) \Rightarrow 4 + 2 more constraints future: improved theory, $3SI+2SD$ targets \Rightarrow 6+4 constraints

is 12 -20 constraints on ~ 100 operators a problem?

many operators+few constraints=using inconvenient basis

Have 6 $(+6)$ constraints on e_L (e_R) operator coefficients. Focus on e_L . Want to change basis to $\mathit{scale}\,$ -de $\mathit{pendent}$ basis of constrained 6-d subspace.

 $\boldsymbol{1.}\ \mu \!\rightarrow\! e\gamma$ measures $C_{D,R}(m_{\mu})$ $\mathcal{L} \cap \mathcal{L}$ for so \mathcal{L} since Have RGEs for coefficients (arranged in row vector)

$$
\mu \frac{\partial}{\partial \mu} \vec{C}(\mu) = \vec{C}(\mu) \mathbf{\Gamma}(\mu, g_s(\mu), \ldots) \quad \Rightarrow \quad \vec{C}(m_\mu) = \vec{C}(m_W) \mathbf{G}(m_\mu, m_W)
$$

solved as scale-ordered exponential (resummed QCD, $\alpha\log$, some $\alpha^2\log^2,\alpha^2\log p$ \Rightarrow define scale-dep $\vec{v}_{\mu\to e\gamma}(\Lambda)$, column of **G** such that: $C_{DR}(m_\mu) = \vec{C}(\Lambda) \cdot \vec{v}_{\mu\to e\gamma}(\Lambda)$ LТ $\vec{v}_{\mu\to e\gamma}(\Lambda)$ is scale-dep basis vector for constrainable subspace

2-6. repeat for other independent constraints. So obtain scale-dep basis vectors for the subspace, defined from the observables. The "flat directions" (experimentally inaccessible) are orthogonal, and therefore

irrelevant.

Basis should span the finite-eigenvalue subspace of the correlation matrix.

what to do with this basis?

Including SM loop corrections to operators $ex: 1$ -loop QED $+$ QCD $(+$ 2-loop QED V \rightarrow D) μ_{\bullet} e f1 $f_2\,$ $f_2\$ μ_{\bullet} e f1 $f_2\,$ $f_2\$ μ e $f_2\$ $f_2\,$ μ e $\mu \rightarrow \nu e$ μ e f_2 \diagup f_2 μ e f_2 \diagup f_2 μ e $f_2\$ $f_2\,$ μ ∂ $\partial \mu$ $\vec{C}(m_{\mu}) = \vec{C}(\Lambda_{\rm LFV})$ $\bm{G} ~~,~~~ \bm{G} = {\rm fn~of~SM~parameters}, \log(\Lambda_{\rm LFV}/\Lambda_{exp})$ \vec{C} = α s 4π $\vec{C}\mathbf{\Gamma}$ s $^{\circ}$ + α_{em} 4π $\vec{C}\mathbf{\Gamma}$ solve (analytically/numerically): For ex: $BR(\mu\!\rightarrow\! e\gamma) = 384\pi^2(|C_{D,L}|^2+|C_{D,R}|^2) < 4.1\times 10^{-13} \Rightarrow C_{D,X} \stackrel{\scriptstyle <}{_{\sim}}$ $≤ 10[−]$ 8 $C_{D,X}($ m_{μ} \models $C_{D,X}$ ($m_W) \Bigg($ 1 -16 α $\frac{\alpha_e}{4\pi}$ ln $m \$ W $\left(\frac{m_W}{m_\mu}\right)$ μ − α $\frac{\alpha_e}{4\pi e}\bigg($ $C^{\mu\mu}_{S,XX}$ −8 $\,m$ $\frac{\tau}{\tau}$ $\frac{m_{\tau}}{m_{\mu}} C^{\tau\tau}_{T,XX} + C_{2loop} \bigg) \ln \frac{m}{m}$ μ W \overline{m} μ $+16\,$ α $\frac{\alpha_e^2}{2e(4\pi)^2}$ $\binom{m}{m}$ $\frac{\tau}{\tau}$ m_μ $C^{\tau\tau}_{S,XX}$ ln 2 $m \$ W m_μ $8\lambda^a$ a_T $^{T}f_{TD}$ α $\frac{\alpha_e}{4\pi e}\bigg(\!\frac{2}{n}\!\!$ $\,m$ c $\frac{m_{c}}{m_{\mu}} C_{T,XX}^{cc}$ − $m \$ s $\frac{m_s}{m_{\mu}} C_{T,XX}^{ss}$ − $\,m$ $\frac{b}{1}$ $\frac{m_b}{m_\mu} C_{T,XX}^{bb} \bigg) \ln \frac{r}{2}$ $2[°]$ $+16\,$ α $\frac{\alpha_e^2}{3e(4\pi)^2}$ $\bigg($ \setminus $\sum_{u,c}$ 4 $m \$ $\frac{q}{\overline{q}}$ m_μ $C_{S,XX}^{qq}$ $\, + \,$ $\sum_{d,s,b}$ $m \$ $\frac{q}{\overline{q}}$ m_μ $C_{S,XX}^{qq}$ \setminus $\int \ln^2$ $\,m$ W $2 {\rm GeV}$

 $C_{Lor}^{\zeta}(m_W)$ on right. $\lambda = \alpha_s(m_W)/\alpha_s(2{\rm GeV}) \simeq 0.44$, $f_{TS} \simeq 1.45$, $a_S = 12/23, a_T = -4/23$.

Operator basis $m_{\tau} \to m_W$: ~ 90 operators $\mathbb{R}^{\text{BowmanChengLiMatis}}$ operator list: Kuno-Okada, + Cirigliano Kitano O Tuzon Add QCD \times QED-invar operators, representing all 3,4 point interactions of μ with e and $flavour-diagonal$ combination of γ, g, u, d, s, c, b . $Y \in L, R$.

^mµ(eσαβP^Y ^µ)^Fαβ dim⁵

 $(\overline{e}\gamma^{\alpha}P_Y\mu)(\overline{e}\gamma_{\alpha}P_Ye)$ $(\overline{e}\gamma^{\alpha}P_Y\mu)(\overline{e}\gamma_{\alpha}P_Xe)$ $(\overline{e}P_Y\mu)(\overline{e}P_Ye)$ dim $dim\ 6$ $(\overline{e}\gamma^{\alpha}P_Y\mu)(\overline{\mu}\gamma_{\alpha}P_X\mu)$ $(\overline{e}\gamma^{\alpha}P_Y\mu)(\overline{\mu}\gamma_{\alpha}P_X\mu)$ $(\overline{e}P_Y\mu)(\overline{\mu}P_Y\mu)$ $(\overline{e}\gamma^{\alpha}P_Y\mu)(f\gamma_{\alpha}P_Yf)$ $(\overline{e}\gamma^{\alpha}P_Y\mu)(f\gamma_{\alpha}P_Xf)$ $(\overline{e}P_Y\mu)(fP_Yf)$ $(\overline{e}P_Y\mu)(fP_Xf)$ $f \in \{u, d, s, c, b, \tau\}$ $(\overline{e}\sigma P_Y\mu)(f\sigma P_Yf)$ 1 $\frac{1}{m_t} (\overline{e} P_Y \mu) G_{\alpha\beta} G^{\alpha\beta} \qquad \frac{1}{m_t} (\overline{e} P_Y \mu) G_{\alpha\beta} \widetilde{G}^{\alpha\beta} \qquad \text{dim } 7$ 1 $\frac{1}{m_t}(\overline{e}P_Y\mu)F_{\alpha\beta}F^{\alpha\beta} \qquad \frac{1}{m_t}(\overline{e}P_Y\mu)F_{\alpha\beta}\widetilde{F}^{\alpha\beta} \qquad \ldots$ zzz...but ~ 90 coeffs! $(P_X, P_Y = (1 \pm \gamma_5)/2)$, all operators with coeff $-2\sqrt{2}G_F C$.

sensitivity \emph{vs} constraint

Suppose that $BR(\mu A l \rightarrow e A l) \stackrel{<}{_{\sim}} 10^{-14}$, and :
 $\delta f(m_{W}) = C^{uu} (\overline{e} \sigma P_{W}) (\overline{u} \sigma u) + C^{uu}$ $\delta \mathcal{L}(m_W) = C_T^{uu} (\overline{e} \sigma P_Y \mu)(\overline{u} \sigma u) + C_S^{uu} (\overline{e} P_Y \mu)(\overline{u} u)$

 C_T^{uu}, C_S^{uu} constrained to live inside blue (red) ellipse at exptal scale (at m_W):
sensitivity to $C^{uu} =$ sut ellipse 0 $C^{uu} = 0$; senstraint $=$ live in projection of ellipse sensitivity to $C_S^{uu} =$ cut ellipse @ $C_T^{uu} = 0$; constraint $=$ live in projection of ellipse onto C_S^{uu} axis.