Salvador Rosauro-Alcaraz, 06/11/2023

Hunting Invisibles: Dark sectors, Dark matter and Neutrinos

I ENSIT

Understanding $B \to K \nu \bar{\nu}$ **Theoretical perspective**

Based on [2301.06990] & [2309.02246], in collaboration with L. Allwicher, D. Becirevic, G. Piazza & O. Sumensari

GDR-InF, Strasbourg

Plan for the talks

• $B \to K^{(*)} \nu \bar{\nu}$ in the SM and theoretical uncertainties SRA

• Consequences for New Physics of the Belle-II measurement SRA

• Search for the rare decay $B^+ \to K^+ \nu \bar{\nu}$ decay at Belle II + σ Jacopo Cerasoli & Lucas Martel

Introduction FCNC processes as probes of NP

Flavour Changing Neutral Current (FCNC) processes are good probes of New Physics as they are loop and CKM suppressed in the SM

Introduction FCNC processes as probes of NP

Flavour Changing Neutral Current (FCNC) processes are good probes of New Physics as they are loop and CKM suppressed in the SM

Introduction FCNC processes as probes of NP

Hadronic uncertainties might hinder their precise determination: $b \rightarrow s\nu\nu$ is theoretically cleaner than $b \rightarrow s\mu\mu$, not affected by $c\bar{c}$ -loops

Flavour Changing Neutral Current (FCNC) processes are good probes of New Physics as they are loop and CKM suppressed in the SM

Effective description in the (B)SM

$b \rightarrow s \nu \nu$ **Effective lagrangian**

$$
\mathscr{L}^{b \to s\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \mathcal{O}_a + h.c.
$$

See e.g. A. Buras *et al.*, 1409.4557

$$
\mathscr{L}^{b\to s\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \hat{O}_a + h.c.
$$

$$
C_L^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)
$$

$b \rightarrow s \nu \nu$ **Effective lagrangian**

Effective description in the (B)SM

See e.g. A. Buras *et al.*, 1409.4557

$$
\mathscr{L}^{b\to s\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \widehat{O}_a + h.c.
$$

$$
-\partial_L^{\nu_i\nu_j} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)
$$

$b \rightarrow s \nu \nu$ **Effective lagrangian**

Flavor diagonal

Effective description in the (B)SM

$$
C_L^{\text{SM}} = -6.32(7)
$$
\nSee e.g. A. Buras et al., 1409.4557

\n

NLO QCD & 2-loop

G. Buchalla & A. Buras, Nucl. Phys. B (1993) G. Buchalla & A. Buras, arXiv:hep-ph/9901288 M. Misiak & J. Urban, arXiv:hep-ph/9901278 J. Brod, M. Gorbahn & E. Stamou, arXiv:1009.0947

$$
\mathcal{O}_L^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)
$$

Effective lagrangian $b \rightarrow s \nu \nu$

Effective description in the (B)SM

Flavor diagonal

$$
\mathcal{O}_{R}^{\nu_{i}\nu_{j}} = \frac{e^{2}}{(4\pi)^{2}} \left(\bar{s}_{R}\gamma_{\mu}b_{R} \right) \left(\bar{\nu}_{i}\gamma^{\mu}(1-\gamma_{5})\nu_{j} \right)
$$

$$
C_L^{\text{SM}} = -6.32(7)
$$
\nSee e.g. A. Buras et al., 1409.4557

\n

NLO QCD & 2-loop

G. Buchalla & A. Buras, Nucl. Phys. B (1993) G. Buchalla & A. Buras, arXiv:hep-ph/9901288 M. Misiak & J. Urban, arXiv:hep-ph/9901278 J. Brod, M. Gorbahn & E. Stamou, arXiv:1009.0947

$$
\mathcal{O}_L^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)
$$

Effective lagrangian $b \rightarrow s \nu \nu$

Effective description in the (B)SM

Flavor diagonal

$$
\mathcal{O}_{R}^{\nu_{i}\nu_{j}} = \frac{e^{2}}{(4\pi)^{2}} \left(\bar{s}_{R}\gamma_{\mu}b_{R} \right) \left(\bar{\nu}_{i}\gamma^{\mu}(1-\gamma_{5})\nu_{j} \right)
$$

$$
\frac{C_{R}^{\text{SM}}}{2}
$$

$$
C_L^{\text{SM}} = -6.32(7)
$$
\nSee e.g. A. Buras et al., 1409.4557

\n

NLO QCD & 2-loop

G. Buchalla & A. Buras, Nucl. Phys. B (1993) G. Buchalla & A. Buras, arXiv:hep-ph/9901288 M. Misiak & J. Urban, arXiv:hep-ph/9901278 J. Brod, M. Gorbahn & E. Stamou, arXiv:1009.0947

$$
\mathscr{L}^{b \to s\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \mathcal{O}_a + h.c.
$$

Only operators present even with NP (w/o ν_R)

$$
\mathcal{O}_L^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)
$$

$$
C_L^{\text{SM}} = -6.32(7)
$$

$$
\mathcal{O}_{R}^{\nu_{i}\nu_{j}} = \frac{e^{2}}{(4\pi)^{2}} \left(\bar{s}_{R}\gamma_{\mu}b_{R} \right) \left(\bar{\nu}_{i}\gamma^{\mu}(1-\gamma_{5})\nu_{j} \right)
$$

$$
\frac{C_{R}^{\text{SM}}}{R} = 0
$$

Effective lagrangian $b \rightarrow s \nu \nu$

Effective description in the (B)SM

Flavor diagonal

$$
\mathscr{L}^{b \to s\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \mathcal{O}_a + h.c.
$$

Only operators present even with NP (w/o ν_R)

$$
\mathcal{O}_L^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)
$$

$$
C_L^{SM} = -6.32(7)
$$

Effective lagrangian $b \rightarrow s \nu \nu$

Effective description in the (B)SM

$$
C_L^{\nu_i \nu_j} = C_L^{\text{SM}} \delta_{ij} + \delta C_L^{\nu_i \nu_j}
$$

$$
C_R^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_R \gamma_\mu b_R \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)
$$

$$
C_R^{\text{SM}} = 0
$$

$$
\mathscr{L}^{b \to s\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \mathcal{O}_a + h.c.
$$

Only operators present even with NP (w/o ν_R)

$$
\mathcal{O}_L^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)
$$

$$
C_L^{SM} = -6.32(7)
$$

Effective lagrangian $b \rightarrow s \nu \nu$

Effective description in the (B)SM

$$
C_L^{\nu_i \nu_j} = C_L^{\text{SM}} \delta_{ij} + \delta C_L^{\nu_i \nu_j}
$$

$$
C_R^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_R \gamma_\mu b_R \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)
$$

$$
C_R^{\text{SM}} = 0
$$

$$
C_R^{\nu_i \nu_j} = \delta C_R^{\nu_i \nu_j}
$$

 $\mathscr{L}^{b\to s\nu\nu}$ = $4G_{\!F}$ 2 *λt*∑ *a* $C_a \mathcal{O}_a + h \cdot c$.

$$
\mathcal{L}^{b \to s\nu\nu} = \frac{4G_H}{\sqrt{2}} \lambda_t \sum_{s} C_a \mathcal{O}_a + h.c.
$$

$$
\lambda_t \equiv V_{tb} V_{ts}^*
$$

CKM unitarity $\lambda_t \sim V_{cb} (1 + \mathcal{O}(\lambda^2))$
Inclusive vs exclusive

$$
\lambda_t \times 10^3 = \begin{cases} 41.4 \pm 0.8, & B \to X_c \ell \bar{\nu} & \text{HFLAV, arXiv:2206.075} \\ 39.3 \pm 1.0, & B \to D \ell \bar{\nu} & \text{FLAQ, arXiv:2111.098} \\ 37.8 \pm 0.7, & B \to D^{(*)} \ell \bar{\nu} & \text{HFLAV, arXiv:2206.075} \end{cases}
$$

 501

849

 501

 $\mathscr{L}^{b\to s\nu\nu}$ = $4G_{\!F}$ 2 *λt*∑ *a* $C_a \mathcal{O}_a + h \cdot c$. *νi νj L* = *e*2 $\frac{C}{(4\pi)^2} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)$

$$
\begin{array}{c}\n\text{CKM unitarity} \\
\hline\n\text{Inclusive vs exclusive?} \\
\end{array}
$$

 $\mathscr{L}^{b\to s\nu\nu}$ = $4G_{\!F}$ 2 *λt*∑ *a* $C_a \mathcal{O}_a + h \cdot c$. *νi νj L* = *e*2 $\frac{C}{(4\pi)^2} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)$

$$
\begin{array}{c}\n\text{CKM unitarity} \\
\hline\n\text{Inclusive vs exclusive?} \\
\end{array}
$$

$$
\mathscr{L}^{b \to s\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \mathcal{O}_a + h.c.
$$

element
\n
$$
\langle K^{(*)} \ \bar{s}_L \gamma^\mu b_L \ B \rangle = \sum_i K_i^\mu \ \mathcal{F}_i(q^2)
$$

$$
\begin{array}{c}\n\text{CKM unitarity} \\
\hline\n\text{Inclusive vs exclusive?} \\
\end{array}
$$

$$
\mathscr{L}^{b \to s\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \mathcal{O}_a + h.c.
$$

element
\n
$$
\langle K^{(*)} \ \bar{s}_L \gamma^{\mu} b_L \ B \rangle = \sum_i K_i^{\mu} \mathcal{F}_i(q^2)
$$
\nForm factors (Lattice QCD, LCSR...)

$$
\begin{array}{c}\n\text{CKM unitarity} \\
\hline\n\text{Inclusive vs exclusive?} \\
\end{array}
$$

$$
\mathscr{L}^{b \to s\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \mathcal{O}_a + h.c.
$$

$$
\mathcal{O}_L^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right)
$$

$$
\langle K^{(*)} \ \bar{s}_L \gamma^{\mu} b_L \ B \rangle = \sum_i K_i^{\mu} \ \mathcal{F}_i(q^2)
$$

Form factors (Lattice QCD, LCSR...)

Form factor determination

$$
\begin{array}{c}\n\text{CKM unitarity} \\
\hline\n\text{Inclusive vs exclusive?} \\
\end{array}
$$

$$
\langle \bar{K}(k) \ \bar{s} \gamma^{\mu} b \ \bar{B}(p) \rangle = \left[(p+k)^{\mu} - \right]
$$

Form factors $B \rightarrow K \nu \bar{\nu}$

HPQCD, arXiv:2207.12468 FNAL/MILC, arXiv:1509.06235

Lattice determinations of the form factors (FF)

$$
\frac{d\mathcal{B}}{dq^2} = \mathcal{N}_K(q^2) C_L^{SM \ 2} \ \lambda_t^2 \left[f_+(q^2)\right]^2
$$

Only FF entering
$$
\mathcal{B}(B \to K\nu\bar{\nu})
$$

\n
$$
\frac{m_B^2 - m_K^2}{q^2} q^{\mu} \left[f_+(q^2) + q^{\mu} \frac{m_B^2 - m_K^2}{q^2} f_0(q^2) \right]
$$

Form factors $B \rightarrow K \nu \bar{\nu}$

HPQCD, arXiv:2207.12468 FNAL/MILC, arXiv:1509.06235

$$
\frac{d\mathcal{B}}{dq^2} = \mathcal{N}_K(q^2) C_L^{SM \ 2} \ \lambda_t^2 \left[f_+(q^2)\right]^2
$$

Relative error related to FF determination $\leq \mathcal{O}(5\%)$

Only FF entering
$$
\mathcal{B}(B \to K\nu\bar{\nu})
$$

\n
$$
\frac{m_B^2 - m_K^2}{q^2} q^{\mu} \left[f_+(q^2) + q^{\mu} \frac{m_B^2 - m_K^2}{q^2} f_0(q^2) \right]
$$

Form factors $B \rightarrow K \nu \bar{\nu}$

HPQCD, arXiv:2207.12468 FNAL/MILC, arXiv:1509.06235

$$
\frac{d\mathcal{B}}{dq^2} = \mathcal{N}_K(q^2) C_L^{SM \ 2} \ \lambda_t^2 \left[f_+(q^2)\right]^2
$$

Relative error related to FF determination $\leq \mathcal{O}(5\%)$

*Only loop contribution $O(7%)$ error

Only FF entering
$$
\mathcal{B}(B \to K\nu\bar{\nu})
$$

\n
$$
\frac{m_B^2 - m_K^2}{q^2} q^{\mu} \left[f_+(q^2) + q^{\mu} \frac{m_B^2 - m_K^2}{q^2} f_0(q^2) \right]
$$

Final prediction

$$
^{\pm} \to K^{\pm} \nu \bar{\nu}) = (4.44 \pm 0.30) \times 10^{-6}
$$

Form factors $B \rightarrow K \nu \bar{\nu}$

HPQCD, arXiv:2207.12468 FNAL/MILC, arXiv:1509.06235

Form factors $B \to K^* \nu \bar{\nu}$

Several FF enter into the decay rate, determined through the combination of a Lattice QCD result & LCSR

 $\langle \bar{K}^*(k) \ \bar{s}_L \gamma^\mu b_L \ \bar{B}(p) \rangle = \epsilon_{\mu\nu}$

$$
\epsilon_{\mu\nu\rho\sigma}\epsilon^{*}\nu_{p}\rho_{k}\sigma\frac{2V(q^{2})}{m_{B}+m_{K^{*}}} - i\epsilon_{\mu}^{*}(m_{B}+m_{K^{*}})A_{1}(q^{2})
$$

$$
+i(p+k)_{\mu}(\epsilon^{*}\cdot q)\frac{A_{2}(q^{2})}{m_{B}+m_{K^{*}}} + iq_{\mu}(\epsilon^{*}\cdot q)\frac{2m_{K^{*}}}{q^{2}}[A_{3}(q^{2})-A_{1}(q^{2})]
$$

$) - A_0(q^2)$

Form factors $B \to K^* \nu \bar{\nu}$

Several FF enter into the decay rate, determined through the combination of a Lattice QCD result & LCSR

$$
\epsilon_{\mu\nu\rho\sigma}\epsilon^{*}\nu_{p}\rho_{k}\sigma\frac{2V(q^{2})}{m_{B}+m_{K^{*}}} - i\varepsilon_{\mu}^{*}(m_{B}+m_{K^{*}})A_{1}(q^{2})
$$

$$
+i(p+k)_{\mu}(\epsilon^{*}\cdot q)\frac{A_{2}(q^{2})}{m_{B}+m_{K^{*}}} + iq_{\mu}(\epsilon^{*}\cdot q)\frac{2m_{K^{*}}}{q^{2}}[A_{3}(q^{2})-A_{1}(q^{2})]
$$

Relative error related to FF determination $\sim \mathcal{O}(15\%)$

$) - A_0(q^2)$

Form factors $B \to K^* \nu \bar{\nu}$

Several FF enter into the decay rate, determined through the combination of a Lattice QCD result & LCSR

*Only loop contribution $O(15%)$ error

$$
\frac{\text{Final prediction}}{\leftarrow K^{\pm^*} \nu \bar{\nu}} = (9.8 \pm 1.4) \times 10^{-6}
$$

$$
\epsilon_{\mu\nu\rho\sigma}\epsilon^{*}\nu_{p}\rho_{k}\sigma\frac{2V(q^{2})}{m_{B}+m_{K^{*}}} - i\varepsilon_{\mu}^{*}(m_{B}+m_{K^{*}})A_{1}(q^{2})
$$

$$
+i(p+k)_{\mu}(\epsilon^{*}\cdot q)\frac{A_{2}(q^{2})}{m_{B}+m_{K^{*}}} + iq_{\mu}(\epsilon^{*}\cdot q)\frac{2m_{K^{*}}}{q^{2}}[A_{3}(q^{2})-A_{1}(q^{2})]
$$

Relative error related to FF determination $\sim \mathcal{O}(15\%)$

$) - A_0(q^2)$

Tree-level contribution $B^{\pm} \rightarrow K^{\pm (*)} \nu \bar{\nu}$

Using the narrow width approximation

$$
^{\vdash}\to K^{(^*)+}\nu\bar{\nu})\sim\mathscr{B}\left(B^+\to\tau^+\nu\right)\mathscr{B}\left(\tau^+\to K^{(^*)+}\bar{\nu}\right)
$$

Tree-level contribution $B^{\pm} \rightarrow K^{\pm (*)} \nu \bar{\nu}$

> Non negligible contribution!

Using the narrow width approximation

$$
\vdash \to K^{(*)+} \nu \bar{\nu}) \sim \mathscr{B} \left(B^+ \to \tau^+ \nu \right) \mathscr{B} \left(\tau^+ \to K^{(*)+} \bar{\nu} \right)
$$

Tree-level contribution $B^{\pm} \rightarrow K^{\pm (*)} \nu \bar{\nu}$

$$
\frac{\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})_{\text{tree}}}{\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})_{\text{loop}}} \simeq 14 \,\% \,(11\%)
$$

Using the narrow width approximation

$$
\vdash \to K^{(*)+} \nu \bar{\nu}) \sim \mathscr{B} \left(B^+ \to \tau^+ \nu \right) \mathscr{B} \left(\tau^+ \to K^{(*)+} \bar{\nu} \right)
$$

Non negligible contribution!

Belle-II can in principle disentangle these two contributions

Tree-level contribution $B^{\pm} \rightarrow K^{\pm (*)} \nu \bar{\nu}$

$$
\frac{B \to K^{(*)} \nu \bar{\nu}}{B \to K^{(*)} \nu \bar{\nu}}\Big|_{\text{loop}} \simeq 14\,\% \,(11\%)
$$

Reduction of uncertainties Ratio between low and high- q^2 regions

Binned information would allow one to study the following CKM-free ratio

$$
B \to K^{(*)} \nu \bar{\nu} \Big)_{\text{low}-q^2}
$$

$$
\to K^{(*)} \ell \ell \Big)_{\text{high}-q^2}
$$

Test of the extrapolated Lattice QCD form factors

Reduction of uncertainties Ratio between low and high- q^2 regions

Binned information would allow one to study the following CKM-free ratio

Independent of FF normalization and NP contributions (w/o ν_R)

$$
B \to K^{(*)} \nu \bar{\nu} \Big)_{\text{low}-q^2}
$$

$$
\to K^{(*)} \ell \ell \Big)_{\text{high}-q^2}
$$

Test of the extrapolated Lattice QCD form factors

Reduction of uncertainties Ratio between low and high- q^2 **regions**

Binned information would allow one to study the following CKM-free ratio

Independent of FF normalization and NP contributions (w/o ν_R)

Take bins $(0, q_{\rm max}^2/2)$ and $(q_{\rm max}^2/2, q_{\rm max}^2)$:

$$
B \to K^{(*)} \nu \bar{\nu} \Big)_{\text{low}-q^2}
$$

$$
\to K^{(*)} \ell \ell \Big)_{\text{high}-q^2}
$$

Test of the extrapolated Lattice QCD form factors

Using previous FLAG average

 $r_{\text{low/high}} = 2.15 \pm 0.26$

$$
\langle K^{(*)} \ \bar{s}_L \gamma^{\mu} b_L \ B \rangle = \sum_i K_i^{\mu} \ \mathcal{F}_i(q^2)
$$

Form factors (Lattice QCD, LCSR...)

Summary $B \to K^{(*)} \nu \bar{\nu}$ in the SM

Form factor determination

Expected BF in the SM using exclusive $B\to D\ell\nu$ decays and available FF determinations as inputs

$$
\mathcal{B}\left(B^{\pm} \to K^{\pm} \nu \bar{\nu}\right) = (4.44 \pm 0.30) \times 10
$$

$$
\mathcal{B}(B^{\pm} \to K^{\pm} \nu \bar{\nu}) = (4.44 \pm 0.30) \times 10^{-6}
$$

$$
\mathcal{B}(B^{\pm} \to K^{\pm *} \nu \bar{\nu}) = (9.8 \pm 1.4) \times 10^{-6}
$$

Ratio of BFs at low and high
$$
q^2
$$
 bins

$$
r_{\text{low/high}} = 1.91 \pm 0.06
$$

Use high- q^2 bins to reduce FF uncertainty

Possible improvements/checks

$$
\langle K^{(*)} \ \bar{s}_L \gamma^{\mu} b_L \ B \rangle = \sum_i K_i^{\mu} \ \mathcal{F}_i(q^2)
$$

Form factors (Lattice QCD, LCSR...)

Summary $B \to K^{(*)} \nu \bar{\nu}$ in the SM

Form factor determination

Expected BF in the SM using exclusive $B\to D\ell\nu$ decays and available FF determinations as inputs

$$
\mathcal{B}\left(B^{\pm} \to K^{\pm} \nu \bar{\nu}\right) = (4.44 \pm 0.30) \times 10^{-6}
$$

$$
\mathcal{B}\left(B^{\pm} \to K^{\pm *} \nu \bar{\nu}\right) = (9.8 \pm 1.4) \times 10^{-6}
$$

Two main sources of uncertainty

$$
\mathcal{B}\left(B^+ \to K^+ \nu \bar{\nu}\right)\Big|_{\text{Belle-II}} = (2.4 \pm 0.7) \times 10^{-5}
$$

$$
= (2.4 \pm 0.7) \times 10^{-5} \qquad \mathcal{B}\left(B^+ \to K^+ \nu \bar{\nu}\right) \Big|_{SM} = (4.44 \pm 0.30) \times 10^{-6}
$$

E. Ganiev @ EPS

Talk by J. Cerasoli & L. Martel

$$
\mathcal{B}\left(B^+\to K^+\nu\bar{\nu}\right)\Big|_{\text{Belle-II}} = (2.4 \pm 0.7) \times 10^{-5}
$$

$$
= (2.4 \pm 0.7) \times 10^{-5} \qquad \mathscr{B}\left(B^+ \to K^+ \nu \bar{\nu}\right) \Big|_{\text{SM}} = (4.44 \pm 0.30) \times 10^{-6}
$$

E. Ganiev @ EPS

See T. Felkl *et al.,* arXiv:2309.02940 for the analysis with *ν^R*

Talk by J. Cerasoli & L. Martel

Including BSM contributions we can write (w/o ν_R^*)

 $\mathscr{L}^{b\rightarrow s\nu\nu}$ = $4G_{\!F}$ 2 *λt*∑ *i*,*j* $\left(C_L^{V_iV_j}\right)$ *L νi νj ^L* ⁺*Cνⁱ νj R νi νj* $\binom{\nu_i\nu_j}{R}$ + h . c .

$$
\mathcal{B}\left(B^+ \to K^+ \nu \bar{\nu}\right)\Big|_{\text{Belle-II}} = (2.4 \pm 0.7) \times 10^{-5}
$$

$$
= (2.4 \pm 0.7) \times 10^{-5} \qquad \mathscr{B} (B^+ \to K^+ \nu \bar{\nu}) \Big|_{\text{SM}} = (4.44 \pm 0.30) \times 10^{-6}
$$

 $\mathscr{L}^{b\rightarrow s\nu\nu}$ = \mathscr{L} $4G_{\!F}$ 2 *λt*∑ *i*,*j* $\left(\frac{C}{L}\right)^{\nu_i}$ *νj L νi νj* $L^{2}L^{2}$ + $C^{2}L^{2}$
 L^{2} + $C^{2}L^{2}$ *νj R νi νj* $+ h.c.$ $C_I^{\nu_i \nu_j}$ *L* $=C_{L}^{\text{SM}}\delta_{ij}$ + $\delta C_L^{\nu_i \nu_j}$ $C_R^{\nu_i}$ *νj R* $=$ $\delta C_R^{\nu_i\nu_j}$ *R*

E. Ganiev @ EPS

R. Bause, G. Hisbert & G. Hiller, arXiv:2309.00075 P. Athron, R. Martinez & C. Sierra, arXiv:2308. 13426 L. Allwicher, D. Becirevic, G. Piazza, **SRA** & O. Sumensari, arXiv:2309.02246

See T. Felkl *et al.,* arXiv:2309.02940 for the analysis with *ν^R*

Talk by J. Cerasoli & L. Martel

Including BSM contributions we can write (w/o ν_R^*)

$$
\mathcal{B}\left(B^+ \to K^+ \nu \bar{\nu}\right)\Big|_{\text{Belle-II}} = (2.4 \pm 0.7) \times 10^{-5}
$$

$$
= (2.4 \pm 0.7) \times 10^{-5} \qquad \mathscr{B} (B^+ \to K^+ \nu \bar{\nu}) \Big|_{\text{SM}} = (4.44 \pm 0.30) \times 10^{-6}
$$

$$
\mathscr{L}^{b \to s \nu \nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_{i,j}
$$

 $C_I^{\nu_i \nu_j}$

L

E. Ganiev @ EPS

See T. Felkl *et al.,* arXiv:2309.02940 for the analysis with *ν^R*

Talk by J. Cerasoli & L. Martel

Including BSM contributions we can write (w/o ν_R^{\star})

$$
\mathcal{B}\left(B^+ \to K^+ \nu \bar{\nu}\right)\Big|_{\text{Belle-II}} = (2.4 \pm 0.7) \times 10^{-5}
$$

$$
= (2.4 \pm 0.7) \times 10^{-5} \qquad \mathscr{B}\left(B^+ \to K^+ \nu \bar{\nu}\right) \Big|_{\text{SM}} = (4.44 \pm 0.30) \times 10^{-6}
$$

$$
\mathscr{B}\left(B \to K^{(*)} \nu \bar{\nu}\right) = \mathscr{B}\left(B \to K^{(*)} \nu \bar{\nu}\right)\Big|_{S}
$$

$$
\delta \mathcal{B}_{K^*} = \sum_{i} \frac{2 \text{Re}[C_{L}^{\text{SM}} (\delta C_{L}^{\nu_i \nu_i} + \delta C_{R}^{\nu_i \nu_j})]}{3 \sum_{i,j}^{S} C_{L}^{\text{SM}} \frac{2}{3}} + \sum_{i,j} \frac{\delta C_{L}^{\nu_i \nu_j} + \delta C_{R}^{\nu_i \nu_j}}{3 \sum_{i,j}^{S} C_{L}^{\text{SM}} \frac{2}{3}} - \sqrt{\eta_{K^*}} \sum_{i,j} \frac{\text{Re}[\delta C_{R}^{\nu_i \nu_j} (C_{L}^{\text{SM}} \delta_{ij} + \delta C_{L}^{\nu_i \nu_j})]}{3 \sum_{i,j}^{S} C_{L}^{\text{SM}} \frac{2}{3}}
$$

E. Ganiev @ EPS

D. Becirevic, G. Piazza & O. Sumensari, arXiv:2301.06990 L. Allwicher, D. Becirevic, G. Piazza, **SRA** & O. Sumensari, arXiv:2309.02246

Talk by J. Cerasoli & L. Martel

Correlations between $B \to K \nu \bar{\nu}$ and $B \to K^* \nu \bar{\nu}$

We can find a lower bound for the validity of the EFT

 $\mathscr{B}\left(B\to K^*\nu\bar{\nu}\right)$ BSM $\mathscr{B}\left(B\to K^*\nu\bar{\nu}\right)$ <u>SM</u> ≥ $\mathscr{B}\left(B\to K\nu\bar{\nu}\right)$ BSM $\mathscr{B}\left(B\to K\nu\bar{\nu}\right)$ $\frac{\text{SSM}}{\text{SM}} \left(1 - \frac{\eta_{K^*}}{4} \right)$ $\frac{\eta_{K^*}}{4}$

R. Bause, G. Hisbert & G. Hiller, arXiv:2309.00075 L. Allwicher, D. Becirevic, G. Piazza, **SRA** & O. Sumensari, arXiv:2309.02246

Correlations between $B \to K \nu \bar{\nu}$ and $B \to K^* \nu \bar{\nu}$

We can find a lower bound for the validity of the EFT

 $\mathscr{B}\left(B\to K^*\nu\bar{\nu}\right)$ BSM $\mathscr{B}\left(B\to K^*\nu\bar{\nu}\right)$ <u>SM</u> ≥ $\mathscr{B}\left(B\to K\nu\bar{\nu}\right)$ BSM $\mathscr{B}\left(B\to K\nu\bar{\nu}\right)$ $\frac{\text{SSM}}{\text{SM}} \left(1 - \frac{\eta_{K^*}}{4} \right)$ 4)

Correlations between $B \to K \nu \bar{\nu}$ and $B \to K^* \nu \bar{\nu}$

We can find a lower bound for the validity of the EFT

$$
\frac{\mathcal{B}(B \to K^* \nu \bar{\nu})_{BSM}}{\mathcal{B}(B \to K^* \nu \bar{\nu})_{SM}} \geq \frac{\mathcal{B}(B \to K \nu \bar{\nu})_{BSM}}{\mathcal{B}(B \to K \nu \bar{\nu})_{SM}} \left(1 - \frac{\eta_{K^*}}{4}\right)
$$

Belle bounds $\mathscr{B}\left(B\to K^*\nu\bar\nu\right) < 2.7\times 10^{-5}$ $\overline{\text{const}}$ raining a solution only in terms of δC_L

Correlations between $B \to K \nu \bar{\nu}$ and $B \to K^* \nu \bar{\nu}$

We can find a lower bound for the validity of the EFT

$$
\frac{\mathcal{B}(B \to K^* \nu \bar{\nu})_{BSM}}{\mathcal{B}(B \to K^* \nu \bar{\nu})_{SM}} \geq \frac{\mathcal{B}(B \to K \nu \bar{\nu})_{BSM}}{\mathcal{B}(B \to K \nu \bar{\nu})_{SM}} \left(1 - \frac{\eta_{K^*}}{4}\right)
$$

Belle bounds $\mathscr{B}\left(B\to K^*\nu\bar\nu\right) < 2.7\times 10^{-5}$ $\overline{\text{const}}$ raining a solution only in terms of δC_L

Look for the fraction of longitudinally polarized *K** , *FL*

$$
\mathcal{R}_{F_L} = \frac{F_L}{F_L^{\text{SM}}}
$$

SRA & O. Sumensari, arXiv:2309.02246

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the SMEFT **Four fermion operators**

If the NP contribution is heavy enough, $\Lambda > \nu$, we can work in the SMEFT

$$
\mathcal{L}_{\text{SMEFT}}^{(6)} \supset \frac{1}{\Lambda^2} \Big\{ \Big(\mathcal{C}_{lq}^{(1)} + \mathcal{C}_{lq}^{(3)} \Big)_{ij} \left(\overline{s}_L \gamma^\mu b_L \right) \left(\overline{e}_L i \gamma_\mu e_{Lj} \right) + \Big(\mathcal{C}_{lq}^{(1)} - \mathcal{C}_{lq}^{(3)} \Big)_{ij} \left(\overline{s}_L \gamma^\mu b_L \right) \left(\overline{\nu}_L i \gamma_\mu \nu_{Lj} \right) + 2 V_{cs} \Big[\mathcal{C}_{lq}^{(3)} \Big]_{ij} \left(\overline{c}_L \gamma^\mu b_L \right) \left(\overline{e}_L i \gamma_\mu \nu_{Lj} \right) + \Big[\mathcal{C}_{lq} \Big]_{ij} \left(\overline{s}_R \gamma^\mu b_R \right) \left[\left(\overline{\nu}_L i \gamma_\mu \nu_{Lj} \right) + \left(\overline{e}_L i \gamma_\mu e_{Lj} \right) \right] + \text{h.c.} \Big\}
$$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the SMEFT **Four fermion operators**

If the NP contribution is heavy enough, $\Lambda > \nu$, we can work in the SMEFT

$$
\mathcal{L}_{\text{SMEFT}}^{(6)} \supset \frac{1}{\Lambda^2} \Big\{ \Big(\mathcal{C}_{lq}^{(1)} + \mathcal{C}_{lq}^{(3)} \Big)_{ij} \left(\overline{s}_L \gamma^\mu b_L \right) \left(\overline{e}_L i \gamma_\mu e_{Lj} \right) + \Big(\mathcal{C}_{lq}^{(1)} - \mathcal{C}_{lq}^{(3)} \Big)_{ij} \left(\overline{s}_L \gamma^\mu b_L \right) \left(\overline{\nu}_L i \gamma_\mu \nu_{Lj} \right) + 2 V_{cs} \Big[\mathcal{C}_{lq}^{(3)} \Big]_{ij} \left(\overline{c}_L \gamma^\mu b_L \right) \left(\overline{e}_L i \gamma_\mu \nu_{Lj} \right) + \Big[\mathcal{C}_{ld} \Big]_{ij} \left(\overline{s}_R \gamma^\mu b_R \right) \left[\left(\overline{\nu}_L i \gamma_\mu \nu_{Lj} \right) + \left(\overline{e}_L i \gamma_\mu e_{Lj} \right) \right] + \text{h.c.} \Big\}
$$

Matching to the low-energy NP couplings

$$
\delta C_L^{\nu_i \nu_j} = \frac{\pi}{\alpha_{em} \lambda_t} \frac{v^2}{\Lambda^2} \left\{ \left[\mathcal{C}_{lq}^{(1)} \right]_{ij} - \left[\mathcal{C}_{lq}^{(3)} \right]_{ij} \right\} \qquad \qquad \delta C_R^{\nu_i \nu_j} = \frac{\pi}{\alpha_{em} \lambda_t} \frac{v^2}{\Lambda^2} \left[\mathcal{C}_{ld} \right]_{ij}
$$

L. Allwicher, D. Becirevic, G. Piazza, **SRA** & O. Sumensari, arXiv:2309.02246

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the SMEFT **Four fermion operators**

If the NP contribution is heavy enough, $\Lambda > \nu$, we can work in the SMEFT

$$
\mathcal{L}_{\text{SMEFT}}^{(6)} \supset \frac{1}{\Lambda^2} \Big\{ \Big(\mathcal{C}_{lq}^{(1)} + \mathcal{C}_{lq}^{(3)} \Big)_{ij} (\bar{s}_L \gamma^\mu b_L) (\bar{e}_{Li} \gamma_\mu e_{Lj}) + \Big(\mathcal{C}_{lq}^{(1)} - \mathcal{C}_{lq}^{(3)} \Big)_{ij} (\bar{s}_L \gamma^\mu b_L) (\bar{v}_{Li} \gamma_\mu v_{Lj})
$$
\n
$$
+ 2V_{cs} \Big[\mathcal{C}_{lq}^{(3)} \Big]_{ij} (\bar{c}_L \gamma^\mu b_L) (\bar{e}_{Li} \gamma_\mu v_{Lj}) + \Big[\mathcal{C}_{ld} \Big]_{ij} (\bar{s}_R \gamma^\mu b_R) \Big[(\bar{v}_{Li} \gamma_\mu v_{Lj}) + (\bar{e}_{Li} \gamma_\mu e_{Lj}) \Big] \text{ h.c.} \Big\}
$$
\nMatching to the low-energy NP couplings

\n
$$
\mathcal{C}_{L}^{\nu_i \nu_j} = \frac{\pi}{\alpha_{em} \lambda_t} \frac{v^2}{\Lambda^2} \Big\{ \Big[\mathcal{C}_{lq}^{(1)} \Big]_{ij} - \Big[\mathcal{C}_{lq}^{(3)} \Big]_{ij} \Big\}
$$
\n
$$
\delta \mathcal{C}_{R}^{\nu_i \nu_j} = \frac{\pi}{\alpha_{em} \lambda_t} \frac{v^2}{\Lambda^2} \Big[\mathcal{C}_{ld} \Big]_{ij}
$$
\nContinuous to $B \rightarrow K \nu \bar{\nu}$ will have an impact on observables with charged leptons!

$$
\mathcal{L}_{\text{SMEFT}}^{(6)} \supset \frac{1}{\Lambda^2} \Big\{ \Big(\mathcal{C}_{lq}^{(1)} + \mathcal{C}_{lq}^{(3)} \Big)_{ij} (\bar{s}_L \gamma^\mu b_L) (\bar{e}_{Li} \gamma_\mu e_{Lj}) + \Big(\mathcal{C}_{lq}^{(1)} - \mathcal{C}_{lq}^{(3)} \Big)_{ij} (\bar{s}_L \gamma^\mu b_L) (\bar{\nu}_L i \gamma_\mu \nu_{Lj})
$$
\n
$$
+ 2V_{cs} \Big[\mathcal{C}_{lq}^{(3)} \Big]_{ij} (\bar{e}_L \gamma^\mu b_L) (\bar{e}_L i \gamma_\mu \nu_{Lj}) + \Big[\mathcal{C}_{ld} \Big]_{ij} (\bar{s}_R \gamma^\mu b_R) \Big[(\bar{\nu}_L i \gamma_\mu \nu_{Lj}) + (\bar{e}_L i \gamma_\mu e_L j) \Big] \Big\} \text{ h.c.} \Big\}
$$
\nMatching to the low-energy NP couplings

\n
$$
\delta C_L^{\nu_i \nu_j} = \frac{\pi}{\alpha_{em} \lambda_t} \frac{v^2}{\Lambda^2} \Big\{ \Big[\mathcal{C}_{lq}^{(1)} \Big]_{ij} - \Big[\mathcal{C}_{lq}^{(3)} \Big]_{ij} \Big\}
$$
\nContinuous to $B \rightarrow K \nu \bar{\nu}$ will have an important even shown in particular, we can

L. Allwicher, D. Becirevic, G. Piazza, **SRA** & O. Sumensari, arXiv:2309.02246

Correlations between observables Coupling to muons only

One can relate $B \to K \nu \bar{\nu}$ with $B_s \to \mu \mu$

$$
\mathcal{B}\left(B_s \to \mu\mu\right) = \left(3.35 \pm 0.27\right) \times 10^{-9}
$$

ATLAS, arXiv:1812.03017 LHCb, arXiv:2108.09283 CMS,arXiv:2212.10311

Correlations between observables Coupling to muons only

One can relate $B \to K \nu \bar{\nu}$ with $B_s \to \mu \mu$

$$
\mathcal{B}(B_s \to \mu\mu) = (3.35 \pm 0.27) \times 10^{-9}
$$

$$
\mathcal{O}_{10} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\ell} \gamma_\mu \gamma_5 \ell \right)
$$

$$
\delta C_{10}^{\ell_i \ell_i} = \frac{\pi}{\alpha_{\rm em} \lambda_t} \frac{v^2}{\Lambda^2} \left\{ \left[\mathcal{C}_{ld} \right]_{ii} - \left[\mathcal{C}_{lq}^{(1)} \right]_{ii} - \left[\mathcal{C}_{lq}^{(3)} \right]_{ii} \right\}
$$

L. Allwicher, D. Becirevic, G. Piazza, **SRA** & O. Sumensari, arXiv:2309.02246

ATLAS, arXiv:1812.03017 LHCb, arXiv:2108.09283 CMS,arXiv:2212.10311

Correlations between observables Coupling to muons only

One can relate $B \to K \nu \bar{\nu}$ with $B_s \to \mu \mu$

$$
\mathcal{B}(B_s \to \mu\mu) = (3.35 \pm 0.27) \times 10^{-9}
$$

Note that one could also use $R_{K^{(*)}}$ now as well as a constrain

$$
R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu\mu)}{\mathcal{B}(B \to K^{(*)} e e)}
$$

$$
\mathcal{O}_{10} = \frac{e^2}{(4\pi)^2} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\mathcal{E}} \gamma_\mu \gamma_5 \mathcal{E} \right)
$$

$$
\delta C_{10}^{\ell_i \ell_i} = \frac{\pi}{\alpha_{\rm em} \lambda_t} \frac{v^2}{\Lambda^2} \left\{ \left[\mathcal{C}_{ld} \right]_{ii} - \left[\mathcal{C}_{lq}^{(1)} \right]_{ii} - \left[\mathcal{C}_{lq}^{(3)} \right]_{ii} \right\}
$$

SRA & O. Sumensari, arXiv:2309.02246

ATLAS, arXiv:1812.03017 LHCb, arXiv:2108.09283 CMS,arXiv:2212.10311

Correlations between observables Coupling to tau leptons

Can we introduce NP to simultaneously explain the Belle-II result and $R_D^{(*)}$? *D*

$$
R_{D^{(*)}} = \frac{\mathcal{B}\left(B \to D^{(*)}\tau\bar{\nu}\right)}{\mathcal{B}\left(B \to D^{(*)}\ell\bar{\nu}\right)}, \text{with } \ell = e, \mu
$$

$$
R_{D^{(*)}}^{\exp}/R_{D^{(*)}}^{\text{SM}} = 1.16 \pm 0.05
$$

Correlations between observables Coupling to tau leptons

Can we introduce NP to simultaneously explain the Belle-II result and $R_D^{(*)}$? *D*

BSM contributions to this process given by

$$
\frac{R_{D^{(*)}}}{R_{D^{(*)}}^{SM}} = \left(1 - \frac{v^2}{\Lambda^2} \frac{V_{cs}}{V_{cb}} C_{lq}^{(3)}\right)^2
$$

$$
R_{D^{(*)}} = \frac{\mathcal{B} (B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B} (B \to D^{(*)} \ell \bar{\nu})}, \text{ with } \ell = e, \mu
$$

$$
R_{D^{(*)}}^{\exp} / R_{D^{(*)}}^{\text{SM}} = 1.16 \pm 0.05
$$

Correlations between observables Coupling to tau leptons

Can we introduce NP to simultaneously explain the Belle-II result and $R_D^{(*)}$? *D*

> In this region $\mathscr{B}\left(B\to K^*\nu\bar{\nu}\right)$ is ok and we expect for example

$$
\frac{\mathcal{B}(B_s \to \tau \tau)}{\mathcal{B}(B_s \to \tau \tau)} \in [44, 157]
$$

$$
\mathcal{B}(B_s \to \tau \tau)_{SM}
$$

$$
R_{D^{(*)}} = \frac{\mathcal{B}\left(B \to D^{(*)}\tau\bar{\nu}\right)}{\mathcal{B}\left(B \to D^{(*)}\ell\bar{\nu}\right)}, \text{with } \ell = e, \mu
$$

$$
R_{D^{(*)}}^{\exp}/R_{D^{(*)}}^{\text{SM}} = 1.16 \pm 0.05
$$

Conclusions SM predictions

Two main uncertainties from the theory side:

• CKM matrix element determination: **Inclusive vs exclusive** V_{cb} Can change prediction by $\mathcal{O}(10\%)$

$$
\left[\mathcal{B}\left(B^{\pm}\to K^{\pm}\nu\bar{\nu}\right)\right]_{\text{SM}} = (4.44 \pm 0.30)
$$

Conclusions SM predictions

Two main uncertainties from the theory side:

• CKM matrix element determination: **Inclusive vs exclusive** V_{cb} Can change prediction by $\mathcal{O}(10\%)$

• Form factor determination:

$$
\begin{cases}\nB \to K\nu\bar{\nu} \text{ has } S \\
B \to K^* \nu \bar{\nu} \text{ with}\n\end{cases}
$$

Eventually need to match expected sensitivity by Belle-II

$$
\left[\mathcal{B}\left(B^{\pm}\to K^{\pm}\nu\bar{\nu}\right)\right]_{\text{SM}} = (4.44 \pm 0.30)
$$

Several Lattice determinations

Error $O(5\%)$

A A and *R* and *K*

Error $\mathcal{O}(15\%$

Conclusions BSM contributions

$$
\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})\Big|_{\text{Belle-II}} = (2.4 \pm 0.7) \times 10^{-5}
$$

$$
\mathscr{L}^{b \to s\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_{i,j} \left(C_L^{\nu_i \nu_j} \mathcal{O}_L^{\nu_i \nu_j} + C_R^{\nu_i \nu_j} \mathcal{O}_R^{\nu_i \nu_j} \right) + h.c.
$$

Contributions from only $C^{\nu_i \nu_j}_I$ is tightly constrained by Belle *L* Contributions from only $C_R^{\nu_i\nu_j}$ can explain $B\to K\nu\bar\nu$, correlated with $\mathscr{B}\,(B\to K^*\nu\bar\nu)$ compared to SM *R*^{*v*_{*i*}*y*^{*i*}} can explain $B \to K\nu\bar{\nu}$, correlated with $\mathscr{B}(B \to K^*\nu\bar{\nu})$

$$
\mathcal{B}\left(B^{\pm} \to K^{\pm} \nu \bar{\nu}\right)\Big|_{\text{SM}} = (4.44 \pm 0.30) \times 10^{-6}
$$

Conclusions BSM contributions

$$
\mathcal{B}\left(B^{\pm} \to K^{\pm} \nu \bar{\nu}\right)\Big|_{\text{SM}} = (4.44 \pm 0.30) \times 10^{-6}
$$

$$
= (4.44 \pm 0.30) \times 10^{-6}
$$
\n
$$
\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})\Big|_{\text{Belle-II}} = (2.4 \pm 0.7) \times 10^{-5}
$$

$$
\mathscr{L}^{b \to s \nu \nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_{i,j}
$$

Contributions from only $C^{\nu_i \nu_j}_I$ is tightly constrained by Belle *L* Contributions from only $C_R^{\nu_i\nu_j}$ can explain $B\to K\nu\bar\nu$, correlated with $\mathscr{B}\,(B\to K^*\nu\bar\nu)$ compared to SM *R*^{*v*_{*i*}*y*^{*i*}} can explain $B \to K\nu\bar{\nu}$, correlated with $\mathscr{B}(B \to K^*\nu\bar{\nu})$

$$
\left(C_L^{\nu_i\nu_j}\mathcal{O}_L^{\nu_i\nu_j}+C_R^{\nu_i\nu_j}\mathcal{O}_R^{\nu_i\nu_j}\right)+h.c.
$$

Correlation between neutrino decay modes and those involving charged leptons

Conclusions BSM contributions

$$
\mathcal{B}\left(B^{\pm} \to K^{\pm} \nu \bar{\nu}\right)\Big|_{\text{SM}} = (4.44 \pm 0.30) \times 10^{-6}
$$

$$
= (4.44 \pm 0.30) \times 10^{-6}
$$
\n
$$
\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})\Big|_{\text{Belle-II}} = (2.4 \pm 0.7) \times 10^{-5}
$$

$$
\mathscr{L}^{b \to s \nu \nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_{i,j}
$$

Contributions from only $C^{\nu_i \nu_j}_I$ is tightly constrained by Belle *L* Contributions from only $C_R^{\nu_i\nu_j}$ can explain $B\to K\nu\bar\nu$, correlated with $\mathscr{B}\,(B\to K^*\nu\bar\nu)$ compared to SM *R*^{*v*_{*i*}*y*^{*i*}} can explain $B \to K\nu\bar{\nu}$, correlated with $\mathscr{B}(B \to K^*\nu\bar{\nu})$

$$
\left(C_L^{\nu_i\nu_j}\mathcal{O}_L^{\nu_i\nu_j}+C_R^{\nu_i\nu_j}\mathcal{O}_R^{\nu_i\nu_j}\right)+h.c.
$$

Correlation between neutrino decay modes and those involving charged leptons

Thank you!

Back-up slides

Binned information would allow one to study the following CKM-free ratio

 $\mathcal{R}_{K^{(*)}}^{(\nu/\ell)}[q_0^2, q_1^2] \equiv$

Partial branching fractions integrated in the same q^2 range

$$
\frac{\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})}{\mathcal{B}(B \to K^{(*)} \ell \ell)}\Bigg|_{[q_0^2,q_1^2]}
$$

Binned information would allow one to study the following CKM-free ratio

Partial branching fractions integrated in the same q^2 range

FF uncertainties significantly reduced if $q^2\gg m_\ell^2$ *ℓ*

Choosing the q^2 region away from $c\bar{c}$ -resonances, [*q*

$$
\mathcal{R}_{K^{(*)}}^{(\nu/\ell)}[q_0^2, q_1^2] \equiv \frac{\mathcal{B}\left(B \to K^{(*)} \nu \bar{\nu}\right)}{\mathcal{B}\left(B \to K^{(*)} \ell \ell\right)}\Bigg|_{[q_0^2, q_1^2]}
$$

$$
q_0^2, q_1^2
$$
] \rightarrow [1.1,6] GeV²

Binned information would allow one to study the following CKM-free ratio

Partial branching fractions integrated in the same q^2 range

FF uncertainties significantly reduced if $q^2\gg m_\ell^2$ *ℓ*

Choosing the q^2 region away from $c\bar{c}$ -resonances, [*a*

Using perturbative calculations for the $c\bar{c}$ -loops one finds

$$
\mathcal{R}_{K^{(*)}}^{(\nu/\ell)}[q_0^2, q_1^2] \equiv \frac{\mathcal{B}\left(B \to K^{(*)} \nu \bar{\nu}\right)}{\mathcal{B}\left(B \to K^{(*)} \ell \ell\right)}\Bigg|_{[q_0^2, q_1^2]}
$$

$$
q_0^2, q_1^2
$$
] \rightarrow [1.1,6] GeV²

 $\mathcal{R}_{K^*}^{(\nu/\mu)}[1.1,6] = 8.6 \pm 0.3$

 $\lesssim \mathcal{O}(1\%)$ uncertainty $\lesssim \mathcal{O}(5\%)$ uncertainty

$$
\mathcal{R}_K^{(\nu/\mu)}[1.1,6] = 7.58 \pm 0.04
$$

Binned information would allow one to study the following CKM-free ratio

Partial branching fractions integrated in the same q^2 range

FF uncertainties significantly reduced if $q^2\gg m_\ell^2$ *ℓ*

Choosing the q^2 region away from $c\bar{c}$ -resonances, [*q*

But we can use this ratio to extract $C_9!$

$$
\mathcal{R}_{K^{(*)}}^{(\nu/\ell)}[q_0^2, q_1^2] \equiv \frac{\mathcal{B}\left(B \to K^{(*)} \nu \bar{\nu}\right)}{\mathcal{B}\left(B \to K^{(*)} \ell \ell\right)}\Bigg|_{[q_0^2, q_1^2]}
$$

$$
q_0^2, q_1^2
$$
] \rightarrow [1.1,6] GeV²

$$
\frac{1}{\mathcal{R}_K^{\nu/\mu}[1.1,6]} \bigg|_{\text{SM}} \simeq \left[7.5 - 0.45 C_9^{\text{eff}} + 0.42 \cdot \left(C_9^{\text{eff}} \right)^2 \right]
$$