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Plan for the talks

•  in the SM and theoretical  uncertaintiesB → K(*)νν̄ SRA

• Search for the rare decay   decay at Belle II B+ → K+νν̄ Jacopo Cerasoli & Lucas Martel

• Consequences for New Physics of the Belle-II measurement SRA
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FCNC processes as probes of NP

Flavour Changing Neutral Current (FCNC) processes are good probes of New Physics as they are loop and CKM 
suppressed in the SM

Hadronic uncertainties might hinder their precise determination:

At low energies 
use an EFT+ . . .
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⟨K̄*(k) | s̄LγμbL | B̄(p)⟩ = ϵμνρσε*νpρkσ 2V(q2)
mB + mK*
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+i(p + k)μ(ε* ⋅ q) A2(q2)
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J. F. Kamenik & C.Smith, arXiv:0908.1174
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Using the narrow width approximation
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Binned information would allow one to study the following CKM-free ratio

rlow/high ≡
ℬ (B → K(*)νν̄)low−q2

ℬ (B → K(*)ℓℓ)high−q2

Test of the extrapolated Lattice 
QCD form factors

Independent of FF normalization and NP contributions (w/o )νR

Take bins  and :(0, q2
max/2) (q2

max/2, q2
max)

rlow/high = 1.91 ± 0.06
Using previous FLAG average

rlow/high = 2.15 ± 0.26

D. Becirevic, G. Piazza & O. Sumensari, arXiv:2301.06990
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(1+δℬK(*))
All BSM contributions 
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δℬK(*) = ∑
i

2Re[CSM
L (δCνiνi

L + δCνiνi
R )]

3 |CSM
L |2

+∑
i,j

|δCνiνj
L + δCνiνj

R |2

3 |CSM
L |2 − ηK(*) ∑

i,j

Re[δCνiνj
R (CSM

L δij + δCνiνj
L )]

3 |CSM
L |2

ηK = 0

ηK* = 3.33 ± 0.07

E. Ganiev @ EPS

D. Becirevic, G. Piazza & O. Sumensari, 
arXiv:2301.06990
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Correlations between  and B → Kνν̄ B → K*νν̄

We can find a lower bound for the validity of the  EFT
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We can find a lower bound for the validity of the  EFT

ℬ (B → K*νν̄)BSM

ℬ (B → K*νν̄)SM
≥

ℬ (B → Kνν̄)BSM

ℬ (B → Kνν̄)SM
(1 −

ηK*

4 )

Assuming δCνiνj
L(R) = δCL(R)δij

Belle bounds   
constraining a solution only in terms of 

ℬ (B → K*νν̄) < 2.7 × 10−5

δCL

Look for the fraction of longitudinally polarized , K* FL

ℛFL
=

FL

FSM
L
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After imposing the Belle bound, 
we find  for FL ∈ [0, 0.21] δCRL. Allwicher, D. Becirevic, G. Piazza, 

SRA & O. Sumensari, arXiv:2309.02246
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 in the SMEFTB → K(*)νν̄
Four fermion operators

If the NP contribution is heavy enough, , we can work in the SMEFTΛ > v

Matching to the low-energy NP couplings

Contributions to  will have an 
impact on observables with charged leptons!

B → Kνν̄

L. Allwicher, D. Becirevic, G. Piazza, 
SRA & O. Sumensari, arXiv:2309.02246



Correlations between observables
Coupling to muons only

One can relate  with B → Kνν̄ Bs → μμ

ℬ (Bs → μμ) = (3.35 ± 0.27) × 10−9
ATLAS, arXiv:1812.03017

LHCb, arXiv:2108.09283

CMS,arXiv:2212.10311
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Note that one could also use 
 now as well as a constrainRK(*)

RK(*) =
ℬ(B → K(*)μμ)
ℬ(B → K(*)ee)

𝒪10 =
e2

(4π)2 (s̄LγμbL) (ℓ̄γμγ5ℓ)

NP coupled to muons cannot explain Belle-II
L. Allwicher, D. Becirevic, G. Piazza, 

SRA & O. Sumensari, arXiv:2309.02246

ATLAS, arXiv:1812.03017

LHCb, arXiv:2108.09283

CMS,arXiv:2212.10311
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Coupling to tau leptons

Can we introduce NP to simultaneously 
explain the Belle-II result and ?R(*)

D

RD(*) =
ℬ (B → D(*)τν̄)
ℬ (B → D(*)ℓν̄)

, with ℓ = e, μ

Rexp
D(*) /RSM

D(*) = 1.16 ± 0.05
HFLAV, arXiv:2206.07501
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D

RD(*) =
ℬ (B → D(*)τν̄)
ℬ (B → D(*)ℓν̄)

, with ℓ = e, μ

BSM contributions to this process given by

Excluded by ℬ (B → K*νν̄)

Rexp
D(*) /RSM

D(*) = 1.16 ± 0.05
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Correlations between observables
Coupling to tau leptons

Can we introduce NP to simultaneously 
explain the Belle-II result and ?R(*)

D

RD(*) =
ℬ (B → D(*)τν̄)
ℬ (B → D(*)ℓν̄)

, with ℓ = e, μ

In this region  is 
ok and we expect for example

ℬ (B → K*νν̄)

ℬ (Bs → ττ)BSM

ℬ (Bs → ττ)SM

∈ [44,157]

Rexp
D(*) /RSM

D(*) = 1.16 ± 0.05

L. Allwicher, D. Becirevic, G. Piazza, 
SRA & O. Sumensari, arXiv:2309.02246

HFLAV, arXiv:2206.07501



Conclusions
SM predictions

Two main uncertainties from the theory side:

• CKM matrix element determination: Inclusive vs exclusive Vcb Can change prediction by 𝒪(10%)
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SM

= (4.44 ± 0.30) × 10−6



Conclusions
SM predictions

Two main uncertainties from the theory side:

• CKM matrix element determination: Inclusive vs exclusive Vcb Can change prediction by 𝒪(10%)

• Form factor determination:

 has several Lattice determinationsB → Kνν̄

 with one Lattice determination + LCSRB → K*νν̄

Error 𝒪(5%)

Error 𝒪(15%)

ℬ (B± → K±νν̄)
SM

= (4.44 ± 0.30) × 10−6

Eventually need to match expected sensitivity by Belle-II
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2
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R ) + h . c .
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L
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Conclusions
BSM contributions 

ℬ (B± → K±νν̄)
SM

= (4.44 ± 0.30) × 10−6 ℬ (B+ → K+νν̄)
Belle−II

= (2.4 ± 0.7) × 10−5

ℒb→sνν =
4GF

2
λt ∑

i,j
(Cνiνj

L 𝒪νiνj
L +Cνiνj

R 𝒪νiνj
R ) + h . c .

Contributions from only  is tightly constrained by BelleCνiνj
L

In the context of SMEFT

NP coupled to muons only fail to explain Belle-II taking into account ℬ (Bs → μμ)

Correlation between neutrino decay modes and those involving charged leptons

NP coupled to 3rd generation explain Belle-II, but additional operators would be needed to explain RD(*)

Thank you!

Contributions from only  can explain , correlated with  compared to SMCνiνj
R B → Kνν̄ ℬ (B → K*νν̄)
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Reduction of uncertainties
Combination with  B → K(*)μμ

Binned information would allow one to study the following CKM-free ratio
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Binned information would allow one to study the following CKM-free ratio

ℛ(ν/ℓ)
K(*) [q2

0 , q2
1] ≡

ℬ (B → K(*)νν̄)
ℬ (B → K(*)ℓℓ) [q2

0,q2
1]

Partial branching fractions 
integrated in the same  rangeq2

FF uncertainties significantly reduced if q2 ≫ m2
ℓ

Choosing the  region away from -resonances, q2 cc̄ [q2
0 , q2

1] → [1.1,6] GeV2

Using perturbative calculations for the -loops one findscc̄

ℛ(ν/μ)
K [1.1,6] = 7.58 ± 0.04 ℛ(ν/μ)

K* [1.1,6] = 8.6 ± 0.3

 uncertainty≲ 𝒪(1%)  uncertainty≲ 𝒪(5%)
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Reduction of uncertainties
Combination with  B → K(*)μμ

Binned information would allow one to study the following CKM-free ratio

ℛ(ν/ℓ)
K(*) [q2

0 , q2
1] ≡

ℬ (B → K(*)νν̄)
ℬ (B → K(*)ℓℓ) [q2

0,q2
1]

Partial branching fractions 
integrated in the same  rangeq2

FF uncertainties significantly reduced if q2 ≫ m2
ℓ

Choosing the  region away from -resonances, q2 cc̄ [q2
0 , q2

1] → [1.1,6] GeV2

But we can use this ratio to extract !C9

1
ℛν/μ

K [1.1,6]
SM

≃ [7.5 − 0.45Ceff
9 + 0.42 ⋅ (Ceff

9 )2]

D. Becirevic, G. Piazza & O. Sumensari, arXiv:2301.06990


