Reconstructing a generic *B* decay with a graph neural network GDR-InF Annual Workshop 2023

Corentin Santos with Jacopo Cerasoli and Giulio Dujany

6 November 2023

Table of Contents

2 Example of Graph Neural Network : the GRAFEI

- **3** Results on the GRAFEI
- (4) Prospects in the search for new physics in $B o K^{(*)} \nu \bar{\nu}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Experimental context

Example of Graph Neural Network : the GRAFEI

3 Results on the GRAFEI

@ Prospects in the search for new physics in $B o K^{(*)}
u ar{
u}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivations

• Need to reconstruct the tag side to infer information about the signal side (e.g. $B \rightarrow K \nu \bar{\nu}$)

4/24

Motivations

- New physics : new physics particles may appear in the loop and modify probability
- One expects a statistically significant discrepancy from the SM
- Possible presence of new physics invisible particles at the place of $\boldsymbol{\nu}$

Schematic representation of new physics in $B \to K^{(*)} \nu \bar{\nu}$

$$\mathcal{R}_{\mathcal{K}^{(*)}} = rac{\mathsf{BR}\left(B o \mathcal{K}^{(*)}
u ar{
u} | \mathsf{exp}
ight)}{\mathsf{BR}\left(B o \mathcal{K}^{(*)}
u ar{
u} | \mathsf{SM}
ight)}$$

Representation of different NP models as a function of \mathcal{R}_{K} and $\mathcal{R}_{K^{*}}$ [1]

C. Santos GDR-InF Annual Workshop 2023

Full Event Interpretation (FEI) algorithm

- Reconstructs the tag side based on a six stages approach using Boosted Decision Trees
- Need to hard-code decay channels $\longrightarrow ~\approx 15\%$ of B decays considered

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ - 国 - 釣���

6/24

Full Event Interpretation (FEI) algorithm

- 15% of B decays hard-coded \iff few % B reconstruction efficiency
- Sensitive to large $\mathcal{R}_{K^{(*)}}$ only (at $\int \mathcal{L} \approx 360 \text{ fb}^{-1}$)

Experimental context

2 Example of Graph Neural Network : the GRAFEI

3 Results on the GRAFEI

] 0] Prospects in the search for new physics in $B o K^{(*)}
u ar{
u}$

Introduction to deep learning

- Input : $\mathbf{x} \in \mathbb{R}^n$, $n \in \mathbb{N}^*$
- Neural network : does a weighted sum and apply a non-linear function, the *activation function* $f : \mathbb{R}^m \to \mathbb{R}^m$ where $m \in \mathbb{N}^*$ is the number of neurons at the output of the network
- Neural network can be summarized as a function $\mathcal{F} : \mathbb{R}^n \to \mathbb{R}^m$ such that $\mathcal{F}(\mathbf{x}) = f(\mathbf{W}\mathbf{x} + \mathbf{b})$, where $\mathbf{W} \in M_{m,n}(\mathbb{R})$ is the weights' matrix and $\mathbf{b} \in \mathbb{R}^m$ is a bias

Introduction to deep learning

- \bullet Training : modify the weights in order to minimize the loss function ${\cal L}$
- Loss function : quantify the difference between the results given by the model and the expected ones
- **Training technique** : the *gradient descent* the weights are modified following the formula :

$$\mathbf{w}' = \mathbf{w} - rac{arepsilon}{N} \cdot \sum_{i=1}^N
abla \mathcal{L}_i$$

with $N \in \mathbb{N}^*$ the number of events; $\varepsilon \in \mathbb{R}_{>0}$ the *learning rate*; **w** and **w**' the parameters' vectors

Deep learning algorithm : GRAFEI

- Based on a deep graph neural network (GNN)
- Reconstructs the B_{tag} decay via the Final State Particles
- Trained over generic B decays \longrightarrow No need to hard-code decay channels

Deep learning algorithm : GRAFEI

- Based on a deep graph neural network (GNN)
- Reconstructs the B_{tag} decay via the Final State Particles
- Trained over generic B decays \longrightarrow No need to hard-code decay channels

C. Santos GDR-InF Annual Workshop 2023

9/24

Overview of the GRAFEI's principles

- Takes as input a fully connected graph representing Final State Particles
- Uses update functions, $\phi,$ and aggregation functions, ρ
- Returns a fully connected graph with LCAS matrix elements as edge features

Overview of the GRAFEI's principles

- LCAS matrix = representation of a decay tree
- Rows and Columns = Final State Particles
- Elements = Lowest Common Ancestor
- Identify them via a class between 0 and 5

C. Santos GDR-InF Annual Workshop 2023

Experimental context

Example of Graph Neural Network : the GRAFEI

3 Results on the GRAFEI

④ Prospects in the search for new physics in $B o K^{(*)}
u ar{
u}$

▲□▶▲□▶▲□▶▲□▶ □ のへで

20.0 17.5 B reconstruction efficiency [%] 15.0 12.5 FEI vs GRAFEI prototype : GRA-FEI already 5 times for efficient ! 10.0 7.5 -5.0 2.5 -Geometrical variables introduction Hyperparameters optimization Identificiation variables optimization kinematic variables optimization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Prototype optimizations :

- Input optimization
- Reconstructed particles' list optimization
- Hyperparameters optimization

Initial input features :

- Node features :
 - PIDs
 - $p, p_t, (p_x, p_y, p_z)$
 - $\mathrm{d}r$ and $\mathrm{d}z$
 - E and M
 - the charge q
- Edge features :
 - $\cos(\theta)$
- Global features :
 - Number of particles in the event

э.

Identification variables' optimization : study and choice of the good sub-detectors for identification

Identification variables' optimization : study and choice of the good sub-detectors for identification

Relative enhancement of $\approx~20\%$ with respect to prototype

æ

Kinematic variables optimization :

study of the mass hypothesis impact on the performances

イロト イボト イヨト イヨト

æ

Kinematic variables optimization : study of the impact of redundancies between variables (such as p, p_x, p_y and p_z)

7% decrease of the training time

イロト イボト イヨト イヨト

э.

Kinematic variables optimization : study of the impact of uncertainties

No positive impact on the performances

3

Summary of the input features for now :

- Node features :
 - PIDs
 - p_t, p_z
 - $\mathrm{d}r$ and $\mathrm{d}z$
 - the charge q
- Edge features :
 - $\cos(\theta)$
- Global features :
 - Number of particles in the event

Introduction of geometrical variables : added the Distance Of Closest Approach (doca) Relative enhancement of $\approx 3\%$ with respect to precedent optimization

▲□▶▲□▶▲□▶▲□▶ □ のへで

14/24

Introduction of geometrical variables : added the cosine of the azimuthal angle ϕ

No enhancement with respect to precedent optimization

∃ 9900

14/24

Introduction of geometrical variables : added the uncertainties

No enhancement with respect to prior the introduction of $\cos(\phi)$

▲□▶▲□▶▲□▶▲□▶ □ のへで

14/24

Summary of the input features for now :

- Node features :
 - PIDs
 - p_t, p_z
 - $\mathrm{d}r$ and $\mathrm{d}z$
 - the charge q
- Edge features :
 - $cos(\theta)$
 - Distance Of Closest Approach (doca)
- Global features :
 - Number of particles in the event

C. Santos

Global features optimization

э.

Final list of input features

Final input features :

- Node features :
 - PIDs
 - p_t, p_z
 - $\mathrm{d}r$ and $\mathrm{d}z$
 - the charge q
- Edge features :
 - $cos(\theta)$
 - Distance Of Closest Approach (doca)
- Global features :
 - None

▲□▶▲□▶▲□▶▲□▶ □ のへで

Trock

Displaced Vertices

 γ

0 π

Reconstructed particles' list optimization

Current list : *B*, *D*^{*}, *D*, *K*⁰_S,
$$\pi^0$$
,
 J/ψ
 \rightarrow inspired by FEI
Organized in classes : 5 for *B*; 4 for
 D^* ; 3 for *D*; 2 for *K*⁰_S; 1 for π^0 and
 J/ψ ; 0 if not in the decay tree

Reconstructed particles' list optimization

э.

Reconstructed particles' list optimization

• = • •

Reconstructed particles' list optimization

< 3 > <

Hyperparameters optimization

Hyperparameters : define the training and the structure of the network

Relative improvement of 11% with respect to the geometrical variables optimization

イロト (日本) (日本) (日本) (日本)

Summary on the results

Finally, improvement of \approx 33% with respect to the ${\rm GRAFEI}$ prototype

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Summary on the results

2.0 LH: $c_{al}^{(1)} = -c_{al}^{(3)}$ or 1.5 RH LEU: disfavoured Thanks to graFEI and its optimie[×] 1.0 **zation :** sensitivity to smaller \mathcal{R} timized graFEL 0.5 First graFEI prototype 0.5 1.0 1.5

0.0

 \mathcal{R}_{ν}

▲□▶▲□▶▲□▶▲□▶ □ のへで

2.0

Experimental context

 ${f 2}$ Example of Graph Neural Network : the ${
m graFEI}$

3 Results on the GRAFEI

(4) Prospects in the search for new physics in $B o K^{(*)}
u ar{
u}$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Conclusions

Summary :

- \bullet Current algorithm, ${\rm FEI},$ not efficient enough for this study : development at IPHC of the ${\rm GRAFEI}$
- This work brought significant improvements on the performances (about 33% with respect to prototype)
- Physical intuitions are not always right when in the context of deep learning...

Prospects :

- Added new predictions for the model (*e.g.* predict the mass hypothesis)
- Implemented this tool in the Belle II software framework

Experimental context Example of Graph Neural Network : the GRAFEI Results on the GRAFEI Prospects in the search for new physics in $B \to K^{(*)} \nu \bar{\nu}$ Référence

[1] A. J. BURAS, J. GIRRBACH-NOE, C. NIEHOFF et D. M. STRAUB, $B \to K^{(*)}\nu\bar{\nu}$ decays in the Standard Model and beyond, 2014, arXiv :1409.4557.

[2] N. JEBREEL et al., Efficient Detection of Byzantine Attacks in Federated Learning Using Last Layer Biases, in (août 2020), p. 154-165.

[3] P. W. BATTAGLIA et al., *Relational inductive biases, deep learning, and graph networks*, 2018, arXiv :1806.01261.

[4] Full Event Interpretation using Graph Neural Networks, https://publish.etp.kit.edu/record/22115.

[5] S. R. DUBEY, S. K. SINGH et B. B. CHAUDHURI, Activation Functions in Deep Learning : A Comprehensive Survey and Benchmark, 2022, arXiv: 2109.14545.200 22/24

Activation functions

- Non-linear functions that will activate the neuron based on the "input strength"
- Simplest one : Heaviside/step function. For $x \in \mathbb{R}$

$$\mathcal{H}\left(x
ight)=egin{cases} 0 ext{ if } x<0,\ 1 ext{ otherwise} \end{cases}$$

but has many problems \leftarrow need new functions

- Exemples : sigmoid, tanh, ReLU, ELU...
- For more detailed list, check arXiv :2109.14545 [5]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Branching ratio predictions

Decay channel	$B ightarrow K^0_S u ar u$	$B o K^+ u ar{ u}$
Branching ratio prediction $ imes$ 10^{6}	$2.05\pm0.07\pm0.12$	$5.06\pm0.14\pm0.28$
Decay channel	$B o K^{*0} u ar{ u}$	$B o K^{*+} u ar{ u}$
Branching ratio prediction $ imes$ 10^{6}	$9.05 \pm 1.25 \pm 0.55$	$10.86\pm1.30\pm0.59$

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 23/24

$FEI\ \mbox{versus}\ {\rm GRAFEI}$

- GRAFEI performs better than ${\rm FEI} \longrightarrow {\rm Two}$ times more efficient with same background rejection
- My goal : to increase the efficiency while improving the background rejection

C. Santos GDR-InF Annual Workshop 2023

24/24