Reconstructing a generic B decay with a graph neural network GDR-InF Annual Workshop 2023

Corentin Santos with Jacopo Cerasoli and Giulio Dujany

6 November 2023

Table of Contents

2 [Example of Graph Neural Network : the](#page-8-0) GRAFEI

3 [Results on the](#page-15-0) GRAFEI

4) [Prospects in the search for new physics in](#page-40-0) $B \to K^{(*)} \nu \bar{\nu}$

2/24

メロトメタトメミトメミト ミニの女の

1 [Experimental context](#page-2-0)

2 [Example of Graph Neural Network : the](#page-8-0) GRAFEI

[Results on the](#page-15-0) GRAFEI

4) [Prospects in the search for new physics in](#page-40-0) $B \to K^{(*)} \nu \bar{\nu}$

3/24

K ロ ▶ K 個 ▶ K 聖 ▶ K 臣 ▶ ○ 臣 ◇ 9 Q @

Motivations

• Need to reconstruct the tag side to infer information about the signal side (e.g. $B \to K \nu \bar{\nu}$)

Motivations

- New physics : new physics particles may appear in the loop and modify probability
- One expects a statistically significant discrepancy from the SM
- Possible presence of new physics invisible particles at the place of ν

Schematic representation of new physics in $B \to K^{(*)} \nu \bar \nu$

$$
\mathcal{R}_{K^{(*)}} = \frac{\text{BR} (B \to K^{(*)} \nu \bar{\nu} | \text{exp})}{\text{BR} (B \to K^{(*)} \nu \bar{\nu} | \text{SM})}
$$

Representation of different NP models as a function of \mathcal{R}_K and \mathcal{R}_{K^*} [\[1\]](#page-42-1)

Full Event Interpretation (FEI) algorithm

- Reconstructs the tag side based on a six stages approach using Boosted Decision Trees
- Need to hard-code decay channels $\rightarrow \approx 15\%$ of B decays considered

6/24

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 「重 → 約 Q @ 」

Full Event Interpretation (FEI) algorithm

- 15% of B decays hard-coded \iff few % B reconstruction efficiency
- \bullet Sensitive to large $\mathcal{R}_{\mathcal{K}^{(*)}}$ only (at $\int \mathcal{L} \approx 360 \,\, \mathrm{fb^{-1}})$

2 [Example of Graph Neural Network : the](#page-8-0) GRAFEI

[Results on the](#page-15-0) GRAFEI

4) [Prospects in the search for new physics in](#page-40-0) $B \to K^{(*)} \nu \bar{\nu}$

7/24

メロトメタトメミトメミト ミニの女の

Introduction to deep learning

- Input : $\mathbf{x} \in \mathbb{R}^n, n \in \mathbb{N}^*$
- Neural network : does a weighted sum and apply a non-linear function, the *activa*tion function $f : \mathbb{R}^m \to \mathbb{R}^m$ where $m \in \mathbb{N}^*$ is the number of neurons at the output of the network
- Neural network can be summarized as a funtion $\mathcal{F}:\mathbb{R}^n\to\mathbb{R}^m$ such that $\mathcal{F}(\mathsf{x})=0$ $f\left(\mathsf{W} \mathsf{x}+\mathsf{b} \right)$, where $\mathsf{W}\in M_{m,n}\left(\mathbb{R} \right)$ is the weights' matrix and $\mathsf{b}\in \mathbb{R}^m$ is a bias

Introduction to deep learning

- Training : modify the weights in order to minimize the loss function $\mathcal L$
- Loss function : quantify the difference between the results given by the model and the expected ones
- Training technique : the *gradient descent* the weights are modified following the formula :

$$
\mathbf{w}' = \mathbf{w} - \frac{\varepsilon}{N} \cdot \sum_{i=1}^{N} \nabla \mathcal{L}_i
$$

with $N \in \mathbb{N}^*$ the number of events; $\varepsilon \in \mathbb{R}_{>0}$ the *learning rate*; **w** and **w**^{*'*} the parameters' vectors

8/24

KOD KAD KED KED E VOOR

Deep learning algorithm : $GRAFEI$

- Based on a deep graph neural network (GNN)
- Reconstructs the B_{tag} decay via the Final State Particles
- Trained over generic B decays \rightarrow No need to hard-code decay channels

9/24

KOD KAD KED KED E VOOR

Deep learning algorithm : $GRAFEI$

- Based on a deep graph neural network (GNN)
- Reconstructs the B_{tag} decay via the Final State Particles
- Trained over generic B decays \rightarrow No need to hard-code decay channels

C. Santos [GDR-InF Annual Workshop 2023](#page-0-0)

 $9/24$

 $\left(\sqrt{10} + \sqrt{10} + \$

Overview of the GRAFEI's principles

- Takes as input a fully connected graph representing Final State Particles
- Uses update functions, ϕ , and aggregation functions, ρ
- Returns a fully connected graph with LCAS matrix elements as edge features

Overview of the GRAFEI's principles

- LCAS matrix $=$ representation of a decay tree
- Rows and Columns $=$ Final State Particles
- Elements $=$ Lowest Common Ancestor
- Identify them via a **class** between 0 and 5

C. Santos [GDR-InF Annual Workshop 2023](#page-0-0)

[Experimental context](#page-2-0)

2 [Example of Graph Neural Network : the](#page-8-0) GRAFEI

³ [Results on the](#page-15-0) graFEI

4) [Prospects in the search for new physics in](#page-40-0) $B \to K^{(*)} \nu \bar{\nu}$

11/24

メロトメタトメミトメミト ミニの女色

20.0 17.5 B reconstruction efficiency [%] 15.0 12.5 FEI vs GRAFEI prototype : GRA-FEI already 5 times for efficient ! 10.0 $7.5 5.0$ $2.5 -$ FEI
First prototype optimization
Identiciation variables optimization stotype
variables optimization
Kinematic variables optimization
Kinematic variables (Hype Imization
Variables optimization
Geometrical variables introduction ation
inables introduction
Hyperparameters optimization

12/24

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있어 안

Prototype optimizations :

- Input optimization
- Reconstructed particles' list optimization
- Hyperparameters optimization

Initial input features :

- Node features :
	- PIDs
	- $p, p_t, (p_x, p_y, p_z)$
	- dr and dz
	- $-$ F and M
	- the charge q
- Edge features :
	- $cos(\theta)$
- Global features :
	- Number of particles in the event

イロト イ母 トイヨ トイヨト

12/24

 \Rightarrow

 $2Q$

Identification variables' optimization : study and choice of the good sub-detectors for identification

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q @

Identification variables' optimiza-

tion : study and choice of the good sub-detectors for identification

Relative enhancement of $\approx 20\%$ with respect to prototype

イロト イ母 トイヨ トイヨ トーヨー

13/24

 299

Kinematic variables optimization :

study of the mass hypothesis impact on the performances

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있어 안

Kinematic variables optimization : study of the impact of redundancies between variables (such as p, p_x, p_y and p_z)

7% decrease of the training time

イロト イ母 トイヨ トイヨ トーヨー

13/24

 299

Kinematic variables optimization : study of the impact of uncertainties

No positive impact on the performances

メロトメタトメミトメミト ミニの女色

Summary of the input features for now :

- Node features :
	- PIDs
	- p_t , p_z
	- dr and dz
	- the charge q
- Edge features :
	- $cos(\theta)$
- Global features :
	- Number of particles in the event

Introduction of geometrical variables : added the Distance Of Closest Approach (doca) Relative enhancement of $\approx 3\%$ with respect to precedent optimization

KID KAR KERKER E YAN

Introduction of geometrical variables : added the cosine of the azimuthal angle ϕ

Introduction of geometrical variables : added the cosine of the azimuthal angle ϕ

No enhancement with respect to precedent optimization

メロトメタトメミトメミト ミニの女色

Introduction of geometrical variables : added the uncertainties

No enhancement with respect to prior the introduction of $cos(\phi)$

KO KARA KE KA EKA GRA

Summary of the input features for now :

- Node features :
	- PIDs
	- p_t , p_z
	- dr and dz
	- the charge q
- Edge features :
	- $cos(\theta)$
	- Distance Of Closest Approach (doca)
- Global features :
	- Number of particles in the event

Global features optimization

15/24

 QQ

∍

 $\leftarrow \equiv +$ \leftarrow \equiv

4 0 8

Final list of input features

Final input features :

- Node features :
	- PIDs
	- p_t , p_z
	- dr and dz
	- the charge q
- Edge features :
	- $cos(\theta)$
	- Distance Of Closest Approach ₁₅

	(doca)

	obal features : (doca)
- Global features :
	- None

メロトメタトメミトメミト ミニの女色

Current list	B , D^* , D , K_S^0 , π^0 ,			
J/ψ	inspired by FEI	π^+	K^+	π^+
Organized in classes : 5 for B ; 4 for	K_S^0	K_S^0		
D^* ; 3 for D ; 2 for K_S^0 ; 1 for π^0 and	J/ψ ; 0 if not in the decay tree	$B^0 B^+$		

17/24

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

4 0 8

化重新润滑

17/24

 QQ

∍

 \leftarrow \Box \rightarrow

化重新润滑

17/24

 QQ

∍

◆ロト ◆母

化重新润滑

∍

 200

Hyperparameters optimization

Hyperparameters : define the training and the structure of the network

Relative improvement of 11% with respect to the geometrical variables optimization

Summary on the results

Finally, **improvement of** \approx 33% with respect to the GRAFEI prototype

メロトメタトメミトメミト ミニの女色

Summary on the results

2.0 LH: $c_{\text{el}}^{(1)} = -c_{\text{el}}^{(3)}$ or 1.5 RH LFU: disfavoured Z', LFU Thanks to graFEI and its optimi- $\mathbb{\dot{K}}^{1.0}$ **zation :** sensitivity to smaller \mathcal{R} "Z penguins . optimized graFEI 0.5 ********* First graff! prototype FEI theoretically inaccessible 0.0 0.0 0.5 $1.0\,$ 1.5 2.0

 \mathcal{R}_K

メロトメタトメミトメミト ミニの女色

[Experimental context](#page-2-0)

2 [Example of Graph Neural Network : the](#page-8-0) GRAFEI

[Results on the](#page-15-0) GRAFEI

4) [Prospects in the search for new physics in](#page-40-0) $B \to K^{(*)} \nu \bar{\nu}$

20/24

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Conclusions

Summary :

- Current algorithm, FEI, not efficient enough for this study : development at IPHC of the graFEI
- This work brought significant improvements on the performances (about 33% with respect to prototype)
- Physical intuitions are not always right when in the context of deep learning...

Prospects :

- Added new predictions for the model (e.g. predict the mass hypothesis)
- Implemented this tool in the Belle II software framework

21/24

KOD CONTRACT A BY A GAR KOD

[Experimental context](#page-2-0) [Example of Graph Neural Network : the](#page-8-0) GRAFEI [Results on the](#page-15-0) GRAFEI [Prospects in the search for new physics in](#page-40-0) $B\to K^{(*)}\nu\bar\nu$ Référence

[1] A. J. Buras, J. Girrbach-Noe, C. Niehoff et D. M. Straub, $B \to K^{(*)} \nu \bar{\nu}$ decays in the Standard Model and beyond, 2014, arXiv :[1409.4557](https://arxiv.org/abs/1409.4557).

[2] N. JEBREEL et al., *Efficient Detection of Byzantine Attacks in Federated* Learning Using Last Layer Biases, in (août 2020), p. 154-165.

[3] P. W. BATTAGLIA et al., Relational inductive biases, deep learning, and graph networks, 2018, arXiv : 1806, 01261.

[4] Full Event Interpretation using Graph Neural Networks, <https://publish.etp.kit.edu/record/22115>.

Learning: A Comprehensive Survey and Benchmark, 2[02](#page-41-0)2[,](#page-43-0) [a](#page-41-0)[rX](#page-42-0)[iv](#page-43-0):2109. 14545.998 22/24 [5] S. R. DUBEY, S. K. SINGH et B. B. CHAUDHURI, Activation Functions in Deep

Activation functions

- Non-linear functions that will activate the neuron based on the "*input strength*"
- Simplest one : Heaviside/step function. For $x \in \mathbb{R}$

$$
\mathcal{H}(x) = \begin{cases} 0 \text{ if } x < 0, \\ 1 \text{ otherwise} \end{cases}
$$

but has many problems ← need new functions

- Exemples : sigmoid, tanh, ReLU, ELU...
- For more detailed list, check arXiv :2109.14545 [\[5\]](#page-42-5)

22/24

イロト(母) (ミ) (ミ) (ミ) ミーのくび

Branching ratio predictions

4 ロ → 4 @ → 4 ミ → 4 ミ → 23 = 23/24

FEI versus GRAFEI

- GRAFEI performs better than FEI \longrightarrow Two times more efficient with same background rejection
- My goal : to increase the efficiency while improving the background rejection

C. Santos [GDR-InF Annual Workshop 2023](#page-0-0)