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Experimental context

Motivations

e Need to reconstruct the tag side to infer information about the signal side (e.g.
B — Kvv)
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Experimental context

Motivations

e New physics : new physics particles may appear in the loop and modify probability
e One expects a statistically significant discrepancy from the SM

e Possible presence of new physics invisible particles at the place of v

a,d

C. Santos GDR-InF Annual Workshop 2023



Experimental context

Schematic representation of new physics in B — K®vp
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Experimental context

Full Event Interpretation (FEI) algorithm

e Reconstructs the tag side based on a six stages approach using Boosted Decision
Trees

e Need to hard-code decay channels — = 15% of B decays considered

‘ Tracks | | Displaced Vertices ‘ Neutral Clusters
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Experimental context

Full Event Interpretation (FEI) algorithm

e 15% of B decays hard-coded <= few % B reconstruction efficiency
e Sensitive to large Ry only (at [ £ ~ 360 fb~!)
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Example of Graph Neural Network : the GRAFEI

© Example of Graph Neural Network : the GRAFEI
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Example of Graph Neural Network : the GRAFEI

Introduction to deep learning

e Input : x e R", ne N*

e Neural network : does a weighted sum and apply a non-linear function, the activa-
tion function f : R™ — R™ where m € N* is the number of neurons at the output
of the network

e Neural network can be summarized as a funtion F : R” — R™ such that F (x) =
f (Wx + b), where W € M, , (R) is the weights' matrix and b € R" is a bias

F (WX + b) — > output

Figure — From [2
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Example of Graph Neural Network : the GRAFEI

Introduction to deep learning

e Training : modify the weights in order to minimize the loss function L

e Loss function : quantify the difference between the results given by the model and
the expected ones

e Training technique : the gradient descent - the weights are modified following the
formula :

N
! € )
w —w—N-z;VE,

with N € N* the number of events; ¢ € R-q the learning rate; w and w’ the
parameters’ vectors
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Example of Graph Neural Network : the GRAFEI

Deep learning algorithm : GRAFEI

e Based on a deep graph neural network (GNN)
e Reconstructs the B,z decay via the Final State Particles

e Trained over generic B decays — No need to hard-code decay channels

Edge block Node block Global block
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Example of Graph Neural Network : the GRAFEI

Deep learning algorithm : GRAFEI

e Based on a deep graph neural network (GNN)
e Reconstructs the B,z decay via the Final State Particles

e Trained over generic B decays — No need to hard-code decay channels
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Example of Graph Neural Network : the GRAFEI

Overview of the GRAFEI's principles

e Takes as input a fully connected graph representing Final State Particles
e Uses update functions, ¢, and aggregation functions, p
e Returns a fully connected graph with LCAS matrix elements as edge features

Edge block Node block Global block
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Figure — From [3
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Example of Graph Neural Network : the GRAFEI

Overview of the GRAFEI's principles

e LCAS matrix = representation of a decay tree

Rows and Columns = Final State Particles

Elements = Lowest Common Ancestor

Identify them via a class between 0 and 5
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Results on the GRAFEI

© Results on the GRAFEI
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Results on the GRAFEI

Optimization start
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Results on the GRAFEI

Optimization start
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Results on the GR/

Optimization start

21

Prototype optimizations : T

e Input optimization

e Reconstructed particles’ list

B reconstruction efficiency [%]
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Results on the GRAFE

Optimization start

Initial input features :
e Node features :
- PIDs

- P, Pt (Px, Py Pz) )

- dr and dz ’Partlcle
- Eand M e

the charge g v |

e Edge features : . g dr
Interactlon/ |

- cos(0) Point

o Global features : % —_ — dZ_ _l

- Number of particles in the event
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Results on the GR/

Node features optimization

Pixel Detector (PXD)
Identification variables’ optimiza-

tion : study and choice of the good
sub-detectors for identification

Silicon Vertex Detector (SVD)
Central Drift Chamber (CDC)

TOP counter (TOP)

Aerogel RICH counter (ARICH)
Electromagnetic Carolimeter (ECL)

K{/Muon Detector (KLM)

© ReyHori/KEK
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Results on the GR/

Node features optimization

19.0

18.5

Identification variables’ optimiza-
tion : study and choice of the good
sub-detectors for identification
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Results on the GR/

Node features optimization

19.0

18.5

18.0] ¥ ¢
Kinematic variables optimization : 17.5
study of the mass hypothesis impact

on the performances
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Results on the GR/

Node features optimization

19.0

18.5

Kinematic variables optimization :
18.0 + L4 t

study of the impact of redundancies
between variables (such as p, px, py
and p;)

17.5

17.0
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16.0

B reconstruction efficiency [%]

7% decrease of the training time
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Results on the GRAFEI

Node features optimization

19.0

) 18.5

18.0 + L4 t

17.5 {

17.0

Kinematic variables optimization :
study of the impact of uncertainties

16.5

No positive impact on the perfor-
mances
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Results on the GRAFEI

Node features optimization

Summary of the input features for

now : 21
e Node features :
204
- PIDs g
>
g,
- Pt Pz §®
b=
- dr and dz 210 § 3
- the charge g E
2 174
e Edge features : g
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Results on the GR/

Edge features optimization

) 18.5
Introduction of geometrical va-
18.4 4
riables : added the Distance Of 3
> 18.3
Closest Approach (doca) :
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Results on the GRAFEI

Edge features optimization

Introduction of geometrical va-
riables : added the cosine of the azi-
muthal angle ¢
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Results on the GR/

Edge features optimization

18.5

Introduction of geometrical va- 18.4-
riables : added the cosine of the
azimuthal angle ¢

18.3
18.2

18.14
No enhancement with respect to
precedent optimization

18.0

B reconstruction efficiency [%]

17.91
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Results on the GR/

Edge features optimization

18.5

18.4

Introduction of geometrical va-
riables : added the uncertainties

18.3
18.2

18.1

No enhancement with respect to
prior the introduction of cos (¢)

18.0

B reconstruction efficiency [%]

1 17.91

qot 2
e paged & s0ed o
X

C. Santos GDR-InF Annual Workshop 2023



Results on the GR/

Edge features optimization

Summary of the input features for
now :

21

o Node features :
- PIDs

- Pt Pz
dr and dz

the charge g

N
=3
1

194

18- 3 $

e Edge features :
- cos(h)
- Distance Of Closest Approach
(doca) 154 . . . .
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Results on the GRAFEI

Global features optimization

15
= 14+
Only global feature : number of Fal
final state particles S 137
T
g 124
g
No change between with and wi- < 11+ N e of |
. . - Without number of particles
thout the number of particles 10 With number of particles
- ’ I I I I I 1
0 10 20 30 40 50

Training cycle
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Results on the GRAFEI

Final list of input features

Final input features :

21
o Node features :
- PIDs 2"
- Pt Pz § 7
- dr and dz 5 i
5 18- L3 :
- the charge g g
E 17 A
o Edge features : g
[2e]
- cos(h) ]
- Distance Of Closest Approach sl | I ; T
e oot auon ot 00"
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Results on the GRAFEI

Current list :

I/
— inspired by FEI

B, D*, D, K2, n°

Organized in classes : 5 for B ; 4 for
D*; 3 for D; 2 for Kg; 1 for 7% and
J/1; 0 if not in the decay tree

C. Santos

Reconstructed particles’ list optimization

/ Tracks ‘ /Displaced Vertices

‘ Neutral Clusters
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Results on the GRAFEI

Reconstructed particles’ list optimization

18 -
Test : Move Kg from reconstructed — 16
to Final State Particle (FSP) b
=
E 14
g
Drastically decreases the perfor- o 12
>
mances < 0 K{ as FSP
K2 reconstructed by graFEl
I I I I I 1
0 10 20 30 40 50

Training cycle
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Results on the GRAFEI

Reconstructed particles’ list optimization

Test : Move 70 from reconstructed
to Final State Particle (FSP)

=
=)}
1

Drastically decreases the perfor-
mances

Avg perfect [%]
= =
N =
1 1

n® as FSP

=
o
1

n® reconstructed by graFEl
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Results on the GRAFEI

Reconstructed particles’ list optimization

18
Test : Move J/¢ from class 1 to _17-
)
class 3 & 164
=
o
& 15
g
Lower average perfect when J/ in o 147
class 3 with respect to class 1 < 13 .
J/win class 3
129 Jlginclass 1
115 T T T T T
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Results on the GRAFEI

Hyperparameters optimization

21
__20- i
Hyperparameters : define the trai- 2]
ning and the structure of the network g !
§ 11 $ :
E 174
Relative improvement of 11% 8
«Q
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Results on the GRAFEI

Summary on the results

20.0 x

Finally, improvement of ~ 33% with res-
pect to the GRAFEI prototype

15.0 *

12.54

10.0 4

7.54

B reconstruction efficiency [%]

b
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N
o)
1
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Results on the GR/

Summary on the results

RH LFU: disfavo

Thanks to graFEIl and its optimi-
zation : sensitivity to smaller R
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Prospects in the search for new physics in B — K

@ Prospects in the search for new physics in B — K® v
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Prospects in the search for new physics in B — KMo

Conclusions

Summary :
e Current algorithm, FEI, not efficient enough for this study : development at
IPHC of the GRAFEI
e This work brought significant improvements on the performances (about 33%
with respect to prototype)
e Physical intuitions are not always right when in the context of deep learning...
Prospects :
e Added new predictions for the model (e.g. predict the mass hypothesis)
e Implemented this tool in the Belle Il software framework
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Activation functions

Non-linear functions that will activate the neuron based on the "input strength”

Simplest one : Heaviside/step function. For x € R

H(X):{o if x <0,

1 otherwise

but has many problems <— need new functions
Exemples : sigmoid, tanh, ReLU, ELU...
For more detailed list, check arXiv :2109.14545 [5]
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Référence
Branching ratio predictions

Decay channel B — Kdui B — KTvip
Branching ratio prediction x 10° | 2.05 + 0.07 + 0.12 | 5.06 + 0.14 4+ 0.28

Decay channel B — K% B — K*tup
Branching ratio prediction x 10° | 9.05 + 1.25 + 0.55 | 10.86 4 1.30 + 0.59
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FEI versus GRAFEI

e GRAFEI performs better than FEI — Two times more efficient with same
background rejection

e My goal : to increase the efficiency while improving the background rejection

Decay chain reconstruction

100 —e— graFEl
—e— FEI
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