Including error on t0, an improvement? (and some AGATAGeFEM)

J. Ljungvall

July 3, 2023

Demi-journée AGATA IJCLab 3 juillet 2023

- Presently using a grid-search approach
- Comparison is made with the metric

$$\sum_{i} \left(|y_i^{exp} - y_i^{base}| \right)^{0.3}$$

- Presently using a grid-search approach
- Comparison is made with the metric

$$\sum_{i} \left(|y_i^{exp} - y_i^{base}| \right)^{0.3}$$

- Presently using a grid-search approach
- Comparison is made with the metric

$$\sum_{i} \left(|y_i^{exp} - y_i^{base}| \right)^{0.3}$$

- Presently using a grid-search approach
- Comparison is made with the metric

$$\sum_{i} \left(|y_i^{exp} - y_i^{base}| \right)^{0.3}$$

- Presently using a grid-search approach
- Comparison is made with the metric

$$\sum_{i} \left(|y_i^{exp} - y_i^{base}| \right)^{0.3}$$

- Presently using a grid-search approach
- Comparison is made with the metric

$$\sum_{i} \left(|y_i^{exp} - y_i^{base}| \right)^{0.3}$$

- Presently using a grid-search approach
- Comparison is made with the metric

$$\sum_{i} \left(|y_i^{exp} - y_i^{base}| \right)^{0.3}$$

We (I) would like to measure PSA performance with source

Reading about γ -ray tracking, I stumbled upon TANGO¹ The energy of a γ ray that has interacted at least twice in AGATA can be estimated using the equation

$$E_{\gamma} = \frac{E_1}{2} + \sqrt{\frac{E_1^2}{4} + \frac{E_1 m_e c^2}{(1 - \cos \theta_1)}}$$
 (1)

By selecting good 1332 keV γ rays (tracking or calorimetric) and using above formula I get an energy peak with a width that depends on the position resolution.

¹S. Tashenov NIM A 622 (3) (2010) 592–601. Demi-journée AGATA IJCLab 3 juillet 2023

We (I) would like to measure PSA performance with source

Has been tried and does work

What is (might be) missing?

- \bullet As the noise has the same magnitude for all points, no Δy in square sum
- But, what about Δt (e.g. t_0)?

Normal solution

$$\chi^{2} = \sum_{i} \left(\frac{y_{i}^{exp} - y_{i}^{base}}{\sqrt{(\Delta y_{i})^{2} + (\frac{dy}{dt}^{base}(t_{i})\Delta t)^{2}}} \right)^{2}$$

Note, that noise level suddenly matters as it has a magnitude compared to error induced by t_0 determination. Idea is to implement this metric in PSA and test.²

²Old news,see P Désesquelles et al 2009 J. Phys. G: Nucl. Part. Phys.
 36 037001

Demi-journée AGATA IJCLab 3 juillet 2023

So | added error on the t_0 in the code

```
INLINE ALWAYS float PSAFilterGridSearch :: Chi21
        Ł
          float chi2 = 0;
       #ifdef PSATEST
          double Dt = .5:
          //From gamma gamma data exp e680
          Dt = (exp(2.06 - eCore * 0.0175) + 1.16) / sqrt(2);
            //Get mean
           double mean=0;
           for (int p=-DFROM; p<0; p++) mean+=pReal[p
           mean /=DFROM;
           //Get variance
           double svar = 0;
           for (int p=-DFROM; p<0; p++) {
svar += (pRea|[p] - mean) * (pRea|[p] - mean) ;
```

This has been tested using my "standard" in-beam data set

Relation between $\Delta \vec{r}$ and FWHM from geant4 simulations

This has been tested using my "standard" in-beam data set

Crystal+Base	FWHM	$\chi^2/$	FWHM	$\chi^2/$
+PSA		NDF	FINAL	NDF
			EP J A	
A002 R6.0 std	5.3(2)	1.0	5.0(2)	1.1
B010 R5.5 std	4.5(2)	1.1	4.1(2)	1.2
C001 R5 5 std	5.5(8)	1.4	6.2(2)	1.2
A007 R6.0 χ^2 M=0.3	4.6(2)	1.2	4.7(2)	1.3
B007 R6.0 χ^2 M=1.15	4.3(2)	0.9	4.1(1)	1.3
C007 R6.0 std	4.4(2)	1.0	4.3(2)	1.4

This has been tested using my "standard" in-beam data set

Conclusion is that even when including t₀ error we still don't get a χ^2 distribution and there is no improvement on the results.

AGATAGeFEM produces a good database but. . .

AGATAGeFEM

Need to verify this using neutron damage corrections

- This is a bit tedious work...
- Calibrations...
- Tests...
- Calibrations...

FEM based code with strong coupling to ROOT, geant4, and ADF.

All this has now been validated and AGATAGeFEM is fully capable complement/replacement for ADL

AGATAGeFEM produces a good database

AGATAGeFEM gives good Neutron Correction. Neutron Correction not sensitive to details of base.

Demi-journée AGATA IJCLab 3 juillet 2023