

Development of reconstruction algorithms for the new TPCs of the upgraded T2K near detector with machine learning techniques

Pre-thesis internship – Oral defense

June 28th, 2023

Anaëlle Chalumeau

- 1. Introduction
- 2. T2K, its near detector and the new TPCs
- 3. Machine learning: neural network for track reconstruction
 - ▹ How it works
 - ▷ Results
 - Current challenges and investigations
 - Internship conclusion
- 4. Prospects for the PhD

Neutrinos oscillate:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \text{PNMS} \\ \text{matrix} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Neutrinos oscillate:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} D \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Neutrinos oscillate:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} D \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$Appearance probability \qquad P(\nu_\mu \to \nu_e) = |\langle \nu_e | \nu_\mu(t) \rangle|^2 = P(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}, \Delta m_{21}^2 \text{ and } \Delta m_{32}^2)$$

Neutrinos oscillate:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} D \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$Appearance probability \qquad P(\nu_{\mu} \to \nu_{e}) = |\langle \nu_{e} | \nu_{\mu}(t) \rangle|^{2} = P(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}, \Delta m_{21}^{2} \text{ and } \Delta m_{32}^{2})$$

Disappearance probability $P(\nu_{\mu} \to \nu_{\mu}) = |\langle \nu_{\mu} | \nu_{\mu}(t) \rangle|^{2} = P(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}, \Delta m_{21}^{2} \text{ and } \Delta m_{32}^{2})$

Neutrinos oscillate:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta_{CP}} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} D \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$Appearance probability P(\nu_{\mu} \to \nu_{e}) = |\langle \nu_{e} | \nu_{\mu}(t) \rangle|^{2} = P(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}, \Delta m_{21}^{2} \text{ and } \Delta m_{32}^{2})$$

$$Disappearance probability P(\nu_{\mu} \to \nu_{\mu}) = |\langle \nu_{\mu} | \nu_{\mu}(t) \rangle|^{2} = P(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}, \Delta m_{21}^{2} \text{ and } \Delta m_{32}^{2})$$

frame (anode)

Classical reconstruction in the TPCs

the Pad Response Function method:

Classical reconstruction in the TPCs

the Pad Response Function method:

$$PRF(x_{track} - x_{pad}) = Q_{pad}/Q_{cluster}$$

max of the charge in the pad (later called Qmax)

Classical reconstruction in the TPCs

the Pad Response Function method:

$$PRF(x_{track} - x_{pad}) = Q_{pad}/Q_{cluster}$$

max of the charge in the pad (later called Qmax)

Gives spatial resolution <0.8mm
 Solution but uses only Qmax of the waveform: limited info!

Classical reconstruction in the TPCs

the Pad Response Function method:

$$PRF(x_{track} - x_{pad}) = Q_{pad}/Q_{cluster}$$

max of the charge in the pad (later called Qmax)

 \hookrightarrow gives spatial resolution <0.8mm → but uses only Qmax of the waveform: limited info! Sould expect better resolutions by using more info from the waveforms

Waveforms

(charge deposited vs time)

Leading pa-

Pad below leading Pad above leading

Time [ns]

3. Machine learning and deep learning

- Efficient for large & complexe datasets
- Power to model non-trivial relationships between inputs/outputs
- Easily adaptable to various experimental conditions
- Promising results these past years in particle & neutrino physics
- ☑ Neural networks: very good for image processing

► How it works

► How it works

 x_1

 x_2

 x_3

► How it works

 x_1

 x_2

 x_3

► How it works

► How it works

Input data

Real data

► How it works

Input data

Real data

► How it works

Input data

Real data

Simulation data ('particle gun')

► How it works

Input data

► How it works

Input data

► How it works

Input data

► How it works

ResNet50 architecture a convolutional NN

► How it works

► How it works

▷ Results

3 predictions: p_y , p_z , p_t ~280 000 events

▷ Results

3 predictions: p_y , p_z , p_t ~280 000 events

Data divided into training/validation/test set (70/15/15%)

• Training set to perform gradient descent and find best parameters (weights & biases)

▷ Results

3 predictions: p_y , p_z , p_t ~280 000 events

Data divided into training/validation/test set (70/15/15%)

Training set to perform gradient descent and find best parameters (weights & biases)
 Validation set to test during training & used to select best parameters

▷ Results

3 predictions: p_y , p_z , p_t ~280 000 events

- Training set to perform gradient descent and find best parameters (weights & biases)
- Validation set to test during training & used to select best parameters
- Test set used at the end, after training/validation, to attest the final performance of the model on new/unseen data

⊳ Results

3 predictions: p_y , p_z , p_t ~280 000 events

- Training set to perform gradient descent and find best parameters (weights & biases)
- · Validation set to test during training & used to select best parameters
- Test set used at the end, after training/validation, to attest the final performance of the model on new/unseen data

▷ Results

3 predictions: p_y , p_z , p_t ~280 000 events

- Training set to perform gradient descent and find best parameters (weights & biases)
- Validation set to test during training & used to select best parameters
- Test set used at the end, after training/validation, to attest the final performance of the model on new/unseen data

⊳ Results

⊳ Results

5 predictions: z_{ini} , p_y , p_z , p_t , ϕ ~280 000 events

⊳ Results

5 predictions: z_{ini} , p_y , p_z , p_t , ϕ ~280 000 events

⊳ Results

5 predictions: Z_{ini} , p_y , p_z , p_t , ϕ ~280 000 events

⊳ Results

5 predictions: Z_{ini} , p_y , p_z , p_t , ϕ ~280 000 events

⊳ Results

5 predictions: Z_{ini} , p_y , p_z , p_t , ϕ ~280 000 events

Current challenges and investigations

□ Want better spatial resolution

Current challenges and investigations

- □ Want better spatial resolution:
 - \hookrightarrow understand why it is limited to the resolution of a pad (~10mm)

Current challenges and investigations

□ Want better spatial resolution:

 \backsim understand why it is limited to the resolution of a pad (~10mm)

- $\ensuremath{\boxtimes}$ try predicting projection of $z_{\mbox{\tiny ini}}$ on TPC entrance instead of $z_{\mbox{\tiny ini}}$
- $\ensuremath{\boxtimes}$ generate new simulation data with only vertical tracks at different Δz , drift distance
- \square try predicting relative z position wrt pad center instead of absolute position (Z_{ini})

Current challenges and investigations

□ Want better spatial resolution:

 \backsim understand why it is limited to the resolution of a pad (~10mm)

- $\ensuremath{\boxtimes}$ try predicting projection of $z_{\mbox{\tiny ini}}$ on TPC entrance instead of $z_{\mbox{\tiny ini}}$
- \square generate new simulation data with only vertical tracks at different Δz , drift distance
- \Box try predicting relative z position wrt pad center instead of absolute position (z_{ini})
- □ Want better match between distributions of predicted vs true momentum:

Current challenges and investigations

□ Want better spatial resolution:

 \hookrightarrow understand why it is limited to the resolution of a pad (~10mm)

- $\ensuremath{\boxtimes}$ try predicting projection of $z_{\mbox{\tiny ini}}$ on TPC entrance instead of $z_{\mbox{\tiny ini}}$
- \square generate new simulation data with only vertical tracks at different Δz , drift distance
- □ try predicting relative z position wrt pad center instead of absolute position (z_{ini})
- □ Want better match between distributions of predicted vs true momentum: □ standardization of the data: $x_i^{NEW} = \frac{x_i - \mu_x}{\sigma_x}$
 - ☑ use more events (75 000 → 280 000)
 - (I) border problem? decrease momentum range during test phase (but need more events)
 - \square generate even more events \rightarrow ~500 000

Current challenges and investigations

Understanding the limitation on z_{ini} resolution

New simu: vertical tracks Δz = 1cm (around 1 pad)

Current challenges and investigations

Understanding the limitation on $\boldsymbol{z}_{\mbox{\tiny ini}}$ resolution

Current challenges and investigations

Understanding the limitation on z_{ini} resolution

1 prediction: z_{ini} ~100 000 events

Current challenges and investigations

Understanding the limitation on z_{ini} resolution

1 prediction: z_{ini} ~100 000 events

New simu: vertical tracks $\Delta z = 1$ cm (around 1 pad)

Current challenges and investigations

Understanding the limitation on z_{ini} resolution

1 prediction: z_{ini} ~100 000 events

New simu: vertical tracks $\Delta z = 1$ cm (around 1 pad)

Current challenges and investigations

Understanding the limitation on z_{ini} resolution

1 prediction: z_{ini} ~100 000 events

ightarrow now try predicting **relative** position ightarrow can also try a simu with intermediate Δz

▶ Internship conclusion

- ★ Development from scratch of a new reconstruction technique with ML
- ★ There remains a lot to understand; biases, resolution vs momentum, initial position resolution
- ★ But gives comparable results to the classical/'official' reconstruction method

--> Promising! Still work to do & ideas to try!

Continue the work on this neural network:

Main goal: decrease systematic uncertainties for precise CPV measurements *i.e. need precise track parameters since used in event selection, flux characterizations, cross sections*

- \triangleright aim for same/better resolution on all track parameters (z_{ini} , p_t , ϕ) than with classical reconstruction
- ▷ add the FWHM an tmax information to the input images and see how it goes
- ▷ try the CNN on test beam data (and later T2K-II data once ND280 upgrade is installed)

New horizons:

- ▷ collaborate more with a T2K ML group (SuperFGD)?
- experiment with another neural network architecture?
- \triangleright oscillation analysis from ND280 upgrade data: study of ν_{e} and anti- ν_{e} interactions

Back-up slides

						1	
MI with Pylorch	layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
		112×112			7×7, 64, stride 2		
					3×3 max pool, stride	2	
	conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $
≻ ResNet50	conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $
	conv4_x	14×14	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$ \begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 23 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
> Loss: MSE $= \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$	conv5_x	7×7	$\begin{bmatrix} 3\times3,512\\ 3\times3,512\end{bmatrix}\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $
		1×1		verage pool, 1000-d fc, softmax			
	FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^{9}

 Optimizer (how to update weights): extension of stochastic gradient descent

> Hyperparameters:

- training/validation/test set splitting (now: 70/15/15)
- **batch size**: commonly used: 64, also tried 1, 16, 32, 128
- learning rate: initially at 0.01 + scheduler to decrease it dynamically
- patience: how many epochs before decreasing LR
- epoch size (1, 10, 30, 50, 100) -> implement dynamical epoch size
- 'model choice': ResNet50, 101, 152 for now but mostly ResNet50

NN learning process:

1/ Measures how wrong the NN predictions are:

2/ Performs a **gradient descent** algo to find the weight/bias values which best minimize the cost

This is done by looping several times over the all dataset (1 loop = 1 'epoch')

Other results

3 predictions: p_y , p_z , p_t ~280 000 events

Event displays before/after ND280 upgrade

event simulated with ND280 upgrade configuration

event display in old configuration

Apparition number of anti- ν_e vs apparition number of ν_e at the far detector SK