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Neutrinos oscillate:
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oscillation parameters!
want to know them precisely 
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 2. T2K, its near detector and the new TPCs
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 2. T2K, its near detector and the new TPCs

Classical reconstruction in the TPCs

the Pad Response Function method:

max of the charge in the pad (later called Qmax)

 ⤷ gives spatial resolution <0.8mm
  ⤷ but uses only Qmax of the waveform: limited info!

 ⤷ could expect better resolutions by using more 
info from the waveforms

Qmax

Waveforms
(charge deposited vs time)

from DESY test beam 
data with a HA-TPC 

prototype (2022)
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 3. Machine learning and deep learning 

☑ Efficient for large & complexe 
datasets

☑ Power to model non-trivial 
relationships between 
inputs/outputs

☑ Easily adaptable to various 
experimental conditions

☑ Promising results these past 
years in particle & neutrino 
physics

☑ Neural networks: very good for 
image processing 
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 3. Machine learning: neural network for track reconstruction
  ⊳ How it works

=

is minimized through gradient descent
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pads

Input data

Real data

zini = track entrance 
in the top HA-TPC

ɸ

z

y

x

Simulated data with:
- px = 0
- x = 0

 ⤷ track in (y,z) plane

Simulation data  (‘particle gun’)
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only Qmax values at first

[initial positions zini ]

[momenta pz, py,      ]

[track angles ɸ]
.
.
.
etc

Qmax

tmax

FWHM
ResNet50 architecture

a convolutional NN
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 3. Machine learning: neural network for track reconstruction
  ⊳ Results 3 predictions: py, pz, pt

~280 000 events

▫ Data divided into training/validation/test set (70/15/15%)

▫ Training set to perform gradient descent and find best parameters (weights & biases)
▫ Validation set to test during training & used to select best parameters
▫ Test set used at the end, after training/validation, to attest the final performance of the model on new/unseen data

 ☑ decreases
 ☑ train/val loss stay close

 ☑ always ~ same OM as final 
train/val loss
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 3. Machine learning: neural network for track reconstruction
  ⊳ Results
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  ⊳ Results

1 prediction: pt =  
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 3. Machine learning: neural network for track reconstruction
  ⊳ Results

weird behaviour with 3x less events…

seems to 
⤷

disappear with more data

overfitting usually because:
→ not enough data

→ complexity of data
    (generalisation is hard)
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 3. Machine learning: neural network for track reconstruction
  ⊳ Results

put updated version with 10 000 entries
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 3. Machine learning: neural network for track reconstruction
  ⊳ Results 5 predictions: zini, py, pz, pt, ɸ 

~280 000 events

zini

from DESY test beam 
data with a HA-TPC 

prototype (2022)
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~6mm resolution
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 3. Machine learning: neural network for track reconstruction
  ⊳ Current challenges and investigations

❏ Want better spatial resolution:

 ⤷ understand why it is limited to the resolution of a pad (~10mm)

 ☑ try predicting projection of zini on TPC entrance instead of zini

 ☑ generate new simulation data with only vertical tracks at different Δz, drift distance

□ try predicting relative z position wrt pad center instead of absolute position (zini)

❏ Want better match between distributions of predicted vs true momentum:

☑ standardization of the data: 
 ☑ use more events (75 000 → 280 000)

(☑) border problem? decrease momentum range during test phase (but need more events)
□ generate even more events → ~500 000
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 3. Machine learning: neural network for track reconstruction
  ⊳ Current challenges and investigations

Understanding the limitation on zini resolution

z

y

x

New simu:
vertical tracks
Δz = 1cm (around 1 pad)

zini 
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1 prediction: zini
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Δz = 1cm (around 1 pad)

Understanding the limitation on zini resolution
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indep of drift 
distance

~0.1mm 
resolution

☺
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 3. Machine learning: neural network for track reconstruction
  ⊳ Current challenges and investigations

1 prediction: zini

~100 000 events

z

y

x

New simu:
vertical tracks
Δz = 1m (all TPC)

Understanding the limitation on zini resolution

zini 

 ⤷ now try predicting relative position
 ⤷ can also try a simu with intermediate Δz 
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 3. Machine learning: neural network for track reconstruction
  ⊳ Internship conclusion

★ Development from scratch of a new reconstruction technique with ML

★ There remains a lot to understand; biases, resolution vs momentum, initial position resolution

★ But gives comparable results to the classical/’official’ reconstruction method

 ⇢ Promising! Still work to do & ideas to try!
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 4. Prospects for the PhD

Continue the work on this neural network:

        Main goal: decrease systematic uncertainties for precise CPV measurements  
        i.e. need precise track parameters since used in event selection, flux characterizations, cross sections

 ⊳ aim for same/better resolution on all track parameters (zini, pt, ɸ ) than with classical reconstruction

 ⊳ add the FWHM an tmax information to the input images and see how it goes

 ⊳ try the CNN on test beam data (and later T2K-II data once ND280 upgrade is installed)

New horizons:

          ⊳ collaborate more with a T2K ML group (SuperFGD)?

 ⊳ experiment with another neural network architecture?

 ⊳ oscillation analysis from ND280 upgrade data: study of 𝜈e and anti- 𝜈e interactions
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Back-up slides
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ML with PyTorch

➢ ResNet50

➢ Loss:

➢ Optimizer (how to update weights): extension 
of stochastic gradient descent

Residual NN

62

➢ Hyperparameters: 

▫  training/validation/test set splitting (now: 70/15/15)
▫  batch size: commonly used: 64, also tried 1, 16, 32, 128
▫  learning rate: initially at 0.01 + scheduler to decrease it dynamically
▫  patience: how many epochs before decreasing LR
▫  epoch size (1, 10, 30, 50, 100) -> implement dynamical epoch size
▫  ‘model choice’: ResNet50, 101, 152 for now but mostly ResNet50



1/ Measures how wrong the NN predictions are:

2/ Performs a gradient descent algo to find the 
weight/bias values which best minimize the cost

This is done by looping several times over the all 
dataset (1 loop = 1 ‘epoch’)

63

ML with PyTorch

or ‘loss’

params (w,b)       learning rate cost function

NN learning process:
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Other results

pz

3 predictions: py, pz, pt

~280 000 events

py

9% resolution 9% resolution

 

same as pt

8% resolution
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T2K beam production
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Event displays before/after ND280 upgrade

event display in old configurationevent simulated with ND280 upgrade configuration
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δCP measurements with T2K

Apparition number of anti-      vs apparition number of       at the far detector SK 
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