Infering cosmological velocity field with graph neural network

Albert Bonnefous-Abiven

Internship with Hideki Tanimura

<ロト < 回 ト < 目 ト < 目 ト く 目 ト 目 の Q () 1/17

Presentation

- Studying at the ENS de Lyon
- 2nd year of master in Physics
- Actually : Intern at IPMU

Main interest in Physics : Theory, Cosmology and Condensed matter Other interest : Doing art, Learning japanese, Music

Introduction

- ACDM model tells us that the 84% of matter is Dark Matter, not observable
- Galaxies are nested in dark matter halo, forming a cosmic web

Figure: The cosmic web, in the Magneticum simulation

Introduction

► Goal of this internship : finding the velocity of these halo Many applications, for example : correcting the Sunyaev-Zel'dovich effect on CMB observation

Figure: The Sunyaev-Zel'Dovich effect

But, problem :

- We cannot observe these halos
- Measuring peculiar velocity is difficult

To remedy to that : let's try to use GNN

What is Graph Neural Network ?

- Graph : a set of nodes linked by edges, how we want to model the cosmic web
- \blacktriangleright Neural Network : a function $\mathbb{R}^n \to \mathbb{R}^m$ with a set of parameters that can be optimised

Idea : training a GNN model on simulation (Magneticum) to find that velocity, in order to apply it to real data

<ロト < 部ト < 言ト < 言ト 差 の Q (~ 10 / 17

<ロト < 部ト < 言ト < 言ト こ の Q (で 11/17)

 $global\ pooling\ phase$

Applying GNN to clusters of galaxies

- ▶ Nodes : all galaxies within *R_{max}* of center halo
- Node features : position, and mass
- Global features : total number of galaxies + total mass
- Edges : two galaxies are linked if they are close enough $d < d_n$

Problem of GNN \rightarrow MANY hyperparameters

- learning rate, weight decay, n_{layers} , $n_{neurons}$, n_{mp} , size of the hidden vectors
- \blacktriangleright plus choice of aggregation functions \bigoplus and \bigotimes
- ▶ plus d_n , R_{max}

Applying GNN to clusters of galaxies

How to choose d_n :

Figure: Plot of the distribution of the closest distance between two galaxies, and the graph obtained with $d_n=15~{
m Mpc}$

Results

Figure: Accuracy of the tuned GNN

And now ?

- Trying to compare the accuracy with other features
- Trying to see if there is a way to interpret the GNN