Current status of Dark matter Axion search with riNg Cavity Experiment (DANCE)

Hinata Takidera (M2) Department of Physics, University of Tokyo

Student Fest by SGU-PG, June 12th, 2023

Self-introduction

- Hinata Takidera (M2)
- Gravitational wave astronomy
- Experimental research on gravity and relativity
- Laser interferometer

DECIGO

TOBA

DANCE

- Dark matter
- DANCE
- DANCE Act-1
- Summary

Contents

- Dark matter
- DANCE
- DANCE Act-1
- Summary

Dark matter

- Suggested in 1933 from observation of galaxy rotation curves
- Accounts for about 80% of all the matter
- Extensive research is being conducted

Axion and Axion-Like Particles (ALPs)

- Axion dark matter: unidentified particle
- Pseudo-scalar particle was originally proposed by Peccei and Quinn to solve the strong CP problem in quantum chromodynamics (QCD axion)
- Axion weakly interacts with photon, electron, proton
- Many experiments have been using axion-photon conversion under magnetic fields (Primakoff effect) to search for ALPs

Primakoff effect

Previous Searches

- Dark matter
- DANCE
- DANCE Act-1
- Summary

DANCE

DANCE (Dark matter Axion search with riNg Cavity Experiment)

- Bow-tie ring cavity
- Dark matter search experiment by interferometer
- Axion-photon interaction
- Prototype experiment (DANCE Act-1) is ongoing
- No need for magnetic fields

Axion-photon interaction

Axion-photon interaction gives the phase velocity difference

Regard it as a rotation of linearly polarized light

- Dark matter
- DANCE
- DANCE Act-1
- Summary

DANCE Act-1

- Started in 2019
- First observation is complete [1]
- Issue: No-simultaneous resonance between s- and p-pol.
- Designed an auxiliary cavity and realized simultaneous resonance for the first time in November 2021

[1] Y. Oshima et al. : arXiv:2303.03594

Reflection phase difference between s- and p-pol. 13

10-

10-5

10-6

 10^{-1}

10-8

 10^{-9}

 10^{-10}

 10^{-1}

 $\underset{10^{-2} \quad 10^{-1} \quad 10^{0}}{\text{frequency (Hz)}}_{10^{1}}$

No-simultaneous resonance

About 3 orders

Simultaneous resonance

10⁶ 10⁷ 10⁸

• There is resonant frequency difference between s- and p-pol.

Simultaneous resonance is necessary for improving the sensitivity

axion-photon coupling $|g_{a\gamma}|$ [GeV⁻¹ 10^{-17} 10^{-16} 10^{-15} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} **Reflection phase difference** oblique incidence axion mass m_a [eV] between s- and p-pol. No-simultaneous resonance Simultaneous resonance Resonant mirror frequency difference

Realization of simultaneous resonance

The method of auxiliary cavity (ongoing)

Realized simultaneous resonance by controlling s- and p-pol. independently

The method of wavelength tunable laser

- Wavelength tunable laser
 Search wavelength to cancel reflection phase difference between s- and p-pol. by sweeping wavelength
- Wavelength sensitive phase-shifting mirror

Realization of simultaneous resonance

<u>Advantage</u>

Control the reflection phase difference between s- and p-pol. easily

Disadvantage The loss on the AR

The loss on the AR coatings of the PBS

Advantage

Solve the disadvantage of the method of auxiliary cavity

Disadvantage

Difficult to conduct mirror coating to cancel the phase difference between sand p-pol.

Need to use stable wavelength tunable laser

- Dark matter
- DANCE
- DANCE Act-1
- Summary

Summary

- DANCE: bow-tie ring cavity by interferometer
- Simultaneous resonance is necessary for searching axion dark matter
- → Proposed the method of wavelength tunable laser

Future plans

- Designing folded cavity to investigate the reflection phase difference between s- and p-pol.
- Aim to realize simultaneous resonance with wavelength tunable laser

