Where does the intrinsic alignment of galaxies stem from? An answer through reconstructive simulations

Y. Lapeyre (M2)

ENS de Lyon, Physics department

12/06/2023

International Laboratory for Astrophysics, Neutrino and Cosmology Experiments

Introduction 0000	Measuring IA	Results	Next step
Presentation			

- M2 student in theoretical physics.
- next year : intern at CRAL/ Monash U in black hole theory (Bardeen-Patterson effect).

Previous works :

- numerical simulation in plasma physics (X).
- Diffusion of dust particles in protoplanetary disks (Nagoya U).

Currently working with Jingjing SHI and Jia LIU at IPMU.

Introduction	Measuring IA	Results	Next step
0000	0000	00	
4 reasons why Lyon	n > Paris		

Large Scale Strucutres (LSS) of the Universe

Cosmic web elements (\geq 100 Mpc) :

- clusters
- voids
- walls/sheets
- filaments

create a tidal field :

$$T_{ij}(x) = \frac{\partial^2 \Phi}{\partial x_i \partial x_j}.$$
 (1)

Figure 1 – Illustration of LSS via Volker Springel (Virgo Consortium).

Introduction	Measuring IA	Results	Next step
0000	0000	00	
Colorian and their	ahawa		

Figure 2 - Photos by Trevor Jones.

 \longrightarrow important observable in cosmology !

 \longrightarrow Their shape is 3D but observed in 2D, and expressed in terms of ellipticities

The orientation of galaxies is not random. It tends to align :

- with the orientation of surrounding galaxies : intrinsic ellipticity alignment
- with the tidal field : tidal alignment

Figure 2 – Illustration of IA. Adapted from Codis et. al. (2015).

 \longrightarrow primordial IA formation model suppose that galaxy intrinsic shape is determined upon formation, is it true?

Measuring IA

Results

Next step

Gravitational lensing (GL)

Figure 3 – Image of LRG 3-757 taken by the Hubble Telescope. The galaxy was originally spotted in SDSS data in 2007.

 \rightarrow crucial cosmological probe (cosmological constants measurement, dark matter mapping).

 \longrightarrow measured through the shape of galaxies.

(shear power spectra)

 \longrightarrow problem : IA contributes + to the observed galaxy shapes than GL !

The Sloan Digital Sky Survey (SDSS)

 \longrightarrow 930,000 galaxies. \longrightarrow Spectroscopic and image survey of galaxies. Provides redshift and shape measurement.

Figure 4 – Photo of the SDSS telescope : a 2.5 m diameter telescope in the Apache Point Observatory. Credits to The Astrophysical Research Consortium.

Figure 5 – Sample of SDSS galaxies plotted in 3d space (ra/dec/z), colour-coded according to density.

Introduction	Measuring IA	Results	Next step
0000	0●00	00	
Let's be quantitati	ve!		

Cosmologists are interested in the weak lensing signal (called cosmic shear) :

$$\gamma = \gamma_I + \gamma_G. \tag{2}$$

Considering two galaxies (differentiated by a prime), what we actually measure is the correlation function :

$$\underbrace{\langle \gamma \gamma' \rangle}_{\text{observed}} = \underbrace{\langle \gamma_G \gamma'_G \rangle}_{\text{GG}} + \underbrace{\langle \gamma_I \gamma'_I \rangle}_{\text{II}} + \underbrace{\langle \gamma \gamma'_I \rangle}_{\text{GI}} + \underbrace{\langle \gamma_I \gamma' \rangle}_{\text{GI}}.$$
 (3)

Isolating GG (or II) is **difficult**. GI is stronger than II (Hirata Seljak 2004). They are evaluated through an estimator :

$$\xi(r_{\rho},\pi) = \frac{DD - 2DR + RR}{RR}$$
(4)

0000		0000	00	5	000
Buildir	ng the catal	ogues			
	Density cata	logue	Shape catalo	ogue	
-	data	random	data	random	
-	Magnitude				
	cut				
	Redshift se-				
	lection				
			cross-match		
			catalogues		
		Fgot	cut	1	
		assign		assign	
		redshift		redshift	
		(rejection		(rejection	
		sampling)		sampling)	
		compute com	oving distance		
			angular se-		
			lection		
Y. La	apeyre (M2)	I	StudentFest	1	9 / 15

Figure 7 - Redshift assignation.

Introduction	Measuring IA	Results	Next step
0000	0000	●0	
Autocorrelation			

Figure 8 – Autocorrelation signal for Mr < -21.5.

Y. Lapeyre (M2)

StudentFest

Introduction	Measuring IA	Results	Next step
0000	0000	○●	
ΙΔ			

Figure 9 – IA signal for Mr < -21.5.

Y. Lapeyre (M2)

StudentFest

Introd	uc	ti	0	n	
0000					

Measuring IA

Results 00 Next step

Elucid

Figure 10 – Slice of the Sloan Great Wall. Left : galaxy distribution from the Sloan data. Right : reconstructed mass distribution by ELUCID. Via Huiyuan Wang et. al. (2018)

StudentFest

Introduction	Measuring IA	Results	Next step
0000	0000	00	○●○
Conclusion and pro	ospects		

- IA : a major contaminant of cosmic shear, but also a physically rich phenomenon.
- catalogue building is not trivial! And navigating the data sets is time-consuming (and confusing).
- Next step : Cross-correlate with Elucid data (matter density field of different redshift) and compare with IA signal in SDSS. The set-up is ready, should go smoothly.

Thanks !

Introduction	Measuring IA	Results	Next step
0000		00	○○●
Bibliography			

- Shun Arai et. al., 'Cosmological gravity probes : connecting recent theoretical developments to forthcoming observations', *Progress of Theoretical and Experimental Physics*, ptad052 (2023).
- [2] Idit Zehavi et. al., 'Galaxy Clustering in the Completed SDSS Redshift Survey : The Dependence on Color and Luminosity', *The Astrophysical Journal*, Vol. 736, Number 1, pages 59-88 (2011).
- [3] Huiyuan Wang et. al., 'ELUCID Exploring the Local Universe with reConstructed Initial Density field III : Constrained Simulation in the SDSS Volume', *The Astrophysical Journal*, Vol. 831, Number 2, page 164 (2016).