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Motivation

★ So far, none of the efforts to find new physics at LHC have succeeded
★ Traditional approach: confirm/exclude theory predictions in small observable space
★ Change of approach: scan all data for anomalies to motivate specific searches 
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Data-Directed Paradigm

★ Smoothly falling mass distributions
★ New physics could cluster in data as 

bumps in mass histograms 
★ Training of a network to find bumps

○ Predicts the z value: statistical 
significance of an excess at each 
mass value

3



Predicting the statistical significance using a neural network
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input: data

target

ZNet3: supervised learning: both ztrue and signal width are given in training



Background distributions:

★ analytical functions and/or simulations

Adding the signal:

★ select background
★ add gaussian signal
★ add random fluctuations
★ calculate true significance with likelihood-ratio test

Training data
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Dark Machines samples 

★ Simulations including the highest cross 
section processes at LHC

○ Designed for anomaly studies
○ Produced using Madgraph, Pythia, and 

DELPHES fast detector simulations
★ Various simulated new-physics 

signals added to the background
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T. Aarrestad et al., SciPost Phys. 12, 043 (2022), arXiv:2105.14027 [hep-ph]

e.g.: RPV stop -> bl

https://arxiv.org/abs/2105.14027


Signatures
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Higgs -> eeμμ

Each event consists of a combination of reconstructed physics objects



Histogram production

★ Consider all possible signatures: 
○ e.g.:  1e + 1μ + 3j  

★ Compute masses of all possible 
combinations of objects 

○ e.g.: mass(e), mass(μ, j0), mass(e, 
μ,j1),...,mass(e,μ, j0, j1, j2)

★ Zoom in so the histogram starts at the 
maximum -> smoothly falling
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-> Huge amount of data: 63 000 signatures with many histograms each



Binning and detector resolution

★ Signal is expected to be narrow -> we train the network to find it in few bins
★ Adjust binning to ATLAS detector resolution

○ Resolution depends on the objects involved, their pT, and η

9



Performance

Performance evaluated in terms of:

★ Difference between the true and 
predicted maximum significance: 
zmax,true - zmax,pred

★ False-positive rate

10



Performance

Prediction of zmax is unbiased with a 
variance of 0.64:
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ROC curve: bump detection based on 
zpred almost as good as based on ztrue



Performance stability  
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Dynamic range: number of entries per bin Number of bins per histogramm

true



Performance stability

★ Training on fixed signal width: 1 
★ Bias increases with signal width

-> important to adapt binning 
to experimental resolution
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Bump was predicted at correct mass with zpred = 4.6 
(consistent with ztrue of 3.7 within method precision)

Finding the Higgs bump
DDP was able to find the Higgs bump using the ATLAS plot:
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Finding new-physics signals

DDP was successful at finding the injected new-physics signals at correct mass:
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RPV stop → bl



Finding new-physics signals

★ Testing over 
background-only samples 
results in false-positive 
rate of 0.1%

16Background-only histograms with Zmax,pred ≥ 5 



Finding new-physics signals

★ Signal is usually detected in 
more than one histogram

★ Physics correlations help 
distinguish between anomaly 
and false-positives

17Histograms that find RPV stop -> bl with Zmax,pred ≥ 5



Conclusion

★ DDP is successful at finding bumps
○ in analytical functions: 1st proof of concept 
○ in simulations: 2nd proof of concept in progress

★ Method scans huge parameter space efficiently
★ Could be used to find interesting signal regions
★ Outlook: apply DDP to ATLAS data
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https://arxiv.org/abs/2107.11573


Backup
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Splitting the dataset by jet multiplicity
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6j 3.2

5j                                             1.7

4j                                                                                             2.4

3j            1.9

2j                                                                                                             4.5

1j                                                                 2.2

mass at zmax,pred

★ We split each signature by jet multiplicity (=number of jets)
★ Compare the position of zmax,pred in neighboring jet multiplicities to reduce look-elsewhere 

effect

Zmax,pred of same signature with different jet multiplicity for a background-only:



Splitting the dataset by jet multiplicity

★ Signal should appear at same mass in several histograms with neighboring jet multiplicity

Zmax,pred of same signature with different jet multiplicity for a signal:
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6j                                                                                                    2.3

5j                                     1.7

4j                                                3.4

3j                                               5.3

2j                                               3.9

1j                                                                                 2.2

mass at zmax,pred



Dark Machines samples 
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