Exploiting the discovery potential of the LHC data using the Data Directed Paradigm

Shikma Bressler

Bump hunt DDP - S. Volkovitch, F. DeVito Halevi, SB [2107.11573] Symmetry DDP - M. Birman, B. Nachman, R. Sebbah, G. Sela, O. Turetz, SB [2203.07529] Symmetrized NPLM – SB, I. Savoray, Y. Zurgil [2401.09530]

Most searches conducted following the blind analysis paradigm

- Signal region selection motivated by
 - Theoretical considerations highly motivated models are the first to be tested
 - Final states (di-X resonance searches)
 - Topologies

Most searches conducted following the blind analysis paradigm

- Advantage
 - Smaller chance for biassing the results
 - Best sensitivity for pre-defined signals
- Disadvantages
 - Thousands of person years are spent studying region of the data that turn out to have nothing interesting in them
 - Large portion of the data is not fully exploited

Example I - Resonances

			a/a	h			Z/W	и	$BSM \to SM_1 \times SM_1$			$BSM \to SM_1 \times SM_2$			$BSM \rightarrow complex$				
	e	μ	, d/g 0 t ; 2/w	2/₩	2/11 1	q/g	$\gamma/\pi^0\text{'s}$	<i>b</i> · · ·	tZ/H	bH		$\tau qq'$	eqq'	$\mu q q'$					
e	[37, 38]	[39, 40]	[39]	ø	ø	ø	[41]	[42]	ø	ø	ø	ø	ø	ø	ø	ø	[43, 44]	ø	
μ		[37, 38]	[39]	ø	ø	ø	[41]	[42]	ø	ø	ø	ø	ø	ø	ø	ø	ø	[43, 44]	
τ			[45, 46]	ø	[47]	ø	ø	ø	ø	ø	ø	ø	ø	ø	ø	[48, 49]	ø	ø	
q/g				$\left[29, 30, 50, 51\right]$	[52]	ø	[53, 54]	[55]	ø	ø	ø	ø	ø	ø	ø	ø	ø	ø	
b					[29, 52, 56]	[57]	[54]	[58]	[59]	ø	ø	ø	[60]	ø	ø	ø	ø	ø	
t						[61]	ø	[62]	[63]	ø	ø	ø	[64]	[<mark>60</mark>]	ø	ø	ø	ø	
γ							[65, 66]	[67-69]	[68, 70]	ø	ø	ø	ø	ø	ø	ø	ø	ø	
Z/W								[71]	[71]	ø	ø	ø	ø	ø	ø	ø	ø	ø	
H									[72, 73]	[74]	ø	ø	ø	ø	ø	ø	ø	ø	
q/g										ø	ø	ø	ø	ø	ø	ø	ø	ø	
$s \gamma/\pi^0$'s											[75]	ø	ø	ø	ø	ø	ø	ø	
× b												[76, 77]	ø	ø	ø	ø	ø	ø	
SN :																			
↑ ¥																			
BSI																			
:																			

arXiv:1907.06659

Mostly inclusive searches – so the data should be exploited far beyond what is seen in this table

Example II – LU and LFC

- LU and LFC in the SM give rise to symmetry between e's, μ 's and τ 's
 - Up to Yukawa interactions and phase space effect
- The discovery of an e/μ asymmetry == New physics
 - Strong motivation to search for such asymmetries
- In practice, most of the data is not yet explored

Tested symmetryTable is a WIPTable is a WIP e/μ LU - U(3) $ee/\mu\mu$ OS $ee/\mu\mu$ SSLFC - U(1)^3 $e\mu/\mu e$ OS $e\mu/\mu e$ SS		inclusive		Obj	ect m	ultip	olicity		Decays	Торо	logie	s
Table is	s a WIP		τ	j	bj	γ	K	 Z	W	 VBF	tt	
	e/μ								[31-34]			
LU - U(3)	$ee/\mu\mu$ OS						[24]	[29, 30]				
	$ ee/\mu\mu$ SS											
LFC - $U(1)^{3}$	$e\mu/\mu e \text{ OS}$	[27,28]								[27, 28]		
	$ e\mu/\mu e SS$											
	$ e^+\mu^-/e^-\mu^+$	[35]		[35]								

Example II – LU and LFC

- LU and LFC in the SM give rise to symmetry between e's, μ 's and τ 's
 - Up to Yukawa interactions and phase space effect
- The discovery of an e/μ asymmetry == New physics
 - Strong motivation to search for such asymmetries Higgs LFV decays in ATLAS
- In practice, most of the data is not yet explored

					R_K measurements
Tested summetry	inclusivo	Object m	ultiplicity	Decays	Topologies
		au j bj	γ K	ZW	\dots VBF $t\bar{t}$ \dots
lable is a V					
	e/μ			[31-34]	
LU - U(3) $ $ e	$e/\mu\mu$ OS		[24]	[29,30]	
e	$e/\mu\mu \text{ SS } \parallel$				
	$\mu/\mu e \text{ OS } \parallel [27,28]$				[27,28]
$ $ LFC - $U(1)^{\circ}$ $ $ e	$\mu/\mu e \text{ SS }$				
	$u = /c = u \pm $ [25]	[25]			
e	$\mu / e \mu \cdot \parallel [33]$	[[30]			

Searches based on the data

- Event-based anomaly detection
 - Autoencoders etc.
- Semi-supervised approaches
- Generic data/mc comparison
- The data directed paradigm
 - Identify a property of the SM and look for regions exhibiting significant deviation from this property No MC is needed.

The Data Directed Paradigm

- Our proposal relies solely on the data
 - Not limited by MC
- Based on two key ingredients
 - A theoretically well-established property of the SM based on which deviations from the SM predictions can be searched for
 - An efficient tool that allows rapid scanning of many final states in search for such a deviation
- Complementary to ML-based method developed to enhance the Signal/Background ratio

Tested symmetry	inclusive	Ol	oject m	ultip	licity	I	Decays	Topologies				
Table is a WIP			<i>τ</i> j	bj	γ	K	 Z	W		VBF	tt	
								[31-34]				
LU - U(3)	$ee/\mu\mu$ OS	5				[24]	[29, 30]					
	$ ee/\mu\mu$ SS											
LFC - $U(1)^{3}$	$e\mu/\mu e OS$	[27,28]								[27, 28]		
	$ e\mu/\mu e SS$											
CP	$ e^+\mu^-/e^-\mu^-$	$+ \ [35]$	[35	5]								

The Data Directed Paradigm

- Our proposal relies solely on the data
 - Not limited by MC
- Based on two key ingredients
 - A theoretically well-established property of the SM based on which deviations from the SM predictions can be searched for
 - An efficient tool that allows rapid scanning of many final states in search for such a deviation
- Complementary to ML-based method developed to enhance the Signal/Background ratio

Tested symmetry Table is a WIP LU - U(3) e/μ OS $ee/\mu\mu$ SS		inclusive	$ _{\tau}$	Obje j	ect m bj	ultip γ	licity K	 I Z	Decays W	 Topo VBF	logies $t\bar{t}$	s
		5					[24]	[29, 30]	[31-34]			
LFC - $U(1)^{3}$	$e\mu/\mu e OS$ $e\mu/\mu e SS$	$\begin{array}{c c} 5 \\ 5 \end{array} & \begin{bmatrix} 27,28 \end{bmatrix} \end{array}$								[27, 28]		
CP	$e^+\mu^-/e^-\mu$	±+ ∥ [35]		[35]								

Example I - resonances

S. Volkovitch, F. DeVito Halevi, SB [2107.11573]

- The SM property:
 - In absence of resonances most invariant mass distributions are smoothly falling
- The tool:
 - An NN that maps invariant mass distributions to significances (q0)

Example II - symmetries

M. Birman, B. Nachman, R. Sebbah, G. Sela, O. Turetz, SB [2203.07529]

- The SM property:
 - Any exact or approximate symmetry of the SM: $\underline{e/\mu}$, CP, forward backward, ...
- Tools I and II:
 - Symmetries allows splitting the data into two mutually exclusive datasets
 - Under the symmetry assumption they originate from the same underline distributions
 - 1) N_{σ} test statistics that identifies rapidly asymmetries between two datasets – in this case the datasets are projected to histograms

$$N_{\sigma}(B,A) = \frac{1}{\sqrt{M}} \sum_{i=1}^{M} \frac{B_i - A_i}{\sqrt{A_i + B_i}}$$

2) Cwola-like weakly supervised training of a classifier

Example II - symmetries

- An "ideal" analysis
 - Background shape is perfectly known
 - Signal shape and resolution are perfectly know
 - 0 uncertainties
 - Sensitivity calculate with profile likelihood test statistics
- Analysis relaying on symmetry considerations
 - Data is split into two mutually exclusive sample one serves as a background estimate to the other
 - Background model from the data based on symmetry assumption
 - Systematic uncertainty due to available statistics in the "other" sample
 - Signal shape and resolution are perfectly know
 - Sensitivity calculate with profile likelihood test statistics

$$\mathbf{Z} = \sqrt{q_0^{L1}}$$

$$\mathbf{Z} = \sqrt{q_0^{L2}}$$

Example II – symmetries – tool I

- The N_{σ} calculation is rapid
- Can scan with no time as many matrices as one want
- Can scan sub-matrices
- Sensitivity is restored fast

Example II – symmetries – tool II

- First attempt to identify asymmetries using ML techniques
 - Demonstrate the potential of such methods but, so far, does not perform as good as the N_{σ} test

AISSAI 2024 CLERMONT-FERRAND | DDP for BSM searches | shikma.bressler@cern.ch

R.T. D'Agnolo, A. Wulzer [1806.02350]

Tool III - Symmetrized NPLM

- Learning New Physics from Machine (NPLM)
 - For a dataset A and a reference dataset B much larger than A
 - Train a classifier with minus log likelihood ratio as loss function
 - Weakly-supervised
 - Minimize the loss \rightarrow Maximizing the likelihood ratio \rightarrow optimized test statistics
 - Loss pdf under background only data approaches $\chi^2_{n_{dof}}$
 - n_{dof} determined by the number of free parameters in the model \rightarrow number of free parameters in the NN
- NN machinery is exploited for optimal fitting procedure
 - Flexible set of functions
 - Efficient minimization procedure

Original NPLM

- R.T. D'Agnolo, A. Wulzer [1806.02350]
- The NULL hypothesis: \mathcal{H}_0 : $n_{\mathbf{A}}(x|\mathcal{H}_0) = \frac{N_{\mathbf{A}}}{N}n_{\mathbf{B}}(x,\nu)$ • The alternative hypothesis: \mathcal{H}_1 : $n_{\mathbf{A}}(x|\mathcal{H}_1) = \frac{N_{\mathbf{A}}}{N_{\mathbf{B}}}e^{f(x,\mu)}n_{\mathbf{B}}(x,\nu)$

• The test statistics:
$$t = 2\log\left(\frac{\max_{\nu,\mu}\left(\mathcal{L}\left(\mathcal{H}_{1}|\mathbf{A}\right)\right)}{\max_{\nu}\left(\mathcal{L}\left(\mathcal{H}_{0}|\mathbf{A}\right)\right)}\right)$$

• The extended likelihood function: $\mathcal{L}(\mathcal{H}|\mathbf{A}) = \frac{e^{-N_{\mathbf{A}}(\mathcal{H})}}{\tilde{N}_{\mathbf{A}}!} \prod_{x \in \mathbf{A}} n_{\mathbf{A}}(x|\mathcal{H})$ n is the number density function

• Then $t = 2\left(\hat{N}_{\mathbf{A}}\left(\mathcal{H}_{0}\right) - \hat{N}_{\mathbf{A}}\left(\mathcal{H}_{1}\right) + \log\left(\prod_{x \in \mathbf{A}} \frac{\hat{n}_{\mathbf{A}}(x|\mathcal{H}_{1})}{\hat{n}_{\mathbf{A}}(x|\mathcal{H}_{0})}\right)\right)$

• Parametrize $\hat{n}_{\mathbf{A}}(x|\mathcal{H}_1) = e^{\hat{f}(x)}\hat{n}_{\mathbf{A}}(x|\mathcal{H}_0)$

• To obtain
$$t = 2\left(-\int \left(e^{\hat{f}(x)} - 1\right)\hat{n}_{\mathbf{A}}(x|\mathcal{H}_0)dx + \sum_{x \in \mathbf{A}}\hat{f}(x)\right)$$

R.T. D'Agnolo, A. Wulzer [1806.02350]

 $t = t_{\mathbf{B}}(\mathbf{A}) \equiv -2\left(\frac{\hat{N}_{\mathbf{A}}(\mathcal{H}_{0})}{\tilde{N}_{\mathbf{B}}}\sum_{x \in \mathbf{B}} \left(e^{\hat{f}(x)} - 1\right) - \sum_{x \in \mathbf{A}} \hat{f}(x)\right)$

Symmetrized NPLM

Original NPLM

- For B much larger than A the integral on the number density function can be replaced with a summation
- The goal is to find a parametrization to f that minimizes t
- A useful parametrization of f is obtained via the output of a NN
 - Highly expressive, continuous and smooth
- For a fully connected NN with N_{neu} neurons

$$f(x) = b_{ ext{out}} + \sum_{lpha=1}^{N_{ ext{neu}}} w_{ ext{out}}^{lpha} \sigma \left(w_{lpha} x + b_{lpha}
ight)$$

- The NN is trained to find the w's and b's that minimizes the loss
- When applied to the test statistics obtained it's score
- For a given background only pdf gives also the significance

Original NPLM - challenges

SB, I. Savoray, Y. Zurgil [2401.09530]

- B is not necessarily larger than A in searches for symmetry breaking this is by far not the case
- The asymptotic $\chi^2_{n_{dof}}$ is not respected for other A/B ratios
 - Due to mis-modeling of the NULL hypothesis which ignores statistical uncertainty in B
- There is a need to constrain the weights of the NN to obtain the $\chi^2_{n_{dof}}$ distribution due to overfitting
- Points existing in A but not in B results in divergence of f

Original NPLM - challenges

SB, I. Savoray, Y. Zurgil [2401.09530]

The symmetrized formalism

SB, I. Savoray, Y. Zurgil [2401.09530]

- Treat A and B on equal footing
 - The NULL hypothesis A and B are drawn from the same pdf
 - The alternative hypothesis A and B are drawn from different pdfs
- Construct likelihood test to simultaneously fit A and B

$$t = 2\log\left(\frac{\max_{\mu,\nu}\left(\mathcal{L}\left(\mathcal{H}_{1}|\mathbf{A},\mathbf{B}\right)\right)}{\max_{\nu}\left(\mathcal{L}\left(\mathcal{H}_{0}|\mathbf{A},\mathbf{B}\right)\right)}\right) = 2\log\left(\frac{\max_{\mu,\nu}\left(\mathcal{L}\left(\mathcal{H}_{1}|\mathbf{A}\right)\mathcal{L}\left(\mathcal{H}_{1}|\mathbf{B}\right)\right)}{\max_{\nu}\left(\mathcal{L}\left(\mathcal{H}_{0}|\mathbf{A}\right)\mathcal{L}\left(\mathcal{H}_{0}|\mathbf{B}\right)\right)}\right)$$

$$t = 2\log\left(\frac{\max_{p_{\mathbf{A}}, p_{\mathbf{B}}}\left(\mathcal{L}\left(N_{\mathbf{A}}, p_{\mathbf{A}}\left(x\right) | \mathbf{A}\right) \mathcal{L}\left(N_{\mathbf{B}}, p_{\mathbf{B}}\left(x\right) | \mathbf{B}\right)\right)}{\max_{p_{0}}\left(\mathcal{L}\left(N_{\mathbf{A}}, p_{0}\left(x\right) | \mathbf{A}\right) \mathcal{L}\left(N_{\mathbf{B}}, p_{0}\left(x\right) | \mathbf{B}\right)\right)}\right)$$

$$t_{N_{\mathbf{B}}\gg N_{\mathbf{A}}} \rightarrow 2\log\left(\frac{\max_{p_{\mathbf{A}}}\left(\mathcal{L}\left(N_{\mathbf{A}}, p_{\mathbf{A}}\left(x\right)|\mathbf{A}\right)\right)}{\mathcal{L}\left(N_{\mathbf{A}}, \hat{p}_{\mathbf{B}}\left(x\right)|\mathbf{A}\right)}\right)$$

 \mathcal{H}_0 :

The symmetrized formalism

• Parametrize:

$$n_{\mathbf{A}}(x) = \frac{\tilde{N}_{\mathbf{A}}}{\int n_{\mathcal{R}}(x) dx} e^{h(x)} n_{\mathcal{R}}(x)$$
$$n_{\mathbf{B}}(x) = \frac{\tilde{N}_{\mathbf{B}}}{\int n_{\mathcal{R}}(x) dx} e^{h(x)+r} n_{\mathcal{R}}(x) ,$$

$$\mathcal{H}_{1}: \qquad n_{\mathbf{A}}(x) = \frac{\tilde{N}_{\mathbf{A}}}{\int n_{\mathcal{R}}(x) \, dx} e^{f(x)} n_{\mathcal{R}}(x) \\ n_{\mathbf{B}}(x) = \frac{\tilde{N}_{\mathbf{B}}}{\int n_{\mathcal{R}}(x) \, dx} e^{g(x)} n_{\mathcal{R}}(x) ,$$

• h(x), f(x),g(x) obtained as output of the fit (NN) procedure

$$t = 2\log \left(rac{\max \left(\mathcal{L} \left(\mathcal{H}_1 | \mathbf{A}, \mathbf{B}
ight)
ight)}{\max _{h(x), r} \left(\mathcal{L} \left(\mathcal{H}_0 | \mathbf{A}, \mathbf{B}
ight)
ight)}
ight)$$

AISSAI 2024 CLERMONT-FERRAND | DDP for BSM searches | shikma.bressler@cern.ch

SB, I. Savoray, Y. Zurgil [2401.09530]

The symmetrized formalism

SB, I. Savoray, Y. Zurgil [2401.09530]

• The maximization of the NULL hypothesis is analytic:

$$-2\log\left(\max_{h(x),r}\left(\mathcal{L}\left(\mathcal{H}_{0}|\mathbf{A},\mathbf{B}\right)\right)\right)=2\sum_{x\in\mathbf{A},\mathbf{B}}\left[\frac{1}{\tilde{N}_{\mathbf{A}}+\tilde{N}_{\mathbf{B}}}\left(\tilde{N}_{\mathbf{A}}e^{\hat{h}(x)}+\tilde{N}_{\mathbf{B}}\left(e^{\hat{h}(x)+\hat{r}}-\hat{r}\right)\right)-\hat{h}\left(x\right)\right]$$

- With $\hat{h}(x) = 0$ and $\hat{r} = 0$.
- Perform to fits

$$t_{\mathbf{A}+\mathbf{B}}\left(\mathbf{A}\right) = -2 \cdot \min_{f(x)} \left[-\frac{1}{\tilde{N}_{\mathbf{A}} + \tilde{N}_{\mathbf{B}}} \sum_{x \in \mathbf{A}, \mathbf{B}} \tilde{N}_{\mathbf{A}} \left(e^{f(x)} - 1\right) + \sum_{x \in \mathbf{A}} f\left(x\right) \right]$$
$$t_{\mathbf{A}+\mathbf{B}}\left(\mathbf{B}\right) = -2 \cdot \min_{g(x)} \left[-\frac{1}{\tilde{N}_{\mathbf{A}} + \tilde{N}_{\mathbf{B}}} \sum_{x \in \mathbf{A}, \mathbf{B}} \tilde{N}_{\mathbf{B}} \left(e^{g(x)} - 1\right) + \sum_{x \in \mathbf{B}} g\left(x\right) \right]$$

The symmetrized formalism

- No WC
- No divergences
- Better agreement with $\chi^2_{n_{dof}}$

SB, I. Savoray, Y. Zurgil [2401.09530]

The symmetrized formalism

- Good sensitivity for all resonant signals
- Good sensitivity for LFV Higgs decays

SB, I. Savoray, Y. Zurgil [2401.09530]

The symmetrized formalism

- If needed, the background only pdf can also be generated from permutations
- Works well for both scenarios where the χ^2 approximation works well or not

Summary

- Thousands of person hours invested so far in search for BSM physics
- Resulted in an impressive set of bounds on many BSM models
- No hints for BSM physics
- The data is far from being fully exploited –
 New physics could easily be hidden in the already collected data
- Complementary search paradigms should be exploited
- The Data Directed Paradigm is one such possibility
 - Allows scanning rapidly many different final states and many different selection and mark those that are potentially interesting
- Concept demonstrated with two different properties of the SM
- ATLAS searches are slowly ramping up