

Multiview Symbolic Regression

How to learn laws from examples

<u>Etienne Russeil</u> - *LPC Université Clermont Auvergne, France* **Fabricio Olivetti** - *CMCC Federal University of ABC, Brazil* **Konstantin Malanchev** - *University of Illinois Urbana–Champaign, USA* **Emille Ishida** - *LPC Université Clermont Auvergne, France* **Emmanuel Gangler** - *LPC Université Clermont Auvergne, France*

Feature extraction

Dealing with irregular sampling (example of astronomy)

One possible solution

$$f(X;\theta_1,...\theta_n)$$

Extract **n** minimized parameters as features

One possible solution

Symbolic Regression

MultiView Symbolic Regression

DATA SETS

MvSR in a nutshell

- (1) Receive multiple datasets as input.
- (2) Perform a minimization of the parameters independently
- for each dataset.
- (3) Use an aggregation function to compute an overall loss.
- (4) Allow parameters to be repeated.
- (5) Control the maximum number of parameters.
- (6) Penalise solutions based on the number of parameters used

Scientific applications

MvSR recovers the literature !

It can also generate more complex and better solutions

As well as unexpected but very effective forms

S&P500

Stock market of the 500 biggest US companies

Usually aggregated for analysis

Stock market of the 500 biggest US companies

Recover literature

Models	Equation f(x)
Gaussian [2, 5]	$A \cdot e^{-\frac{x^2}{B}}$
Laplace [17]	$A \cdot e^{-B x }$
Cauchy [20]	$A \cdot B^2 / (x^2 + B^2)$
Linear-Laplace	$(A - Bx) \cdot e^{-C x }$
Exp-Laplace	$A \cdot e^{Bx - C x }$
Power-Laplace	$A \cdot e^{B x ^C}$

Find new models

Models	Equation f(x)	
Gaussian [2, 5]	$A \cdot e^{-\frac{x^2}{B}}$	
Laplace [17]	$A \cdot e^{-B x }$	
Cauchy [20]	$A \cdot B^2 / (x^2 + B^2)$	
Linear-Laplace	$ (A - Bx) \cdot e^{-C x } $	
Exp-Laplace	$A \cdot e^{Bx - C x }$	
Power-Laplace	$A \cdot e^{B x ^C}$	

General Beer Lambert's law:

Simple anomaly detection

Data example

Simple isolation forest results

Conclusion

Conclusion

- MvSR is working, have a look at the arXiv
- It has potential to be used in every science
- It represent the first step of **future anomaly detection** studies
- Still need some work on our side for a proper full implementation

BACKUP SLIDES

[Submitted on 6 Feb 2024] Multi-View Symbolic Regression

Etienne Russeil, Fabrício Olivetti de França, Konstantin Malanchev, Bogdan Burlacu, Emille E. O. Ishida, Marion Leroux, Clément Michelin, Guillaume Moinard, Emmanuel Gangler

Symbolic regression (SR) searches for analytical expressions representing the relationship between a set of explanatory and response variables. Current SR methods assume a single dataset extracted from a single experiment. Nevertheless, frequently, the researcher is confronted with multiple sets of results obtained from experiments conducted with different setups. Traditional SR methods may fail to find the underlying expression since the parameters of each experiment can be different. In this work we present Multi-View Symbolic Regression (MvSR), which takes into account multiple datasets simultaneously, mimicking experimental environments, and outputs a general parametric solution. This approach fits the evaluated expression to each independent dataset and returns a parametric family of functions f(x; \theta) simultaneously capable of accurately fitting all datasets. We demonstrate the effectiveness of MvSR using data generated from known expressions, as well as real-world data from astronomy, chemistry and economy, for which an a priori analytical expression is not available. Results show that MvSR obtains the correct expression more frequently and is robust to hyperparameters change. In real-world data, it is able to grasp the group behaviour, recovering known expressions from the literature as well as promising alternatives, thus enabling the use SR to a large range of experimental scenarios.

Comments: Submitted to GECCO-2024. 10 pages, 6 figures

Subjects: Machine Learning (cs.LG); Instrumentation and Methods for Astrophysics (astro-ph.IM); Applications (stat.AP)

Cite as: arXiv:2402.04298 [cs.LG]

(or arXiv:2402.04298v1 [cs.LG] for this version)

On arXiv since yesterday: https://arxiv.org/abs/2402.04298

Toy data illustration

50

Point mutations

Point mutations

Hoist mutations

Point mutations

Create a new population from the previous best candidates

$$f_1(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

$$f_2(x) = \sin(\theta_0 x_0 x_1) + \theta_1 (x_2 - \theta_2)^2 + \theta_3 x_3 + x_4$$

$$f_3(x) = (\theta_0 x_0^2 + (\theta_1 x_1 x_2 - \frac{\theta_2}{(\theta_3 x_1 x_3 + 1)})^2)^{0.5}$$

	View 1	View 2	View 3	View 4	Partial view
θ_0	2	0	0	2	2
θ_1	2	2	0	0	-2
θ_2	0	2	2	0	2
θ_3	0	0	2	2	2

Parameter	Value
population size	1000
number of evaluations	10000000
pool size	5
error metric	MSE
prob. cx	1.0
prob. mut.	0.25
max depth.	10
optim. iterations	100
aggregation function	max
operators	add, sub, mul, div, square, exp, sqrt,
	$sin(f_2 only)$

Models	Equation f(x)	med(MSE)	MSE _{S&P}
Gaussian [2, 5]	$A \cdot e^{-\frac{x^2}{B}}$	0.363	0.260
Laplace [17]	$A \cdot e^{-B x }$	0.342	0.084
Cauchy [20]	$A \cdot B^2 / (x^2 + B^2)$	0.305	0.079
Linear-Laplace	$(A - Bx) \cdot e^{-C x }$	0.327	0.065
Exp-Laplace	$A \cdot e^{Bx - C x }$	0.328	0.063
Power-Laplace	$A \cdot e^{B x ^C}$	0.246	0.075

