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• AI for medical image analysis

• AI for neuroimaging analysis

• Basics of machine learning for image analysis

• Supervised semantic segmentation : use case #1

• Unsupervised anomaly detection : use cases #2 and #3. 

• Conclusion
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AI for medical image analysis
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AI – assisted
physicians

IA

Génétiic

IoT

Biomarker

Imaging

Data Precision medicine



Medical Imaging Research LaboratoryMedical Imaging Research Laboratory
www.creatis.insa-lyon.fr

5Carole Lartizien  - Anomaly detection in neuroimaging – AISSAI Anomaly detection workshop, Clermont-Ferrand, March 2024

https://emea.gehealthcarepartners.com/images/pdfs/Rapid-Review--Radiology-Workforce-Review-FINAL.pdf
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https://towardsdatascience.com/why-ai-will-not-replace-radiologists-c7736f2c7d80

AI in clinical practice
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From imaging data to wisdom

Multi-modality imaging

feature extraction

Segmentation, detection, classification

Diagnostic and
Prognostic models

Diagnostic and
Prognostic models

WISDOM

KNOWLEDGE

INFORMATION

DATA

AI human
expert
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AI for neuroimaging analysis
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AI for neuroimaging data analysis

Segmentation of anatomical
structures of interest

Prediction of a patient-level 
malignancy score

Is this patient affected by preliminary symptoms of the Alzheimer disease (AD) ? 

Are there imaging biomarkers of the pathology ?

Hippocampus atrophy
is one imaging

biomarkers of AD

Pathological
classes : Normal, 

Mild cognitive 
impairement, AD
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AI for neuroimaging data analysis

Localisation of suspicious area

Segmentation of the different
components of a brain tumor

Detection of subtle abnormalities in 
cortical gyration leading to 

epileptogenic seizures



Medical Imaging Research LaboratoryMedical Imaging Research Laboratory
www.creatis.insa-lyon.fr

11Carole Lartizien  - Anomaly detection in neuroimaging – AISSAI Anomaly detection workshop, Clermont-Ferrand, March 2024

AI for neuroimaging data analysis

A

Prediction of outcome from surgery or therapy

Will this patient who has just had a stroke benefit 
from a surgical thrombectomy ? 

MRI image at ICU Predicted lesion 6 months after
thrombectomy
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Multimodal heterogenous data analysis….

AI for neuroimaging data analysis
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with missing data….

AI for neuroimaging data analysis



Medical Imaging Research LaboratoryMedical Imaging Research Laboratory
www.creatis.insa-lyon.fr

14Carole Lartizien  - Anomaly detection in neuroimaging – AISSAI Anomaly detection workshop, Clermont-Ferrand, March 2024

Basics of machine learning for image analysis

(in a few seconds)
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Basics of machine learning

1. Define a task

2. Formulate this task as a decision model

3. Learn the hyperparameters of the decision

model based on samples data and a 

performance metric

4. Infer decision from this model on new 

samples
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1. Task definition

Detect lesions on brain T1 MRI

Design your AI algorithm

2. Problem formulation as a decision task

Decide whether each voxel is a ‘lesion’ or ‘normal 
tissue’

• Binary classification problem
• At the voxel level

AI
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3. Characteristic of the database
How many samples?

Are they annotated?

…

4. Expert knowledge

Insert manually engineered features? Priors on 
the expected output etc…

• Binary classification problem
• At the voxel level
• Supervised learning
• Clinically driven feature maps

AI

Design your AI algorithm
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Design your AI algorithm

3.     Learn the decision mode based on training samples and performance metric

Loss

error+

-

input ReferenceTraining
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Design your AI algorithm

4. Infer decision on new samples

AI
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AI

From standard machine learning…

Feature extraction Statistical model
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AI model

…to deep learning

Feature extraction Statistical model
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Automatic multi-class segmentation of brain tumors

USE CASE # 1

Supervised learning
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Automatic muti-class segmentation of brain tumors

Multiparametric Magnetic
Resonance Imaging (MRI)

Whole Tumor
Tumor core
Enhancing Tumor

 Segmentation of the brain tumor is valuable at each step of the patient care : from 

diagnosis to prognosis, treatment planning and follow-up up to outcome prediction

UNET architecture
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Automatic muti-class segmentation of brain tumors

Manual annotations are time consuming but « feasible »

 International initiatives to gather large datasets

Manual annotation by 

expert clinicians on 3D 

image of dimension : 

~240 x 240 x 155 with 

1mm3  isotropic voxels
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Automatic muti-class segmentation of brain tumors

 Dataset size : 1251 patients,

 MRI scan
 voxel size : 240 x 240 x 155 of 1mm3

 4 modalities : Flair, T1, T1ce, T2,

 Partitioning : original, institution-wise
 23 institutions, heterogeneous distributions.

 Manual annotations : 3D multi labels
 Whole Tumor, Tumor core, Enhancing Tumor

M. Islam et al. « Brain Tumor Segmentation and Survival Prediction using 3D Attention UNet » Apr. 2021

Federated Brain Tumor Segmentation (FeTS2022) Challenge Dataset
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Performance generalization and domain shift

[Garrucho et al, arxiv 2022]

• The generalization of a model measures its ability to make good predictions on new 
unseen data

• These new data come potentially from different "populations" (domain) than those to 
train the model   domain shift
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[Zakazov, MICCAI21]

Performance generalization and domain shift

Task : brain Segmentation 
(skull stripping)

Database : CC359* : 359 
T1 MRI of healthy
subjects acquired on 6  
different scanners

*https://www.ccdataset.com/download

GE 1.5 T Siemens 3TPhilips 1.5 T
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[Zakazov, MICCAI21]

Performance generalization and domain shift
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DeepHarmony: A deep learning approach to contrast 
harmonization across scanner changes

• UNET 
• 1 UNET per view (coronal, axial, sagittal)
• 2 versions : 

• O2O one-to-one : 1 input modality 1 
output modality

• MO2 many-to-one  : 4 input modalities
 1 output modalities[Dewey, Mag Res Imag 19]

Data harmonization

Performance generalization and domain shift
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[Dewey, Mag Res Imag 19]

Performance generalization and domain shift

Data harmonization
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Federated learning

A privacy-preserving decentralized training paradigm

• First algorithm : Federated 
Averaging (FedAvg, 2016).

• A growing interest in the 
medical community 

• Many open questions 
regarding FL in the context of 
heterogeneous data : 
fairness, personalization ,….
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Federated learning
Federated Brain Tumor Segmentation (FeTS)

[Pati et al arxiv 22]

• public initial model : trained
on 231 cases from 16 sites

• Out-of-sample site : did not
participate in model training



Medical Imaging Research LaboratoryMedical Imaging Research Laboratory
www.creatis.insa-lyon.fr

33Carole Lartizien  - Anomaly detection in neuroimaging – AISSAI Anomaly detection workshop, Clermont-Ferrand, March 2024

Detection and localisation of subtle brain anomalies

USE CASE # 2

Unsupervised anomaly detection
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Learning with no annotation

Illustration from Wardlaw et al. , 2012
Zara

Exemple neuropathologies with subtle lesions

Annotations are time consuming and sometimes hard/impossible to generate

Unsupervised anomaly detection (UAD)
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Problem formulation: objectives & challenges
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• Formulate the problem as an anomaly detection problem
• Model the distribution of the normal class
• Detect outliers from the normative distribution

Normative distribution

Support of the normative distribution

Problem formulation
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Proceedings of the IEEE (2021) 1-40
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Anomaly detection based on reconstruction error

Latent representation

Reconstruction 
error
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Anomaly detection based on reconstruction error after restauration of 
the latent representation



Medical Imaging Research LaboratoryMedical Imaging Research Laboratory
www.creatis.insa-lyon.fr

40Carole Lartizien  - Anomaly detection in neuroimaging – AISSAI Anomaly detection workshop, Clermont-Ferrand, March 2024

Vector quantized –variational auto-encoder 
(VQ-VAE)

[Oord et al, 2017]
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Anomaly detection based on estimation of the support of the 
normative distribution in the latent space

[Alaverdyan MEDIA 2020]

Latent representation

Anomaly score map
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One class-SVM Support Vector Data Description
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Benchmarking UAD models on the challenge WMH dataset
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The WMH challenge dataset

• The control private dataset :
o 75 paired T1w and FLAIR MRI scans of

healthy subjects
o Acquired on a 1.5T Siemens Sonata

scanner.

• The WMH Challenge dataset:

o 60 T1w and FLAIR images

o acquired on 3 different hospitals with
3 scanners of different manufacturers,

o each image as its associated 3D lesion
mask.

White Matter Hyperintensities (WMH)

T1                        FLAIR                     GT
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Siamese autoencoder

[Pinon MIDL 2023]
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[Pinon MIDL 2023]
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[Pinon MIDL 2023]
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• The proposed SAE+ OC-SVM model performs on par with the state of the art UAD 

model on the WMH dataset

• Limits of the WMH dataset as a reference dataset for UAD benchmarking :

– Anomaly are ‘easy’ to detect on FLAIR images

– Anomaly are not visible on T1 images

– Median age of the population is high  physiological normal anomalies due 

to brain aging process (cortex shrinkage..)



Medical Imaging Research LaboratoryMedical Imaging Research Laboratory
www.creatis.insa-lyon.fr

49Carole Lartizien  - Anomaly detection in neuroimaging – AISSAI Anomaly detection workshop, Clermont-Ferrand, March 2024

Unsupervised anomaly detection of the 

epileptogenic zone (EZ)
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Management of the patient with medically refractory epilepsy

Malformation of cortical 
development

Long-Term Video EEG

anatomical MRI FDG PET MEG

EZ

EZ = Epileptogenic Zone 
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• Imaging plays a crucial role in the surgical planning

• But the detection task is hard
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• Detecting and localizing the epileptogenic zone  significant improvement of good 
surgery outcome

[Nagae et al. 2016]

• 20-30% of patient MRI are « negative » meaning the physician considered the 
exam as « non pathological » 



Medical Imaging Research LaboratoryMedical Imaging Research Laboratory
www.creatis.insa-lyon.fr

53Carole Lartizien  - Anomaly detection in neuroimaging – AISSAI Anomaly detection workshop, Clermont-Ferrand, March 2024



Medical Imaging Research LaboratoryMedical Imaging Research Laboratory
www.creatis.insa-lyon.fr

54Carole Lartizien  - Anomaly detection in neuroimaging – AISSAI Anomaly detection workshop, Clermont-Ferrand, March 2024

• The private control dataset :
o 75 paired T1w and FLAIR MRI scans of

healthy subjects
o Acquired on a 1.5T Siemens Sonata

scanner.

• The private epilepsy dataset:

o 21 T1w and FLAIR images

o Acquired on a 1.5T Siemens Sonata
scanner

o Référence of EZ localization is based on
• Post-surgery Engel score
• Manual annotation of the lesion on 

the MRI based on clinical report and  
sEEG analysis

Example T1 and FLAIR images of patients

Dataset
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Unsupervised anomaly detection

[Alaverdyan et al MEDIA 2020]

Deep siamese autoencoder for 
representation learning

Outlier detection with oc-
SVM in the latent space

Healthy control 
database

Step 1 : train a self-supervised model on healthy control data
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Unsupervised anomaly detection

[Alaverdyan et al MEDIA 2020]

Step 2 : detect anomalous pattern in epilepsy patients

Predicted lesion map (MIP). 
The brighter colour, the most suspicious the 

clusters
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[Alaverdyan et al MEDIA 2020]

• Sensitivity : 
• 62% on  21 negative MRI 

negative exams of epilepsy 
patients

• Specificity
• Mean rank of the detected 

clusters : 3.5

Predicted lesion map (MIP). 
The brighter colour, the most suspicious the clusters
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• How to improve ?
• Include PET modality  complementary information

Dataset
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Challenge : 
Missing data in 

the control 
population

Dataset

• The private control dataset :
o 35 paired T1w MRI and FDG scans of

healthy subjects
o Acquired on a 1.5T Siemens Sonata

scanner.
o 40 T1w MRI of healthy subject with NO

paired FDG PET examen

• The private epilepsy dataset:

o 21 T1w and PET images

o Acquired on a 1.5T Siemens Sonata
scanner

o Référence of EZ localization is based on
• Post-surgery Engel score
• Manual annotation of the lesion on 

the MRI based on clinical report and  
sEEG analysis
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Generative modeling of noramtive PET data with GAN (generative adversarial networks)

Structure of a CycleGAN

[Zotova et al MICCAI SASHIMI 2021]
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Real PET fake PET semi3D fake PET 3Dpatch

Performance of the UAD model trained with
real or synthetic normative PET data

[Zotova et al MICCAI SASHIMI 2021]

Qualitative analysis of the synthetic
normative PET data
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From
Research..

..to clinicSome methodological challenges to 
address ..

• Improve performance 

• Inject some priors  toward weak supervision

• Efficiently fuse multi-modality imaging and non imaging data, 
accounting for missing modalities  -> unsupervised 
representation modeling (couplage LLM and CV modeling..)

• Generalize well

• Same level of performance regardless of data origin and quality 

• Provide some confidence level on predictions

• Be respectful of privacy

Unsupervised anomaly detection
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Thank you for your attention!
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