

Model-agnostic search for dijet resonances with the CMS detector

Louis Moureaux on behalf of the CMS Collaboration cms-pag-conveners-exo@cern.ch AISSAI workshop in Clermont-Ferrand, 06.03.2024

SPONSORED BY THE

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Federal Ministry of Education and Research

Motivation

- CMS is looking for new heavy particles
- Large number of possible final states
- Looking at pairs of (Ak08) jets

Motivation

- CMS is looking for new heavy particles
- Large number of possible final states
- Looking at pairs of (Ak08) jets
- Searching for a resonance

۔ ي	Z' → T'T' → tZtZ	
nple	$\begin{array}{l} m_{Z'} = [2,3,5] \; \text{TeV} \\ m_{T'} = [400] \; \text{GeV} \end{array}$	
Exar		Y → HH → tttt m _Y = [2,3,5] TeV m _H = [400] GeV

We assume a signal would differ from the background in some auxiliary variable

(= in jet substructure)

We assume a signal would differ from the background in some auxiliary variable

(= in jet substructure)

We assume a signal would differ from the background in some auxiliary variable

(= in jet substructure)

5 techniques starting from different assumptions:

- Signal is in the tails → VAE = Variational Autoencoder
- Narrow signal peak
 & two anomalous jets

→ TNT = Tag'N'Train

Weak supervision

- Take bias from theory \rightarrow
- → QUAK = Quasi-Anomalous Knowledge

Methods: Variational Autoencoder

- Encodes up to 100 PF* constituents per jet
- Trained with jets from a QCD-dominated sideband ($\Delta \eta > 1.4$)
- Final score: lowest reconstruction loss of the two jets
- Background sculpting controlled with quantile regression

* Particle Flow

Methods: Weak Supervision

Train a classifier between data and a background-like sample

- CWoLa: background taken from sidebands
- CATHODE: background interpolated from sidebands
- Tag N' Train: autoencoder preselection, targets events with two anomalous jets

Fewer features for CATHODE than CWoLa/TNT

CWoLa: 1902.02634 / CATHODE: 2109.00546 / TNT: 2002.12376 /

Methods: QUAK

- Hybrid approach, encoding a **prior** on signal-like features
- Train two normalizing flows:
 - On a mixture of signal MCs
 - On background MC
- The losses define a 2D QUAK space
- The signal is somewhere in that space...

Hypothetical QUAK Space

After Tagging

• Choose a working point

After Tagging

- Choose a working point
- Select events
- Look at m_{jj} spectrum
- Fit with analytic functions

After Tagging

- Choose a working point
- Select events
- Look at m_{jj} spectrum
- Fit with analytic functions
- Find a bump (maybe)
- Derive a *p*-value

Performance: 2 + 2

Performance: 2 + 2

Performance: 3 + 3

Performance: 3 + 3

Complementarity

Do all methods find the same events?

Complementarity **CMS** Simulation Preliminary (13 TeV) dq qq 0.15 0.39 0.44 0.17 VAE Do all methods find ↑ ⊱ the same events? 0.15 0.65 0.18 0.14 CWoLa Hunting X(3000) → 0.30 0.17 0.65 0.25 TNT Check correlation between scores 0.39 0.18 0.25 0.62 CATHODE 0.62 0.44 0.14 0.30 **Small correlations** QUAK CWOL2 HUNTING OUNT JAE Complementarity N. THOOF

- CMS joining the anomaly detection party
- Looking for dijet resonances with 5 methods: VAE, CWoLa, CATHODE, Tag N' Train, QUAK
- Promising performance in simulation
- No method to rule them all

Results on CDS [link]

Finalizing analysis in data: stay tuned

Input Features

- VAE: p_T , η , ϕ of leading 100 particle flow constituents (per jet)
- CWoLa, TNT: m_{SD} , τ_{21} , τ_{32} , τ_{43} , n_{PF} , LSF₃, b-tagging score (per jet)
- CATHODE: m_{SD1}, m_{SD1} m_{SD2}, τ_{41,1}, τ_{41,2} (per event)
- **QUAK**: m_{SD} , τ_{21} , τ_{32} , τ_{43} , $\sqrt{\tau_{21}/\tau_1}$, M/p_T (for each jet, per event)

