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- The Challenge at hand
- Traditional (non-ML) efforts

« ML-based efforts
« Supervised

- Weakly supervised

- Unsupervised
1 « Others



The challenge at hand
- Huge number of potential topologies

' InMESbE (Ng;, Nj, Nb, Ne, Ny, N7, Nv)
« Huge number of combinations

+ 888022 simple combinatorics Ng/<2, Nj<18, Nb<9, Nj+Nb<19,

Ne<d, Nwu<bd, N1t<9I, Nvy<D9,
Nj+NEL<19, Nj+ Nv <19,
Nb+ NL <9, Nb+ Nv <9,

N{ <6, NIL+ Nvy <6,

Nj+ Nb+ N{+ Nvy < 21,

» 19497 when imposing boundary conditions
« Much fewer studies were carried out so far
« This is even before

- Considering different distributions within each
selection

» Considering kinematic cut optimization
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The challenge at hand

- Hundreds of searches have yielded no significant deviation from the SM prediction
- We didn’t search in the right place for the right signature
« Out of all models, we don’t know what is the right place to search in
« Moreover, the one true model may haven’t been written yet
» Lack of resources to search for each and every individual signature
» Impossible to cover all possible signatures with dedicated analyses

SO0...
- The potential of the data is far from being fully exhausted

« Clear need for complementary approaches — Anomaly Detection
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Type of anomalies

« Commonly discussed - Out-of-distribution
» Qutlier detection - events that “should not be there”
» Finding over-densities - e.g., bump hunting for new particles accessible by the LHC

« Unexpected differential cross section - e.g., new physics at above LHC energy scale
(Shape of distribution)
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Traditional (hon ML) efforts

- The Challenge at hand
e Traditional (non-ML) efforts
» ML-based efforts

« Supervised

- Weakly supervised

« Unsupervised

« Others
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MC/Data comparison

- Main idea - look at data/MC differences in large number
of final states

» Certain list of objects and object multiplicity

» Certain list of parameters to look at, e.g., m; .

» Search algorithm
« Treatment for look-elsewhere-effect

« Main limitations

» MC mis-modeling

e Systematic uncertainties
 |limited MC statistics

EXPERIMENT
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MC/Data comparison @ e.g., DJ

. euX final states
X € (s, jets,y's, kg, W, Z}

« Variables of interest

If the final state includes then consider the variable
ET ET
one or more charged leptons S oo
one or more electroweak bosons p:}/ Wiz
one or more jets S p?,

TABLE I. A quasi-model-independently motivated list of
interesting variables for any final state. The set of variables
to consider for any particular final state is the union of the
variables in the second column for each row that pertains to
that final state. Here £ denotes e, p, or 7. The notation
S""p’ is shorthand for p’! if the final state contains only
one jet, 22;2 p?g if the final state contains n > 2 jets, and

Z?:3 p?} if the final state contains n jets and nothing else,
with n > 3. Leptons and missing transverse energy that are
reconstructed as decay products of W or Z bosons are not
considered separately in the left-hand column.

« Search employing the SLEUTH algorithm

- Based on definition of regions within the
parameter space

« Uncertainties

Source Error
Trigger and lepton identification efficiencies 12%
P(j —“e”) 7%

Multiple Interactions 7%

[Luminosity 5.3%
o(tt— euX) 12%
0(Z = 117 — euX) 10%
oc(WW — euX) 10%
o(v* = 77 — euX) 17%
Jet modeling 20%

TABLE V. Sources of systematic uncertainty on the num-
ber of expected background events in the final states eulr,
eulry, eulirjj, and eulrjjj. P(j —“€”) denotes the prob-
ability that a jet will be reconstructed as an electron. “Jet
modeling” includes systematic uncertainties in jet production

in PYTHIA and HERWIG in addition to jet identification
and energy scale uncertainties.
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MC/Data comparison @ e.g., CMS MUSIC

» Objects considered » Parameters of interest
Table 2: Summary of object selection criteria discussed in Section 4. S o miss
Object pt [GeV] Pseudorapidity T = ZI P T,i‘ M or MT p T
Muon >25 7] < 2.4 T
Electron >25 0< |n| <1l44o0rl57 < |g| <250 o Search algOrlthm
Photon >25 In| < 1.44
Jet >50 |77| <24 wA ---> : Calculate
b-tagged jet >50 In| <24 5| «------ > / Region 1 / p-value
Missing transverse momentum >100 — Wl - =-====m-mo- >
° Choose
° _| region with
o o A . D ° | smallest
. Final state categorization : s
| . . | o o o | o / Region n / Calculate
« EXxclusive, inclusive, jet-inclusive pvalue
Jetineluc Exclusive Kinematic variable
et-inciusive
event class
event class « Resu ItS
1e+2u+Njets 1e+2p+1jet+Njets Table 5: Overview of the two most significant event classes in each Rol scan. Details of the
Rol, the expectation from the SM simulation, and the number of data events within the Rol are
{ Te+X J\ /[ Tp+X J shown along with the p- and p-values.
1e Y =
L te+1jet+X l 20 | 1p+jet+X Event class é{o\ll Ny Npata p p
1jet ) [GeV]
[ P B— ) | Exclusive event classes: M
uhila a ) le 4 1y + 17y + pmiss 380-560 27 +25 14 0.0026 0.0061
[ _ J 4u + 1b + 1jet + pauss 590-950 0.092 +0.044 2 0.0048  0.0072
le+1p+1jet+X 2pu+ijet+X
_ Exclusive event classes: St
{ . M T J Inclusive 3e + 1b + 2jets 340-540 0.84 £ 0.27 6  0.00053 0.0038
i eranTiie event class 4y + 1b + ljet + pmiss 590-950 0.092+0.047 2 0.0052 0.0082
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BumpHunter

» Finding the largest deviating region in the data
from a predefined background distribution

« No assumption is made on the signal shape

» Background shape is known
— Test statistic pdf under #, is known

- Taking into account the look-elsewhere-effect

9 Shikma Bressler | AISSAI, March 6, 2024
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BumpHunter

« Recent advances implemented in pyBumpHunter
« Using Poisson statistics
« Look-Elsewhere-Effect evaluated with pseudo experiments
» Solution for 2D distributions is given

BumpHunter statistics distribution global p-value = 0.0008

Scan window ---- data

1 observed data E 1 pseudo-data
1 reference backgroud 103 i
10° 5 !
E < » ' L i< >data >
2 ; z 102 .
g 10° :
—> N i
= < tot : >
u>J 101 101 ] JJ i
10° 107 | ! Hﬂ [l
0 10 20 30 40 50 60 70 2 4 6 8 10 12 14 16
Variable BumpHunter test statistic
Figure 1: Scanning procedure performed by the BumpHunter algorithm. The red Figure 3: Distribution of BumpHunter test statistic value obtained for the pseudo-
rectangle shows the interval that is currently being analyzed and the black arrow data (blue). The dashed red line correspond to the value of test statistic associated to
represents the motion of the scan window over the histogram range. In this example, observed data. The arrows illustrate how the global p-value is computed in equation
the scan width is 5 bins and the scanned distributions have 40 bins. 5. The global p-value is 0.0008, corresponding to 3.160.
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Search for Asymmetries

« The SM has known and well tested symmetries

- Lepton universality, Lepton flavour, CP, etc.

» Corrections are known and can be accounted for
 Splitting the data into 2 supposedly symmetric datasets

» Search in a model agnostic way for breaking of these
symmetries

11 Shikma Bressler | AISSAI, March 6, 2024
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Search for Asymmetries

« The SM has known and well tested symmetries

- Lepton universality, Lepton flavour, CP, etc.

» Corrections are known and can be accounted for
 Splitting the data into 2 supposedly symmetric datasets

» Search in a model agnostic way for breaking of these
symmetries

- Flavour symmetric —
u-set and e-set originate
from the same pdf

- Flavour asymmetric —

u-set and e-set originate
from different pdfs

12 Shikma Bressler | AISSAI, March 6, 2024



Search for Asymmetries

« The SM has known and well tested symmetries
Lepton universality, Lepton flavour, CP, etc.
» Corrections are known and can be accounted for
 Splitting the data into 2 supposedly symmetric datasets

» Search in a model agnostic way for breaking of these
symmetries

» Several possible implementations

. N_test between 2 matrices Ne(8.4)- Z

041 T 081

« Compare performance with tradltlonal proflle
likelihood test statistics

« Can also be treated with BumpHunter

13
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Fig. 5: Significance measured from the Asimov data for in-

T qL()l

creasing injected signal, comparing results of the N

and qﬁl tests. Results for the Higgs LFV example and the
1deal (flat) scenario are shown. The green and yellow bands
correspond to the 16 and 20 deviations from the symmetry
(no signal) assumption, respectively.
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ML based efforts

- The Challenge at hand
- Traditional (non-ML) efforts
« ML-based efforts

« Supervised

- Weakly supervised

« Unsupervised

« Others
14 Shikma Bressler | AISSAI, March 6, 2024
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ML based efforts

- Based on the following reviews
- “Machine learning for anomaly detection in particle physics”, Belis et. al.
- “Machine Learning in the Search for New Fundamental Physics”, Karagiorgi et. al.
« “The LHC Olympics 2020" Kasieczka et. al.
- “The Dark Machines Anomaly Score Challenge” et. al.
. ...and many more. Some can be found in https://iml-wg.github.io/HEPML-LivingReview/

15 Shikma Bressler | AISSAI, March 6, 2024
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ML based efforts

« ML schematic

« Analysis schematic

- - ‘StatiStical

16 Shikma Bressler | AISSAI, March 6, 2024
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ML based efforts

« ML schematic

« Analysis schematic

Statistical ML techniques can be used in
‘ each stage of the analysis

17 Shikma Bressler | AISSAI, March 6, 2024
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ML based efforts

« ML schematic

« Analysis schematic

18 Shikma Bressler | AISSAI, March 6, 2024

Novel techniques can be
employed in each part of the ML




Targets

« Supervised - use simulation for the signal and the
SM background — MC labelled by construction

« Semi-supervised - use data for either the

background or the signal-sensitive sample — data
unlabelled by construction

« Weakly supervised - have labels for every example,
but the labels are noisy

« Unsupervised - do not use any label information

« The choice of approach depends on the level of
prior knowledge one wishes to assume

» Greater knowledge better sensitivity
» Greater knowledge more model dependency

19

SM model dependence
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Semi-supervised = Supervised

Weakly supervised

Semi-supervised

Unsupervised

BSM model dependence >
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Type of anomalies

« Commonly discussed - Out-of-distribution
« Qutlier detection - events that should no be there
- Finding over-densities - e.g., bump hunting

- Unexpected differential cross section
(Shape of distribution)

20 Shikma Bressler | AISSAI, March 6, 2024
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Supervised efforts

- The Challenge at hand
- Traditional (non-ML) efforts
- ML-based efforts
 Supervised
- Weakly supervised

« Unsupervised

« Others
21 Shikma Bressler | AISSAI, March 6, 2024
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Supervised efforts

» To the best of my knowledge, AD with supervised ML is not addressed in literature but..
» One can think of training, e.g., a classifier to distinguish between
» Background events - simulated or other

» Signal events - simulated from a branch of models or a single model but over a brand
range of the parameter space

 This is not a true-full Anomaly Detection process, but it has the potential of covering
many possible signatures and topologies and reasonable sensitivity

22 Shikma Bressler | AISSAI, March 6, 2024



Weakly supervised efforts

23
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- The Challenge at hand
« Traditional (non-ML) efforts
» ML-based efforts

« Supervised

« Weakly supervised

« Unsupervised

« Others
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Weakly supervised efforts

Background event @
Signal event @

Backaground-like Labelled O Signal-like Labelled 1

24 Shikma Bressler | AISSAI, March 6, 2024
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Noisy datasets

Sidebands Symmetries

SB

SR SB m

Pdata(z|m € SB)
= ppg(z|m € SB)

pdata(xlnl € SB)

pdata(xlm S SR) _ pbg(xlm c SB)

25 Shikma Bressler | AISSAI, March 6, 2024




CWola - Classification Without Labels

ML used to enhance S/B

- An optimal classifier (likelihood ratio) trained
to distinguish two mixed samples M, and M,

is also optimal for distinguishing S from B

Mixed Sample 1

» For large enough datasets

. As long as the relative S and B

propositions in M, and M,, f, and f,, are
different

. For f; > f, event classified as M, is also

classified as § event

26

OOOO®

Ly ymy =

Classifier

pvy _ fips+ (- fi)ps _ filsp+(1— fi)

pvy  feps+ (1 —fo)pe  faLgp+ (1— f2)

Shikma Bressler | AISSAI, March 6, 2024



AUC

CWola - Classification Without Labels

« Separation with 2 Gaussian examples

: : : : ps(z)
» Approaches Likelihood ratio with large enough dataset  huima() = > 25
ZyeS I[[y — IE] - ZyEMl ]I[y — iE
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CWola - Classification Without Labels

- ATLAS search for di-jet resonance

. Topology - m;

. Discriminating features - m; and m;

(or g qorg

W or Z

qorg
Wor/Z

qorg

Shikma Bressler | AISSAI, March 6, 2024



CWola - Classification Without Labels

- ATLAS search for di-jet resonance

. Topology - m;

. Discriminating features - m; and m;

« The discriminating variables can’t be correlated
with the topology variables

» Threshold set for different signal efficiency
benchmarks

- Background modeled in standard sideband fit
dn/dx = P;(l — x)Pz—§1p3x—p3+(p4—§2p3—‘§3P2)'108(x)
» Search outperforms generic inclusive searches

- Dedicated searches have better sensitivity for
searched fore models

29
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Figure 3: 95% confidence level upper limits on the cross section for a variety of signal models, labeled by (mg,mc¢),
in GeV. The limits are shown for signal models with (a,b) m 4 = 3000 GeV and NN trained on signal region 2; and
(c,d) ma = 5000 GeV and NN trained on signal region 5. The limits are broken down between the analyses with
(a,c) € = 0.1 and (b,d) € = 0.01. Also shown are the limits from the ATLAS dijet search [101] and the ATLAS
all-hadronic diboson search [112]. The inclusive dijet limits are calculated using the W’ signals from this paper and
the full analysis pipeline of Ref. [101]; the diboson search limits are computed using the Heavy Vector Triplet [113]
W’ signal from Ref. [112]. The acceptance for the W’ in this paper, compared to the W’ acceptance in Ref. [112], is
86% and 54% for my+ = 3 and 5 TeV, respectively. Missing observed markers are higher than the plotted range.
Poor limits occur when the NN fails to tag the signal.
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Search for Asymmetries

ML used to infer statistics

injected g5’ signif.

« Flavour symmetric — 01 051 2 5 1020 50
. . 0.85r sym
p-set and e-set originate 0.0l — asym
from the same pdf v 0.75}
O
- Flavour asymmetric — % 070}
o Z 0.65/
pu-set and e-set originate 2 060
from the different pdf 0.55}
0.50} —— . : |
o107 103 107 10-*

Signal Fraction

 Trained NN with pu-set labeled O and e-set labeled 1

Fig. 6: The maximum neural network score from training a
classifier to distinguish the ey from e samples with (asym)

« Binary cross entropy loss as test statistics and withoat (syem) a BSM coutribution. The grecn (yellow)
o . . . and blue bands represent (twice) tl'!c standard flcviation over
- Compare performance for traditional profile likelihood L Bothamng sncipen The Saputacian pomis s shoms 4 &

function of the injected signal fraction (bottom scale) and
M 1 the corresponding significance calculated with the ideal g5’
teSt Stat | St ICS test. Note that these results are not directly comparable to
the binned DDP because it is not possible to ignore signal
statistical uncertainties.
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Unsupervised efforts

- The Challenge at hand
« Traditional (non-ML) efforts
» ML-based efforts

« Supervised

- Weakly supervised

 Unsupervised

« Others
31 Shikma Bressler | AISSAI, March 6, 2024
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Unsupervised efforts

» Several approaches

» Mostly trained to learn the probability density of the data p, . (x)

» Map a random variable z with know probability density to the data f(z) — X

- Generative adversarial models (GAN)

. A second network 4 trained to distinguish f(z) from X
 (Variational) Autoencoders (VAE)

» f(2) is the decoder operating after the data is encoded into the latent space Z

« Normalizing Flows (NF)

. A series of invertible functions f; with tractable Jacobians in order to change Zinto X

32 Shikma Bressler | AISSAI, March 6, 2024
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Finding-over-densities
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Anode - Anomaly Detection with Density Estimation

ML used to enhance S/B and background modeling

« Signal assumed to be localized somewhere in m

. Discriminating variable x — p, . (x|m) estimated in SR

» Estimating background pdf from sidebands
. Extrapolate into the signal region — pbg(x\m)

» Construct a likelihood ratio of data pdf over background
pdata(x ‘ m)

pbg(x ‘ m)

pdf in the signal region R =

- Nosignal R(x|m) =1
> 1

« Various density estimation methods can be used

. Presence of signal > R(x|m) > R

34 Shikma Bressler | AISSAI, March 6, 2024



Anode with normalizing flow models

« Core idea - apply a change of variables from a random variable
with a simple density (e.g. Gaussian or uniform) to one with a
ing dataset

complex density that matches some trair

. Optimize for large R(x/m) and define the threshold R .(x/m) for

best discriminating S from B

» Predict the number of background events for R .(x/m)

2.00

--- True value Direct integration
Direct Integration
—— Importance sampling

o 1.75}
Q

[
o
»

—— Importance sampling |

=
o
w

Number of events with (R > R()
= =
2 2

=
o
o

0 5 i 3 8 10 - 107 102 103 10°
R, Actual Number of Background Events (Npg)

Figure 8. Left: The number of events after a threshold requirement R > R, using the two integration
methods described in Sec. 3.2, as well as the true background yield. Right: The ratio of the predicted
and true background yields from the left plot, as a function of the actual number of events that survive
the threshold requirement. The shaded bands around the central predictions are the 1o statistical
(Poisson) uncertainty derived from the observed background counts. The black dashed and dotted lines
are 10% and 20% around a ratio of 1.
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Figure 4. Scatter plot of R(z|m) versus log ppackground(Z|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.
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Cathode” - Classifying anomalies through outer density estimation

ML used to enhance S/B and background modeling

Signal Region, Shifted Dataset

- Train a density estimator to learn the smooth background 2o —
distribution in the sideband . — Camione

—— ANODE

[
O
o

CWolLa

. Interpolate into the — pbg(x\m)

Significance Improvement
~
u
1

. Generate sample events from p,,(x | m)

. Train a classifier to distinguish between pbg(x | m) and

0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency (True Positive Rate)

PauX | m) and maximize r(x | m)

|dealized AD - trained on data vs.

- See also yesterday’s talk by Gregor Kasieczka perfectly simulated backgrouna

* . . .
Cathode uses several NN, some unsupervised and some semi-supervised
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Outliers detection

The Dark Machine challenge

. Methods
« Define an anomaly score SR A1

Simple autoencoders
4.2 Variational autoencoders

- On an event-by-event basis

4.3 Deep set variational autoencoder

o USing JNSu pervised algorithm trained WlthOUt 4.4 Convolutional variational autoencoder
. . . 4.5 ConvVAE with normalizing flows
deflnlrg a Slgnal 4.5.1 Planar flows

4.5.2 Sylvester normalizing flows

« On simulated SM events only

4.5.3 Inverse autoregressive flows

- On data if signal is rare relative to background 4.54  Convolutional normalizing flows
4.6 Convolutional 5-VAE
C BaCkg round estimation . 4.7 Kernel density estimation
. . . 4.8 Spline autoregressive flows
and statistical inference L9 Deep SVDD models
done regu la rly of events Signal Region 4.10 Spline autoregressive flow combined with deep SVDD models

4.11 Deep Autoencoding Gaussian Mixture Model
4.12 Adversarial Anomaly Detection

4.13 Combined models for outlier detection in latent space

ML used to enhance S/B

anomaly score
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Autoencoders

« Unsupervised NN

« Learns to compress and encode data
and to reconstruct the data back from the

reduced encoded representation to a - O
representation that is as close to the original \\ I Code e //
input as possible \ Rl ek SEN

\ / \ 7/ \ y \ y \/

» Difference between the original and ,>\\ / IR EAN A ,>\ /<\
reconstructed data measured with a loss // =R =R = /AN = K \\
function | -7 Tl

+ By design, reduces data dimensions by learning - > J N y Y
how to ignore noise Encoder Decoder

. Here, for small S/B ratio supposed to learn
mostly the background
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Autoencoders

« ATLAS search for 2-body resonances

9 signal regions: @ QN T
§ 1010 ATLAS tbH*(2 TeV)
i mjb, mbb, mje’ m] ° mbe’ mb,u’ mj}” mb]/ O 10°E Vs=13Tev, 14010 ;V,Kizf”:;ﬁgvcew
10° W (2.2 Te
i ' 10 ~. s %ﬁ) /(2WTe(\2/52 e
- Anomaly regions (cuts) assumes hypothetical E
. - —10 pb AR
Cross-sections 10 e
10%E =
Co : Co : 103 .
. Statistical inference based on m;,  distribution e E
using f|t {o f(X) — p1(1 _x)pzxp3+p4lnx+p51n2x' 12? E
10“? i /] é
0 87 % 5 4

log (Loss)

Figure 1: Distributions of the anomaly score from the AE for data and five benchmark BSM models. Their legends,
from top to bottom, are: (1) charged Higgs boson production in association with a top quark, thH* with H* — tb;
(2) a Kaluza—Klein gauge boson, Wk, with the SM W boson and a radion ¢; (3) a Z’ boson decaying to a composite
lepton E and ¢, with E — Z¢ with a mass of 0.5 TeV; (4) the SSM W’ — WZ' — {vqq; (5) a simplified dark-matter
model with an axial-vector mediator Z’ — g4, where one of the quarks radiates a W boson decaying to {v. The BSM
predictions represent the expected number of events from 140 fb—! of data for heavy particle (H*, Wk, Z’, W’ and
Z’, respectively) masses around 2 TeV. The distributions for the BSM models are smoothed to remove fluctuations
due to low MC event counts. The vertical lines indicate the start of the three anomaly regions (ARs). The labels of
the three ARs indicate the visible cross section for hypothetical processes yielding the same number of events as
observed in the 140 fb—! dataset. The AE is applied to preselected events without any requirements on invariant
mass distributions.
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Unsupervised Clustering

« Procedure:

. Reduce the data dimensionality to retain the win
main properties of the events (/“‘i (l) [Embedding space:
» In the reduced representation add clustering Fuly ommectd 1)
objective to the training procedure — group T
together points in the reduced representation \” """"""""""""""""" m am s
that share similar properties caeLayr 128 o _};’; : |
 Clustering is based on physical considerations e — — .. Hi :
e.g., constituent of jets I e
 Loss function is defined to take into account to I I

classification as well as the clustering properties
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Other ideas

- The Challenge at hand
- Traditional (non-ML) efforts
» ML-based efforts

« Supervised

- Weakly supervised

« Unsupervised

e Others
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NPLM - Learning New Physics from Data

ML used for S/B enhancement and statistical inference

« Goal: detect data departures from a given reference model

 Train a classifier with a loss function equivalent to the likelihood ratio
Na

« For two datasets A and B define: Ho: na (z|Ho) = N B (z,v)
e N, >>N
b A H, - na (z|H1) = ]]\\;—ef(‘” Wng(z,v)
B
B max,,,u( (Hl‘A))) e—Na(H)
t = 2log ( max,, (£ (HolA) L(H|A) = gm (z|H)

_ Na (Ho) Fx :
tztB(A):—2< T Z(ef()_l) _Zf(a:))

reB rEA

« The test statistics

Nneu

f(z) = bou + Z Wyt O (WaZ + by)

a=1

.+ Use NN machinery to fit f that maximizes the log likelihood ratio
A4 Shikma Bressler | AISSAI, March 6, 2024



NPLM - Learning New Physics from Data

« Log likelihood ratio test statistics —
background only distribution follows

2
£ Ngof

. Fitting procedure — n,,determined by

the number of free parameters in the fit
mode]

. The w'sand b’s in f (z)

. TH
m

a=1

e reference sample assumed to be
uch larger than the data

« Some fine tuning is needed in weight
clippings

INPUT OuTPUT
Data sample D Dist. log ratio
AT AT |  data/reference
' : ~ T
Reference sample R @am D vs. T f(z; W) ~ log n(z|T)
w$e————————————— - A~ 77/(33|R)
f(z; W)
. — - Test statistic ¢
g computed on the
SR data sample D
AR N (D) = —2Min L[f]
0.0 02 0.4 0.6 0.8 1.0 {W}

Figure 1: A schematic representation of the implementation of our strategy.
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NPLM - Learning New Physics from Data

« Log likelihood ratio test statistics —
background only distribution follows

2
£ Ngof

. Fitting procedure — n,,determined by
the number of free parameters in the fit

model
Nneu
. The w'sand b’s in f(z) =bou + Y w0 (wax + ba)
a=1
« The reference sample assumed to be

much larger than the data

« Some fine tuning is needed in weight
clippings
- See also Mikael Kuusla’s talk las Monday

INPUT OuUTPUT
Data sample D Dist. log ratio
) 1; X c{oi/\//f /ﬁ\¥

- data/reference
~160 0.2 0.4 ' . 1.0

0.6 0.8

@ain D vs. R
‘.---‘l|||||||||||||)-:Zf-gjzr;iiar)

Figure 1: A schematic representation of the implementation of our strategy.

e

Test statistic ¢
computed on the

data sample D

N £(D) = —2 Min L{f

1052_ ................... 2

103

102 T
10!

1
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Data Directed Paradigm - DDP

ML used for rapid statistical inference

« Two key ingredients:
« A property of the SM based on which an anomaly can be searched for
A tool allowing to infer statistically the significance of a deviation from this property
 Allow scanning rapidly many sub-selections of the data
» Can be combined with other optimization algorithms
- Two examples developed

« The BumpHunt DDP — see talk by Evan Mayer on Thursday

— See poster by Bruna Pascual
“Accelerating the search for mass bumps using the Data-Directed Paradigm”

« Symmetry DDP — see my talk on Thursday
“Exploiting the discovery potential of the LHC data using the Data Directed Paradigm”
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Summary

- The LHC (and other accelerators) data is far from being fully exploited
« ML is in the process of revolutionizing anomaly detection also in particle physics

» Yet huge difference between suggesting an idea and actually apply it to data
and... get it approved by the collaborations

Statistical

- Nothing to summarize since it is clearly just the beginning
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