

Identification of problematic epochs in Astronomical Time Series through Transfer Learning

Stefano Cavuoti

on behalf of: De Cicco D., Doorenbos L., Brescia M., Torbaniuk O., Longo G. and Paolillo M.

Variable Objects

An object is considered to be variable if exhibiting a o^{lc} in excess of the 95th percentile of the o^{lc} distribution, over a running 0.5 mag wide bin centered on the magnitude of each source, highly conservative threshold, $\approx 2\%$) turned out to be variable.

blue = non-variable objects green = stars red = galaxies black = ambiguous --- average standard deviation --- variability threshold

IN THE NEXT SLIDE AN EXAMPLE OF ASTRONOMICAL TIME SERIES IS SHOWN THIS CAN TRIGGER **STATISTICIANS IN SEVERAL WAYS**

VIEWER DISCRETION IS ADVISED

Example of Light Curve

Example of Supernovae

multi-epoch snapshots and light curve of a supernova candidate

Example of AGN Candidate

multi-epoch snapshots and light curve of an AGN candidate

Example of a Problematic Image in Time Series

How to determine features without a train?

Convolutional Neural Networks

Convolutional Neural Networks

One man's trash is another man's treasure.

- English Proverb

What happens to an astronomical image?

2nd layer

Last layer (~1300 7x7 maps)

Stacked Image as Reference

14	50	27	73	86
71	81	253	33	45
73	75	250	103	78
37	94	101	96	55
26	73	45	96	68

Image 2

35	26	8	53	66
55	71	102	21	29
65	58	88	85	92
16	90	68	106	74
9	51	50	75	81

Image 3

34	32	37	63	36
53	91	116	18	16
118	95	87	113	45
93	99	110	103	26
72	37	76	76	61

Image N-1

31	46	56	77	15
50	108	108	15	28
111	89	79	118	61
103	103	92	83	10
75	38	65	96	69

 \rightarrow

34	42	37	63	36
53	91	96	-31	29
111	75	88	118	61
83	94	101	103	36
62	47	50	76	68

Image N

Stacked Image

Traditional Approach: Sigma Clip

Pro:

- Simple,
- Fast,
- Efficient in removing the worst images **Cons:**
 - There are still points that could not be removed in that way

VST Overview

August 22, 2018

The VLT Survey Telescope (VST), located at Cerro Paranal, Chile, is a joint venture between the European Southern Observatory (ESO) and the Osservatorio Astronomico di Capodimonte (OAC) in Napoli, Italy.

primary mirror: 2.65 m secondary mirror: 0.94 m f#: 5.5 detector: OmegaCAM (\approx 268 Mpx, 26 x 26 cm², \approx 50 GB of raw data per night) Field of View (FoV): 1° x 1° Focal Plane Scale (FPS): 0.21''/pixel wavelength coverage: 0.3 – 1.0 µm

The VST-COSMOS Dataset (I)

visit	obs. date	seeing (FWHM) (arcsec)	visit	obs. date	seeing (FWH (arcsec)	(M)	visit	obs. date	seeing (FWHM) (arcsec)
1	2011-Dec-18	0.64	25	2012-May-11	0.85		48	2015-Jan-10	0.71
2	2011-Dec-22	0.94 1 vr	26	2012-May-17	0.77		49	2015-Jan-28	0.90
3	2011-Dec-27	1.04 T month gan	27	2013-Dec-27	0.72		50	2015-Jan-31	0.73
4	2011-Dec-31	1.15 7 month-gap	28	2013-Dec-30	1.00		51	2015-Feb-15	0.70
5	2012-Jan-02	0.67	29	2014-Jan-03	0.86		52	2015-Mar-10	0.80
6	2012-Jan-06	0.58	30	2014-Jan-05	0.81	C	53	2015-Mar-14	0.84
7	2012-Jan-18	0.62	31	2014-Jan-12	0.73	6 yr	54	2015-Mar-19	1.00
8	2012-Jan-20	0.88	32	2014-Jan-21	1.18	9 month-gap	55	2021-Dec-28	0.57
9	2012-Jan-22	0.81	33	2014-Jan-24	0.80		56	2022-Jan-05	0.58
10	2012-Jan-24	0.67	34	2014-Feb-09	1.28		57	2022-Jan-13	0.69
11	2012-Jan-27	0.98	35	2014-Feb-19	0.89		58	2022-Jan-25	0.71
12	2012-Jan-29	0.86	36	2014-Feb-21	0.93		59	2022-Feb-03	0.96
13	2012-Feb-02	0.86	37	2014-Feb-23	0.81		60	2022-Feb-10	0.62
14	2012-Feb-16	0.50	38	2014-Feb-26	0.81		61	2022-Feb-24	0.56
15	2012-Feb-19	0.99	39	2014-Feb-28	0.77		62	2022-Mar-11	0.75
16	2012-Feb-21	0.79	40	2014-Mar-08	0.91		63	2022-Mar-24	0.68
17	2012-Feb-23	0.73	41	2014-Mar-21	0.96	8 month-gap	64	2022-Mar-31	0.70
18	2012-Feb-26	0.83	42	2014-Mar-23	0.92		65	2022-Nov-23	0.91
19	2012-Feb-29	0.90	43	2014-Mar-25	0.66		66	2022-Dec-10	0.56
20	2012-Mar-03	0.97	44	2014-Mar-29	0.89		67	2022-Dec-30	0.63
21	2012-Mar-13	0.70	45	2014-Apr-04	0.58		68	2022-Dec-31	1.07
22	2012-Mar-15	1.08	46	2014-Apr-07	0.61		69	2023-Jan-02	0.78
23	2012-Mar-17	0.91 8 month-gap	47	2014-Dec-03	1.00		70	2023-Jan-03	0.84
24	2012-May-08	0.74							

The VST-COSMOS Dataset (II)

De Cicco+21; De Cicco+19; De Cicco+15; De Cicco+22, De Cicco+ in prep.

Test-ground survey for AGN variability studies

- ♦ wide coverage: ~1 sq. deg. with VST, vs. ~9.6 sq. deg. with LSST
- long baseline: >10 yr with VST, vs. ~10 yr with LSST
- multi-band observations: gri bands available with VST vs. ugrizy with LSST
- dense sampling: 3 day cadence, (*r*-band, 54 visits) with VST vs. expected 2-day 2-filter cadence with LSST
- single-visit depth: r ~ 24.6 mag (point sources, 5σ) with VST vs. ~24.7 mag with LSST

The VST-COSMOS dataset is currently one of the few datasets taking advantage of considerable depth, long baseline, and high observing cadence

Some Variability Studies with VST

- 1. Analysis of optical variability, COSMOS, 1 sq. deg., 5 month baseline *De Cicco+15*
- 2. Analysis of optical variability, CDF-S, 1+1 sq. deg., 5+3 month baselines Falocco+15
- 3. Extension of the analysis for COSMOS to 3.3 yr *De Cicco+19*
- 4. Complementary analysis for 2 more sq. deg. for the CDF-S *Poulain+20*
- 5. Machine learning-based analysis of optical variability in COSMOS De Cicco+21
- 6. Analysis of the ensemble variability properties in COSMOS *De Cicco+22*

17,995 sources

989,725 individual observations.

914,156 after Sigma Clip

336 extra anomalous epochs from our algorithm

. .

13 25 16 46

- 14 H AL

. . .

10 10 10 40

. . . .

. . . .

. . . .

. . . .

. . .

Most of them could not be cut by any sigma clip

17,995 sources

98 27 without a proper explanation
91 for some of them probably there is
91 still a problem with the quality but
33 is not really explicit

Concluding without having concluded anything (yet)

This kind of method can allow us to identify problematic epochs in large surveys.

Pro:

- It find problematic epochs neglected by the sigma clip allowing to improve the reliability of the results
- Fast (less than 1 second per lightcurve)
- Could be applied to several tasks and several surveys since it does not requires specific tuning

Cons:

- Sigma clip is still necessary since the method is not capable to recover everything
- There are contaminants (good epochs flagged) although they are really few

Thank you for your Attention

Base Kernels

in adjacent pixel values.

0.0625

0.125

0.0625

Outline (aka **edge**) highlight large differences in pixel values. A pixel next to a neighbor with close to the same intensity will appear black

-1	-1	-1
-1	8	-1
-1	-1	-1

Sobel kernels are used to show only the differences in adjacent pixel values in a particular direction.

1	2	1
0	0	0
-1	-2	-1

The **sharpen** kernel emphasizes differences in adjacent pixel values. This makes the image look more vivid.

The **blur** kernel de-emphasizes differences

0.125

0.25

0.125

0.0625

0.125

0.0625

0	-1	0
-1	5	-1
0	-1	0

Emboss (similar to sobel) givens the illusion of depth by emphasizing the differences of pixels in a given direction.

-2	-1	1
-1	1	1
0	1	2

