Anomaly Detection algorithms applied to the Quality Control of detector components

Presenter:

Louis VASLIN^{1,2}, Yu Nakahama^{1,2}, Manabu TOGAWA^{1,2}, Yoichi IKEGAMI¹, Daniela BORTOLETTO^{2,3}, Chunhao TIAN³

¹KEK ²QUP ³Oxford University

Quality Control in detector production

Objective

Ensure that <u>each component</u> is in **good working condition**

=> Impact on Physics results

Application case

Upgrade of the <u>ATLAS detector</u> for HL-LHC

Focus on the mass production of <u>pixel</u> modules for the **new Inner Tracker (ITk)**

FE Chip (TSMC)

Schematic of a pixel module

Visual Inspection

Principle

Inspect module components and look for visible defects

Performed for **every components** at **every stage** of module assembly => *At least 5 VI check per modules*

Methodology

Manual Visual Inspection 'by eye'

Slow process (~10min FLEX PCB)

Error prone

Can we use **Machine Learning** to improve the process?

Example of defects

Image from FLEX PCB

Sub-millimeter scale defects in a 40x40mm PCB

Scratches

Silk ink leakage

damage on wirebonding pad

And others ...

Machine Learning assisted Visual Inspection

Objectives

Create a <u>Visual Inspection helper</u>

Improve efficiency and reliability

Easy to integrate and usable on any computer

- Strategy combining 2 different approaches
 - Unsupervised algorithm

Use **Anomaly Detection** to highlight <u>rare/unknown defects</u>

Supervised algorithm

Use **supervised classifier** to label <u>common defects</u>

Unsupervised algorithm

Overview

Deep Auto-Encoder-like CNN

Trained on high resolution images of <u>ITk module components</u>

Learn to <u>reconstruct main features</u> of input **and** to <u>remove defect-like patterns</u> => **Denoising Auto-Encoder**

Identify anomalous pixel areas in the image

Filtering based on DBSCAN clustering

Cluster anomalous pixel and extract major anomalies

Provide list of most relevant defect candidates and reduce false positive rate

Unsupervised algorithm

Model implementation

Denoising convolution AE

Asymmetric architecture

Encoding block

2 convolution layer with LeakyReLU activation 10% dropout on second layer

Loss

Use MSE between output and original input (without soise)

Supervised algorithm

Overview

Computer vision algorithm inspired by Detectron2 (GitHub)

Object segmentation/classification inside a image

Custom implementation

Lighter and easier to setup

Focus on common defects

Higher statistic required for supervised learning

Multi-class classification with arbitrary number of output labels => There might be more than 1 defect in the same image

Supervised algorithm

Model implementation

Combines 2 components

Feature Pyramid Network (FPN)

Use as <u>backbone network</u> in Detectron2

Extract **image features** at <u>different</u> <u>scales</u>

Classification head

<u>Custom</u> classification network

Use FPN feature space to <u>identify</u> <u>defects of arbitrary size</u>

Data

Acquisition and preprocessing

Image taken with microscope Cropping, resizing and splitting ~150 images available before splitting

Data augmentation

Duplicate images with <u>small variations</u> Luminosity, contrast, scale, position ...

Noise pattern

Add random rectangle patches

Demonstration

Test anomalies

Use <u>artificial defects</u>

Similar to noise patterns

Results without filtering

Artificial defect **properly** highlighted

Other *minor defects* <u>also</u> <u>found</u>

Not so much noise

Demonstration

Real defects

Full Anomaly Detection algorithm

deep AE + clustering

Test on an image where a **real defect** was found

Single occurrence => cannot train supervised model

The defect turns *pink*

It as been detected :-)

Summary and plans

- Machine Learning assisted Visual Inspection
 Propose a tool for defect detection in detector components

 Combines both <u>unsupervised</u> and <u>supervised</u> algorithms
- Application to the production of ATLAS pixel module
 <u>Unsupervised algorithm</u> is **fully operational**
 Optimized supervised algorithm is **under training**
- Future extension of the tool
 In ATLAS and in other experiments/fields

THANK YOU! ありがとうございます!

BACKUP

About me

Previously

PhD in **Clermont-Ferrand** (I'm back!)

Work on **Anomaly Detection** for New Physics search

Current position

Post-Doc at **QUP** (Japan) link

Work on <u>Anomaly Detection</u> for detector Quality control

