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DATA-TAKING AT THE LHC
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Bubble chamber event: 
Muonic decay of a 
neutral K meson

Actually taking pictures of particles



Artur Lobanov |  
Anomaly detection @ CMS L1 Trigger| 

AISSAI 2024, Clermont-Ferrand | WHAT WE DO TODAY @ THE LARGE HADRON COLLIDER (LHC)

4

What we want to study
How collisions help us

What actually happens

Production of a Higgs boson (H) through Vector Boson Fusion (W/Z) Partons and hadronization

https://sherpa.hepforge.org/trac/wiki/MonteCarloGenerators
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The CMS experiment:  
LHC camera with 100 Mpixel
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Different particle types can be measured with different detectors
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HOW LHC COLLISIONS LOOK LIKE



EVENT SELECTION:  
TRIGGER
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Data taking at CMSB. Radburn-Smith

Premise
• The LHC collides bunches of protons at 

40 MHz*

• We cannot readout all of the collisions 

(Zero-supressed data would be ~30TB/s)

• Only some of these collisions will be of 

interest

• We need a way to filter out the interesting 

collisions to analyse

• 2 level trigger system based on hardware 

and software respectively
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Probability decreasing ——-> 

LHC: 40 Million proton collisions per second

1 Higgs boson is produced / second

1000 W/Z bosons produced / second

New physics (= Anomalies) hiding here?

* LHC values from 2010 -> now higher luminosity
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๏ Cannot record 40 MHz of collision data! 

๏ CMS exploits a two-level trigger (filter):  

1. Level-1 Trigger (L1T)  

• Implemented in hardware on FPGAs* 

• Receives coarse detector data 

• Decision within microseconds 

2. High-Level Trigger (HLT) 

• Uses CPU/GPUs in a computing farm  
• Full resolution of detector data 

• Decision within seconds

THE CMS TRIGGER SYSTEM
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LHC Collisions
40 MHz

L1 Trigger
110 kHz

HLT
6 kHz

Disk

L1 vs HLT 
 resolution

* details to come
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Processing data  
and reconstructing 
physics objects

Taking decision

Raw detector  
data ”in”
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The CMS L1 Trigger is based on 100s of FPGAs: 

๏ Integrated circuit with programmable logic 

‣ Originally introduced for prototyping  
Application-specific Integrated Circuits (ASICs) 

‣ Contrary to ASIC: (re)programmable in the “field” 

๏ FPGAs consists of different parts of logic cells  
for high throughput and I/O operations
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WHAT ARE FPGAS?
FPGAs!

xkcd “Python” 

https://xkcd.com/353/


ANOMALY DETECTION  
@ CMS L1 TRIGGER
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๏ Searching for new physics at the LHC – multiple fronts: 

‣ Direct: e.g. looking for exotic particles (peak or excess searches) 

‣ Indirect: precision measurements of particle parameters (e.g. H couplings) 

‣ Anomaly detection using recorded data (examples at this conference) 

๏ All rely on existing selection (trigger) algorithms  
–> Model dependent or high energy thresholds 

๏ What if anomalous collisions are NOT RECORDED?  
–> Anomaly detection at trigger level!

15



Artur Lobanov |  
Anomaly detection @ CMS L1 Trigger| 

AISSAI 2024, Clermont-Ferrand | 

๏ Autoencoders train unsupervised on data 
‣ Learn to compress and to reconstruct the data 

‣ Difference  = "degree of abnormality”̂x − x

Autoencoders: Learns from data 
• Trains unsupervised 
• Learns to compress, then reconstruct data 
• Often used for financial fraud detection  

• Low rate of anomalous events versus high rate “background” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ML for  anomaly  detec t ion

CERN Summer student 2012

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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Real data x Reconstructed data x̂

ℜk

ANOMALY DETECTION WITH AUTO-ENCODERS
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Autoencoders: Learns from data 
• Trains unsupervised 
• Learns to compress, then reconstruct data 
• Often used for financial fraud detection  

• Low rate of anomalous events versus high rate “background” 

• Difference -  defines "degree of abnormality” 
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)
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constituents are part of the hard scatter and which are not. The x
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to the next layer, the Lorentz Layer.
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C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

ML for  anomaly  detec t ion

๏ Autoencoders train unsupervised on data 
‣ Learn to compress and to reconstruct the data 

‣ Difference  = "degree of abnormality” 

➤ If trained on “background” –> “signal” is anomalous!

̂x − x

ANOMALY DETECTION WITH AUTO-ENCODERS
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Artur Lobanov |  
Anomaly detection @ CMS L1 Trigger| 

AISSAI 2024, Clermont-Ferrand | ANOMALY DETECTION FOR TRIGGERING

‣ Traditional triggers: select dedicated (high-energy) phase space 
‣ Anomaly detection (AD) trigger: trained on random LHC collisions (ZeroBias) 

• New physics (NP) potentially results in a high reconstruction error 

•

18

 

Energy -> Anomaly 
phase-space
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AISSAI 2024, Clermont-Ferrand | ANOMALY DETECTION @ CMS LEVEL-1 TRIGGER
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Raw detector  
data ”in”

Raw detector images: 
CICADA

Reconstructed  objects: 
AXOL1TL



HIGH-LEVEL INPUTS: 
AXOL1TL



Artur Lobanov |  
Anomaly detection @ CMS L1 Trigger| 

AISSAI 2024, Clermont-Ferrand | AXOL1TL: ANOMALY DETECTION WITH OBJECT TOPOLOGY

๏ AXOL1TL (Anomaly eXtraction Online Level-1 Trigger aLgorithm) is a variational auto-encoder: 
‣ Encodes input as a distribution over the latent space 
‣ Add regularisation term in loss: KL divergence, how different is distribution from Gaussian 

๏ Inputs: L1 trigger objects 4-vectors (pT, η, ɸ) 
‣ Most energetic 4 electron/photons, 4 muons, 10 jets and missing transverse energy (MET)

21

AXOL1TL Design

6

AXOL1TL is a variational autoencoder:
• Encodes input as a distribution over the latent space
• Additional loss term regularizes latent space to be Gaussian

Uses L1 trigger objects as inputs: (pT, η, ɸ) of MET, up to 4 electron/photons, 4 muons, and 10 jets

T. Aarrestad

N/A N/A

Train on data collected by CMS in 2023 at √s=13.6 TeV, 10.5 million events 50% for training, 50% testing 

5 5

AXOL1TL Implementation

9Jannicke Pearkes

Implemented on Xilinx Virtex-7 XCVU9P FPGA: 
50ns latency and resource requirements met 

Latency LUTs FFs DSPs BRAMs

2 ticks
50 ns

2.1% ~0 0 0

AXOL1TL

MP7 payload

MP7 infrastructure

Resource utilization of Virtex-7 FPGA chip on Imperial College MP7 μGT board

CMS-DP-2023-079

https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2876546


Artur Lobanov |  
Anomaly detection @ CMS L1 Trigger| 

AISSAI 2024, Clermont-Ferrand | AXOL1TL: ARCHITECTURE OPTIMISATION

๏ Full NN architecture does not fit the L1/FPGA constraints 

‣ –> only use encoder half of the network 
• Compute degree of abnormality from latent space directly 
• No need to use inputs for anomaly score computation 

• Half network size and latency!

22

CMS-DP-2023-079

https://cds.cern.ch/record/2876546


Artur Lobanov |  
Anomaly detection @ CMS L1 Trigger| 

AISSAI 2024, Clermont-Ferrand | 

AXOL1TL Implementation

9Jannicke Pearkes

Implemented on Xilinx Virtex-7 XCVU9P FPGA: 
50ns latency and resource requirements met 

Latency LUTs FFs DSPs BRAMs

2 ticks
50 ns

2.1% ~0 0 0

AXOL1TL

MP7 payload

MP7 infrastructure

Resource utilization of Virtex-7 FPGA chip on Imperial College MP7 μGT board

AXOL1TL: FPGA IMPLEMENTATION

๏ Implemented on Xilinx Virtex-7 XCVU9P FPGA 

๏ Met requirements on latency and resources
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AXOL1TL Implementation

9Jannicke Pearkes

Implemented on Xilinx Virtex-7 XCVU9P FPGA: 
50ns latency and resource requirements met 

Latency LUTs FFs DSPs BRAMs

2 ticks
50 ns

2.1% ~0 0 0

AXOL1TL

MP7 payload

MP7 infrastructure

Resource utilization of Virtex-7 FPGA chip on Imperial College MP7 μGT board

CMS-DP-2023-079

https://cds.cern.ch/record/2876546


Artur Lobanov |  
Anomaly detection @ CMS L1 Trigger| 

AISSAI 2024, Clermont-Ferrand | AXOL1TL: COMMISSIONING

๏ AXOL1TL is trained with unbiased data collected  
by CMS during 2023 with √s=13.6 TeV 
‣ 10.5 million events (50/50% for training/testing) 
‣ Selected 5 test scores in firmware 

๏ Commissioned in Global Trigger Test Crate during 
proton collisions in 2023 –> stable as standard triggers

24

Test Crate Implementation

• Prometheus monitoring tool answers 
real-time queries for trigger metrics while 
data-taking

• Used to monitor AXOL1TL rates during 
2023 physics data-taking

• Test Crate model is trained on 2018 data and 
4 thresholds are used to test rate boundaries
• Used for firmware testing, not realistic 

proposal for trigger paths

• Consistent trigger performance shown for 
partial fill cycle
• Single muon trigger (pT > 22 GeV) shown for 

reference

• Dips in rate due to LHC ramp-up and 
luminosity-levelling scheme

Monday, October 2, 2023 TWEPP 2023 15

Global Trigger Test Crate sitting 
underground at CERN Point 5, 

next to CMS Detector

Stable performance in test operation

Model Performance
• AXOL1TL is trained with unbiased data collected by the CMS 

Experiment during 2023 with √s=13.6 TeV
• 10.5 million events used – 50% for training, 50% for setting thresholds

• Dotted lines represent the score thresholds implemented in the 
Global Trigger Test Crate

• Significant performance improvement on various SM and BSM 
signals by adding AXOL1TL to the 2023 trigger menu

• Signal samples are Monte-Carlo generated

• Table shows performance improvement for a Higgs decaying to 2 (pseudo-) 
scalars to bottom quarks

Monday, October 2, 2023 TWEPP 2023 10

Anomaly score distribution for 
unbiased (random) LHC collision data 

CMS-DP-2023-079

https://cds.cern.ch/record/2876546


Artur Lobanov |  
Anomaly detection @ CMS L1 Trigger| 

AISSAI 2024, Clermont-Ferrand | AXOL1TL: EVENT DISPLAY

๏ Example of an anomalous 
event during 2023 pp 
collisions (from random 
trigger dataset) 

‣ Highest anomaly score 
event not triggered by L1 

๏ L1 objects: 
‣ 11 jets with pT > 20 Gev 

๏ Offline objects: 
‣ 7 jets with pT > 15 GeV 

from the same vertex 
‣ 75 identified vertices

25

Event Display

12

Event display of the highest anomaly score event 
that is not selected by the normal L1T menu, from 
Ephemeral Zero Bias 2023 Run 367883. 

This event features the maximal number of L1 
jets (12), out of which 11 have ET > 20 GeV. It 
also features a 3 GeV L1 muon. The offline 
reconstruction identifies 7 jets (reconstructed with 
the PUPPI algorithm) with pT > 15 GeV, and 1 
muon. 
 
The event is also characterized by a very unlikely 
large number of reconstructed vertices (75), given 
the pile up profile of the data taken in Run 2 and 
Run 3. 
 
 
        

CMS-DP-2023-079

https://cds.cern.ch/record/2876546


Artur Lobanov |  
Anomaly detection @ CMS L1 Trigger| 

AISSAI 2024, Clermont-Ferrand | 

๏ Use simulated hypothetical exotic signal as a anomaly candidate 

๏ Significant performance improvement on various SM and beyond the SM signals 
by adding AXOL1TL to the 2023 trigger menu 
 

 

๏ Example performance improvement for H->aa[15 GeV]->4b signal: 

 

๏ Planning to start data-taking with ~O(100) Hz L1 rate in 2024 pp collisions!

a

a

Significant performance improvement on various SM and BSM signals 
by adding AXOL1TL to the 2023 trigger menu.

Example performance improvement for H->aa[15 GeV]->4b signal:

Physics Performance

14

Rate 1 kHz 5 kHz 10 kHz

Signal Efficiency Gain 46% 100% 133%

Large increase in signal efficiency for a small increase in rate of 1-10 kHz relative 
to total L1 rate of ~110 kHz.

CMS-DP-2023-079

26

AXOL1TL: PHYSICS PERFORMANCE

CMS-DP-2023-079

https://cds.cern.ch/record/2876546


RAW FEATURES: 
CICADA
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AISSAI 2024, Clermont-Ferrand | CICADA: ANOMALY TRIGGER ON RAW INPUTS

28

L1 Calorimeter Anomaly Detection 
Triggering Tests Using the CICADA 
Algorithm For Run 3 Of The CERN 

LHC at CMS
Isabel Ojalvo, Andrew Loeliger, Adrian Pol (Princeton University)

On behalf of the CMS Collaboration

CMS Experiment Anomaly Detection with 
Machine Learning

Preliminary Emulated 
PerformanceThe Large Hadron Collider (LHC) at CERN provides proton 

beam collisions at a 40 MHz rate to provide the data needed to 
make statistically significant physics discoveries. By necessity, 
not all events can be stored, so a primary challenge of 
experiments at the LHC is to reduce the events kept for later 
analysis down to an acceptable number.

Machine Learning on Highly 
Constrained Systems

To achieve this, the CMS Experiment uses a series of systems 
designed to render a decision to keep an event or not, called the 
“trigger”. The Trigger is subdivided into two parts:
• The Level 1 Trigger, which is designed to filter out the most 

interesting collisions and reduce the data taking rate down 
from 40 MHz to ~100 kHz. The L1 trigger is implemented on 
Field Programmable Gate Arrays (FPGAs) which can 
implement the low latencies required for the L1 trigger

• The High Level Trigger, is a traditional distributed CPU 
system designed to further filter interesting events and reduce 
the ~100 kHz rate from the L1 trigger down to a few kHz range. 
More information is available at HLT, and more complicated 
reconstruction can be done to try to narrow in on physics 
signatures.

Future Prospects

ECAL TPs
(energy)

HCAL TPs
(energy)

HF TPs
(energy)

Calo Layer-1
(pre-processor)

Calo Layer-2
(main-processor)

De-multiplexing

𝜇GT
(global trigger)

L1T CaloSummary
3 CTP7 Cards

CICADA

CMS is pioneering a way to use 
machine learning algorithm at the 
deepest, earliest layers of the 
trigger to introduce a machine 
learning model designed to reject 
common, uninteresting events 
with minimal human 
preconception. This algorithm, 
intended for Run 3 usage, is 
called “CICADA”

CICADA stands for: Calorimeter Image Convolutional 
Anomaly Detection Algorithm
• CICADA will run a neural network evaluation designed to 

pick out new topologies, in real time, alongside traditional 
trigger algorithms

• CICADA is an unsupervised model, and is trained on 
unbiased CMS data

• CICADA uses as input almost raw detector data, difficult 
for humans to make patterns, but ideal for machine learning 
systems

The CICADA algorithm is trained on a random selection of 
2023 LHC data which has had no filtering imposed on it to bias 
it. It uses 300,000 events from each of 3 different time periods.

CICADA’s output is evaluated in a software emulator that uses 
a compiled version of the FPGA firmware code to provide 1-to-
1 bit accurate performance behavior. When in this manner, 
preliminary evaluation of the CICADA emulator on events 
shows stable performance across various detector time 
periods, a prerequisite for trigger algorithms.

The CICADA emulator can also be used to examine CICADA’s 
potential performance over time in a data-taking run, which is 
how the standard unit of data taking (a lumi section) is 
organized. CICADA can also be compared to the rate 
performance of other algorithms used at the L1 Trigger. In 
general, when compared to standard algorithms used by 
the L1 Trigger, CICADA shows similar emulated 
performance characteristics over time. It is no less stable. 
This behavior is vital for trigger algorithms

When it is implemented and put into service for data-taking, 
CICADA will be able to operate in the same way that hand 
constructed algorithms have been operating for more than a 
decade, but will provide a new way of doing physics at the 
triggering and data-acquisitions level, introducing an 
effectively physics model-free trigger

CICADA has three primary design goals:

   - Develop novel machine learning techniques at the extremely low latency L1 Trigger at CMS. Anomaly detection methods have the ability 
to find and trigger on events that no other traditional trigger algorithm would. These events found only by CICADA are called pure. Emulation of 
CICADA shows that the rate of pure data is manageable and configurable by changing the discriminator score. Overlap with existing triggered 
events shows that the CICADA trigger is able to pick up “known” rare physics signatures.

   - Introduce a physics model-independent, minimally human-biased triggering algorithm. Researchers at the LHC have been searching for 
Beyond the Standard Model signatures since the machine was turned on in 2009. It is now possible that instead of only searching for “known” 
physics signatures and hypotheses, or using very simple model-free techniques, more sophisticated minimally biased data acquisition of rare 
events can finally be performed.

- Third, CICADA’s technical implementation is a prototype for wider L1 Trigger upgrades planned for the L1 Trigger at CMS in the future

Student Network

MSE
Teacher Network

~10x reduction in latency 
and resource usage

Anomaly detection in CICADA is performed via the auto-encoder 
method. To do this, a neural network is trained to take event input, 
and encode it into a space much smaller than the original input 
features (called the “latent space”). The network must then 
reconstruct the original event input from this reduced space

The crux of this method is that when it is trained on unbiased 
collision data, the reduced size of the latent space means that the 
convolutional network must learn to generalize to these events. 
Unbiased collisions are, in general, uninteresting for analysis 
so the network learns, without manual feature engineering, 
to generalize and reject these uninteresting events.

In general, convolutional neural networks are computationally 
intensive, and getting a network to run at the timing required to 
be used on an FPGA at the L1 trigger is difficult, however, 
several methods can be used to reduce the network complexity 
while retaining it’s power:
• Quantization can be used to reduce the overall precision 

of the numbers on the interior of the network. This reduces 
computation

• Knowledge distillation can be used to reduce the 
network’s task. CICADA trains a secondary, smaller model 
designed to skip encoding and decoding steps, and simply 
predict a final answer generated by the larger, more 
complicated model.

CICADA’s specific setup is called Student-Teacher Knowledge 
Distillation.
• The Teacher Model performs a complete encoding and 

decoding of the original input data
• The Student Model uses a smaller convolutional layer with 

only 4 filters, and a couple of dense layers to predict the 
quality of reconstruction/loss (Mean Squared Error) of the 
teacher network. This predicted reconstruction quality is called 
the anomaly score.

CICADA

8

CICADA project: Calorimeter Image Convolutional Anomaly Detection Algorithm
Ø https://cicada.web.cern.ch/

Autoencoder-based anomaly detection
• Input is 2D tensor from the calorimeter region energy information
• Encoder and decoder are convolutional neural networks
• Unsupervised learning: train only on ZeroBias data to learn input reconstruction

Model architecture: calo input → encoder → latent space → decoder → reconstructed input

Autoencoder model

Anomaly Detection - CICADA, US LUA, Dec 2023

Reconstruction Qualities

4

Shown here is a comparison of the teacher model ability to reconstruct a Zero Bias (ZB) beam event (original: far 
left, reconstructed: center left) versus a signal sample, Soft Unclustered Energy Patterns (SUEP) on the right 
(original: center right, reconstructed: far right). In general, the teacher model is better able to reconstruct the Zero 
Bias beam event as evidenced by a far lower loss (0.81) compared to the SUEP loss (14.21). This example shows 
how the CICADA anomaly detection mechanism works to find anomalies.

๏ CICADA (CMS DP-2023/086): 
Calorimeter Image Convolutional  
Anomaly Detection Algorithm 

๏ Using raw inputs of calorimeter: 
‣ Image of 18 x 14 energy deposits 

‣ Independent of domain knowledge 
(standard trigger algorithms) 

๏ Convolutional auto-encoder trained on 
background dataset: signal -> anomaly!

CMS DP-2023/086

https://cds.cern.ch/record/2879816?ln=en
https://cds.cern.ch/record/2879816?ln=en
https://cds.cern.ch/record/2876546
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AISSAI 2024, Clermont-Ferrand | CICADA: KNOWLEDGE DISTILLATION

๏ Full CICADA model is too complex for FPGA resources / L1 Trigger requirements 
–> use Student-Teacher Knowledge Distillation 

‣ Teacher model: complete encoding and decoding of the original input data 

• Anomaly score (reconstruction error): average of the squared error (predicted – input) 
in reconstruction for each of the 252 individual energy deposits (Mean Squared Error) 

‣ Student model: regresses the anomaly score of the teacher model  
• Smaller convolutional layer with only 4 filters + few dense layers  

-> 10x faster & less resources -> fits FPGA/L1T requirements
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8

CICADA project: Calorimeter Image Convolutional Anomaly Detection Algorithm
Ø https://cicada.web.cern.ch/

Autoencoder-based anomaly detection
• Input is 2D tensor from the calorimeter region energy information
• Encoder and decoder are convolutional neural networks
• Unsupervised learning: train only on ZeroBias data to learn input reconstruction

Model architecture: calo input → encoder → latent space → decoder → reconstructed input

Autoencoder model

Anomaly Detection - CICADA, US LUA, Dec 2023

CMS DP-2023/086

https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2879816?ln=en


Artur Lobanov |  
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AISSAI 2024, Clermont-Ferrand | CICADA: COMMISSIONING 
๏ CICADA currently being commissioned in the L1 Trigger test system 

‣ Software-based emulation based on Firmware (HLS4ML) and validated 
‣ Preliminary performance estimates promising + operational stability tested 

๏ This is the first anomaly detection on low-level inputs in a LHC trigger system!

30

CICADA Score Distributions

5

CICADA has an emulator compiled from its firmware which can be used to test the firmware model on genuine 
detector data accurately. All output from the emulator is bit accurate to the output of the firmware

The plot on the left shows the CICADA score on different 2023 data taking periods (for events CICADA was not 
trained on) for zero-bias events. Run B corresponds to data taken between April-May 2023, Run C corresponds 
to data taken between May-June 2023, and Run D corresponds to data taken between June-August 2023. The 
plot on the right calculates a rate from the efficiencies obtained using these scores as a threshold. The score is 
stable between periods, and will only need re-training when there are changes in the detector conditions.

Emulated CICADA Run Performance

7

The accuracy of the emulator can also be 
used to demonstrate CICADA’s performance 
inside of a run. The plot on the left shows 
CICADA rate for a 5 kHz overall rate 
threshold (red), and 3 kHz pure trigger (blue), 
compared against common unprescaled bits 
like SingleMu22 (pink, corresponds to 
triggering on a muon with transverse 
momentum of 22 GeV), SingleJet180 (yellow, 
corresponds to triggering on a jet of 
transverse energy 180 GeV) and SingleTau 
120 (green, corresponds to triggering on a 
tau of transverse momentum 120 GeV). 
CICADA’s performance is very similar to 
these simple benchmark unprescaled bits.

The data shown here was taken in July 2023.

Firmware-emulated  
anomaly score  
for random data 
(background)

CICADA rate stability  
wrt standard L1T algorithms 

CMS DP-2023/086

https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2879816?ln=en
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AISSAI 2024, Clermont-Ferrand | ANOMALY DETECTION WITH THE CMS LEVEL-1 TRIGGER

๏ Various anomaly searches for new physics performed at the LHC 

๏ Opening a new direction:  
anomaly detection in the CMS Level-1 Trigger 

‣ Challenging environment for L1T:  
• Hardware/FPGAs: restricted resources and latency (ns!) 
• Physics: <60> simultaneous collisions,  

only calorimeter and muon detector data 

๏ Two auto-encoder approaches being commissioned in CMS: 

‣ AXOL1TL: using high-level physics objects [CMS-DP-2023-079] 

‣ CICADA: using raw detector data [CMS DP-2023/086] 

๏ Promising prospects for anomaly triggering in CMS! [HL-LHC L1T]
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Reconstruction Qualities

4

Shown here is a comparison of the teacher model ability to reconstruct a Zero Bias (ZB) beam event (original: far 
left, reconstructed: center left) versus a signal sample, Soft Unclustered Energy Patterns (SUEP) on the right 
(original: center right, reconstructed: far right). In general, the teacher model is better able to reconstruct the Zero 
Bias beam event as evidenced by a far lower loss (0.81) compared to the SUEP loss (14.21). This example shows 
how the CICADA anomaly detection mechanism works to find anomalies.

https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2879816?ln=en
https://cds.cern.ch/record/2714892?ln=en


ML@FPGA

FPGA

xkcd “Machine Learning” 

https://xkcd.com/1838/
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AISSAI 2024, Clermont-Ferrand | CMS L1 TRIGGER FOR THE HIGH-LUMINOSITY LHC
๏ High-Luminosity phase of the LHC (HL-LHC) will start in 2029: 

3x higher instantaneous luminosity and pileup wrt current conditions 
‣ CMS will upgrade most of its detectors, including the (trigger) electronics 

๏ L1 Trigger for the HL-LHC: 
‣ Bandwidth: 2 –> 63 TB/s 
‣ Output 100 –> 750 kHz  
‣ Latency: 4 –> 12 us 

๏ Tracking @ L1T + new  
processing systems will enable 
“offline-like” reconstruction
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AISSAI 2024, Clermont-Ferrand | FPGAS: WORKHORSE OF THE CMS LEVEL-1 TRIGGER
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Trigger system design

Provides robust independent triggers for calorimeter, 
muon and tracking systems separately, and a Particle 
Flow trigger, which combines detector information, all 
feeding into a global trigger

Detector inputs

System specification and constituents

Increase bandwidth 100 kHz → 750 kHz

Increase latency 3.8 μs → 12.5 μs (9.5 μs target contingency)

Include high-granularity detector and tracker information

Dedicated scouting system @ 40 MHz → streaming data


Optical link speeds 16/25 Gb/s as appropriate for application


Use of largest FPGA parts where processing bound e.g. Xilinx 
Virtex Ultrascale+ (VU9P/VU13P) and smaller parts where 
processing is less critical e.g. Xilinx Kintex Ultrascale 


Overall over 200 FPGAs


Processing partitioned regionally and in time as appropriate


Hundreds of FPGAs
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AISSAI 2024, Clermont-Ferrand | L1 ANOMALY TRIGGERING @ HL-LHC
๏ ML-based triggers proposed in the L1T “TDR” for the High-Luminosity LHC 

๏ Classifier approach: binary classifier for known signals trained on simulation (DNN) 

๏ Anomaly detection: auto-encoder based on L1 trigger objects (as AXOL1TL) 
‣ Sensitivity at the ~same order as of the classifier approach (e.g. VBF H>inv) 

๏ Tests of AXOL1TL and  
CICADA pave the way  
for anomaly triggering 
at the HL-LHC in CMS!
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NN classifier for VBF H>inv Anomaly trigger

https://cds.cern.ch/record/2714892?ln=en
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AISSAI 2024, Clermont-Ferrand | EXTRACTING ANOMALIES FROM LHC DATA

Example signal: Higgs decay to two photons 

1. Select events: 2 high-energy photons  

2. Reconstruct H candidates: invariant mass of two photons 
‣ Higgs is a resonance –> peak in m_yy spectrum  
‣ Backgrounds –> falling spectrum 

3. Hypothesis testing p(theory|data): 
‣ Null hypothesis: background-only 
‣ Signal hypothesis: signal+background 

๏ New physics can affect/appear in/ all stages
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AISSAI 2024, Clermont-Ferrand | AXOL1TL: COMPRESSION

๏ Quantization-aware training with QKeras and FPGA adaptation with HLS4ML 
‣ Narrow, shallow model, aggressively quantised 

๏ Output is one vector [13,1], corresponding to µ part of [µ,σ] KL loss  
(dropping σ as it is small -> reduces processing time) 

๏ Anomaly score: sum squared of the µ vector

41

Model trained quantization-aware with QKeras and translated into hardware description language via                        + Vivado 
• Narrow, shallow model, aggressively quantised 
• Output is one vector [13,1], corresponding to µ part of [µ,σ] KL loss  (dropping σ as it is small and becomes negligible) 
• Sum squared of this vector is anomaly score,  

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

∑ μ2

Model  compress ion

https://github.com/google/qkeras
https://fastmachinelearning.org/hls4ml/
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AISSAI 2024, Clermont-Ferrand | AXOL1TL: LOSS TERM

42

Anomaly Detection Neural Network 

4

The AXOL1TL anomaly detection uses a Variational Autoencoder (VAE). A dense feed-forward neural 
network reads in (pT, η, ϕ) hardware inputs of 19 L1 objects. The encoder network computes a latent 
space vector of Gaussian probability distributions, N(𝜇8, 𝜎8). The decoder network reconstructs the 
original input from the latent space. 
 
 
  Loss = (1 − 𝛽) 𝑥 − 𝑥̂

2
+ 𝛽

1
2 (𝜇2 + 𝜎2 − 1  − log𝜎2)

Reconstruction term Full regularization term

Equation: VAE loss function. The reconstruction term is computed from the difference between the 
input (x) and output (x̂) of the VAE. The second, full regularization term, is the Kullback–Leibler 
divergence (KL-divergence) between the latent space distribution and a standard normal distribution 
with mean μ and standard deviation 𝜎. The parameter β can be tuned to balance the reconstruction 
performance with more efficient latent space encoding. At inference time, the loss is approximated 
by the mean-squared term Σ𝜇i

2 of the KL-divergence for latency considerations. This approximation 
has no impact on performance.
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AISSAI 2024, Clermont-Ferrand | CICADA: ANOMALY DETECTION ON RAW INPUTS
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Shown here is a comparison of the teacher model ability to reconstruct a Zero Bias (ZB) beam event (original: far left, 
reconstructed: center left) versus a signal sample, Soft Unclustered Energy Patterns (SUEP) on the right (original: center 
right, reconstructed: far right). In general, the teacher model is better able to reconstruct the Zero Bias beam event as 
evidenced by a far lower loss (0.81) compared to the SUEP loss (14.21). This example shows how the CICADA anomaly 
detection mechanism works to find anomalies. From [CMS DP-2023/086]

https://cds.cern.ch/record/2879816?ln=en
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AISSAI 2024, Clermont-Ferrand | FPGA: FIELD PROGRAMMABLE GATE ARRAYS

๏ Integrated circuit with programmable logic 

‣ Originally introduced for prototyping  
Application-specific Integrated Circuits (ASICs) 

๏ Contrary to ASIC: (re)programmable in the “field” 

๏ FPGAs consists of different parts of logic cells: 
‣ Look-up Tables (LUT), Flip-Flops (FF),  

Digital Signal Processors (DSP) 
‣ Also contain RAMs, fast I/O etc, 
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Wiki
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AISSAI 2024, Clermont-Ferrand | WHY ARE FPGAS FAST?

๏ Resource parallelism 
‣ Use the many resources to work on 

different parts of the problem 
simultaneously 

‣ Achieve low latency 

๏ Pipeline parallelism 
‣ Use the register pipeline to work 

on different data simultaneously 

‣ Achieve high throughput
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FPGAs as a data conveyor belt  
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๏ Example: fully connected Neural Network

WHY ML@FPGA?
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Parallelise-able and robust 
against reduced precision 

Perfect for ML Inference 
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48https://fastmachinelearning.org/hls4ml/

๏ hls4ml: package for translating NN to FPGA firmware

https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/hls4ml/
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DPG 2023, Dresden | EFFICIENT NN DESIGN: QUANTIZATION

๏ In the FPGA fixed point representation is used! 

๏ Operations are integer ops, but one can represent fractional values 

๏ But we have to make sure we’ve used the correct data types!

0101.1011101010

width
fractionalinteger

Full performance at 6 
integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance at 8 
fractional bits
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DPG 2023, Dresden | EFFICIENT NN DESIGN: COMPRESSION

50

Fully parallelized  
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

๏ Network compression:  
widespread technique to reduce the size, energy 
consumption, and overtraining of deep neural 
networks  

๏ Remove redundancy in model: crucial for FPGAs!
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DPG 2023, Dresden | EFFICIENT NN DESIGN: PARALLELIZATION

๏ Trade-off between latency and FPGA resource usage determined by the parallelization of the 
calculations in each layer 

๏ Configure the “reuse factor” = number of times a multiplier is used to do a computation

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial

Fewer resources, 
Lower throughput, 
Higher latency

More resources, 
Higher throughput, 
Lower latency
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