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Section 1

CONTEXT AND OBIJECTIVE



DASMA PROJECT

DASMA is a 3-year research project started in
2021 and funded by BpiFrance and led by Pr.
Engelbert MEPHU NGUIFO.

Overall objective :

Build a monitoring system that will help users to
efficiently analyze data streams and identify
potential anomalies in real-time.




Context

e A data stream refers to an infinite volume of data that
arrives continuously

 Data streams appear in many context : from
monitoring systems based on sensors to social media
including financial transactions.

* Anomaly detection is a topical issue when analyzing
data from a datastream.

Fig. 3: Monitoring white rooms
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Data stream and Multivariate time series

* Time series analysis refers to the study and analysis of
sequence of time-ordered data points.

 Depending on the number of variables or series being
studied we distinguish univariate and multivariate time
series

* A data stream consisting of numerical and multivariate
data points can be seen as an infinite multivariate time
series.




Types of anomalies in time series

Anomaly detection refers to the identification of rare events that differ
significantly from the normal trend observed in the data distribution
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Objective et Challenges

Main objective: Built a real-time anomaly detection
system on data streams that is capable of providing
real-time explanations to anomalies detected

Challenges :

e Data: High volume of data, infinite,
dimensionality of data, normalizing data.

* Analysis: Accuracy, Real-time, Explainability,
domain knowledge.

 Unsupervised: Unlabelled data, Unknown
partterns




Section 3

ANOMALY DETECTION METHODS



Classification of anomaly detection methods for data stream
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Methods studied yet

Methods based on subspace partitioning

Methods based on clustering

Methods based on deep
learning

Ensemble Methods
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Deep learning based methods
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Fig. 9: Yi Xiang, Amazon MSL, 2021

Abnormal / normal sample
g A

Generator G

G(2z)

Fig. 10: Dejan Stepec et al., MICCAI 2020
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DEEPANT

= Principle : Leverage on convolutional neural networks to predict a data point of the
datastream based on a subsequence of the datastream.

= A windowing technique is used to update the model periodically

Time seres Conwl Output Max Pooling Com2 Output Max Pooling Dense Layer Qutput

Fig. 11: Yi Xiang, Amazon MSL, 2021
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KitNet Anomaly Detection Algorithm

= Principle : KitNet is an online and unsupervised anomaly detection algorithm based
on autoencoder. KitNet was originally designed to detect network intrusions.

= RMSE = Root Mean Square Error

Ensemble Layer Output Layer

2.100s

— ‘jzéiluycil)v S0

Fig. 12: Yisroel, NDSS, 2024
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Isolation forest principle

Principle : 1. Build an isolation forest where each i1 11 21 31
subtree represents a subpartition of the original

i2 10 20 33
data based on the value of a dimensional variable.

i3 15 25 33
2. Classify each point in the trees following the i4 10 21

nodes conditions. If the point is isolated very
early, then it might be an anomaly.

Isolation Forest
Abnormal values
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Clustering (Distance/Density)

v
= Principle : ldentify data clusters using a
clustering. The data that are isolated from

clusters are considered abnormal.

In this category we have:
LOF, MILOF and DRAGSTREAM

In the context of a datastream : Data points
are theoretically infinite.

H

16

Wo‘ SUVERGNE 2%
comant LI I }M/)ﬁ:sf @ LIMOS

Auvergne Saint-Etienne




Ensemble methods

Principle : use multiple anomaly detection methods and agregate the results

Challenge : Normalize the ouput of the various methods

Real —time : Synchronize all the anomaly detectors. Issue with the real-time constraint

Interpretability ? 2
Anomaly Anomaly Anomaly Anomaly Anomaly
Detector 1 Detector 2 Detector 3 Detector 4 Detector 5
Value 1 Value 2 Value 3 Value 4 Value 5

Final prediction

Fig. 13: Ensemble methods
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How do we process the datastream ?

A datastream is theoretically infinite
(i) Landmark window model

The windowing technique is used to determine e e e e L e o 1
which part of the stream is used to update the model.

= Landmark window (i) e —— ]
= Sliding window (ii) W o g enaw TS o
. window at time 1 e — window attime2 = | \IN indow at time 3
= Damped window (iii) e —— lr
i . . . |r L] L] . :h L] L] |r . . . L]
Drawback (i & ii): difficult to determine S I S |

the size of the window . Points in the
window are consider of equal
importance.

(iii) "
Damped wi

Flt) =272t

Drawback (iii) : interpretability,
Time complexity.

Other : Incremental learning Fig 14. Windowing (S. Mansalis et al, 2018)
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Section 3

EXPLAINABILITY



Why explaining?

Objective: Identify uncommon behavior in the distribution of the

datastream
score and M10 ?
% Ml 2.60 0054 0 148 0.003 0.2 - Should we fire an alert ?
S| M2 2.51 0.055 0.155 0.005 0.41
é M3 2.52 0.2 0.206 0.001 0.9
M10 2.53 0.3 0.139 0.004 0.95

Fig. 14: Why explaining ?
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Score attribution local explainability

= Objective : assign a score representing the
contribution of each variable to the value
predicted.

Feature importances
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LIME & SHAP

= Both are model agnostic
= They both perform local explanation

= LIME : find a simple and explainable model that maximizes the faithfullness with the
prediction of the real model in the neighborhood of the instance to explain

= SHAP : Assign to each feature a score representing the importance of including
that feature in the input.

n
Explanation = Z a; X;
k=1

Avantage : Genericity drawback : slow
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LIME (Ribeiro et al., 2016)

Objective : Find a model locally interpretable that best approximate the behavior of the original
Model in the neighborhood of the instance to explain.

¢(z) = argmin L(f,g.m,) + Qg
g€G [

Measures the non fidelity of
g with respect to f

Complexity of g

Measure the
locality to x

The more the model is complex, the less it is interpretable -l;'

Advantage : Genericity
Drawback : Slow
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SHAP

Objective : Assign an importance to each feature that represents the effect of including that
feature on the output produced by the model.

/ Model including feature i
[SIH(F] = |S]=1)!

¢i = SCFZ\M Vali fsuriy(@sugy) — fs(zs)] -
| K Model without
Importance of the feautre i \
Mean Importance of including i

(M. Lundberg et al., NeuRIPS 2017)

The more complex is the model, the less it is interpretable
Advantage : Genericity

Drawback : Slow .
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Section 4

VALIDATION



SYSTEM CONFIGURATION

1. Simulate a data stream from CSV files
2. Report the points where the anomaly score are greater than the specified threshold
3. Report the contributions of the various variables

4. Expert validation : Monitor the variables with the highest contributions and check if there
was something abnormal with them during the time that the anomaly score was greater
than the threshold

Contribution of a variable at each time step

Evolution of the anomaly score over time 40 evolution of the value of a variable with respect to time
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THE SYSTEM AT A GLANCE

evolution of the value of a variable with respect to time
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Architecture

D influxdb
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Fig. 7: System architecture 2
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Section 5

FUTURE WORKS



In progress

= Explainability: quality and real-time

= Anomaly detection : quality and real-time
= Multivariate analysis vs univariate analysis
= Effective continuous learning

= Effectively handle the concept drift

* Fixed threshold vs dynamic threshold

" Graphic User Interface
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https://dblp.org/db/conf/ijcnn/ijcnn2022.html#BibinbeMSN22

Thank you for your kind
attention
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