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CERN and the Large Hadron Collider (LHC)
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CMS experiment at the LHC
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The Standard Model of particle physics (until 2012)
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Discovery of the Higgs boson
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The Standard Model of particle physics (since 2012)
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Hypothesis testing for discovery of new physics

Searches of new phenomena at the LHC
usually boil down to testing for the
presence of a signal distribution over a
background of known SM physics:

• Known physics: pb(z)

• New signal: ps(z)

• Nature: q(z) = (1− λ)pb(z) + λps(z)

Want to test H0 : λ = 0 vs. H1 : λ > 0

If one rejects H0 at a high enough
significance level, then one might proceed
to claim discovery of new physics
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Model-dependent classifier-based tests

Most of these tests are done in the model-dependent mode, where the test
statistic is optimized to have power for detecting a specific signal

Relevant datasets:

Training background: X = {X1, . . . ,Xmb
}, Xi ∼ pb

Training signal: Y = {Y1, . . . ,Yms}, Yi ∼ ps

Experimental data: W = {W1, . . . ,Wn}, Wi ∼ q = (1− λ)pb + λps

Basic idea: use X and Y to find the optimal test for detecting ps

When the data space is high-dimensional, this is usually done using
machine learning classifiers:

1 Train a supervised classifier to separate X from Y
2 Use the classifier output to test for the presence of signal in W
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Classifier training
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Classifier output

Some options for the test:

• Counting experiment in
the highest purity output
bin(s)

• Cut on the classifier
output; test using the
resulting signal-enriched
sample

• LRT: Use the connection
of the classifier output to
the likelihood ratio

• ...
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Testing when the signal is misspecified

To perform these tests, we need to assume that we can reliably simulate
data from both pb and ps

However, when either or both of these simulators are unreliable /
systematically misspecified / unavailable, we need to consider alternative
strategies for performing the test

Specifically, if the test is optimized for a misspecified ps , it may have little
to no power for detecting an actual signal
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Systematically misspecified signal

⇒ How to obtain an omnibus test that has power for a wide range of
signals, even in high-dimensional situations?
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Landscape of model-independent methods
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Landscape of model-independent methods
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Model-independent search

For the rest of this talk, we focus on a particular variant of
model-independent searches of new physics

We assume that we have a reliable sample from pb but we do not assume
access to a training sample from ps

→ Provides sensitivity for unexpected or misspecified signals

Available datasets:

Training background: X = {X1, . . . ,Xmb
}, Xi ∼ pb

Experimental data: W = {W1, . . . ,Wn}, Wi ∼ q = (1− λ)pb + λps

We only have access to X and W; i.e., no direct access to pb, q, ps or λ

Task 1: We want to understand if W shows evidence for the presence of ps

Task 2: We want to understand what λ and ps look like
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Related problems in statistics and ML

The model-independent search problem is closely related to a number of
problems studied in statistics and machine learning

Specifically, it can be seen as an example of:

1 Two-sample testing (e.g., Kim et al. (2019, 2021)):

Xi
iid∼ p1, Yi

iid∼ p2, is p1 = p2?

2 Collective anomaly detection (e.g., Chandola et al. (2009)):
Is there a collection of data points which taken together deviate
from the anticipated data?

Notice that

model independent search ̸= outlier detection

Each signal event is typically indistinguishable from the background on its
own; it is the collection of many signal events that defines the excess
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Model-independent searches in low-dimensional spaces

In Kuusela et al. (2012) and Vatanen et al. (2012), we used Gaussian mixture
models to first fit the background sample and then, given the background model,
fit any anomalous signal present in the experimental sample
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This approach works fine in 2–3 dimensions but does not really scale to higher
dimensions
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Model-independent search using a semi-supervised classifier

What to do when the data space has more than just a couple of
dimensions?

→ Use machine learning classifiers!

Basic idea: Train a classifier h to separate the background data X from
the experimental data W

• Under H0, the classifier should not be able to separate X from W
• So if the classifier is able to differentiate between these two samples,
then that provides evidence for the presence of ps

This basic strategy is closely related to recent work by D’Agnolo and
Wulzer (2019) and D’Agnolo et al. (2021, 2022); see also Kim et al.
(2019, 2021) for a similar approach in the two-sample testing literature
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Our contributions

In Chakravarti et al. (2023), we make the following contributions:

1 We investigate various ways of obtaining a test statistic from the
trained classifier ĥ as well as various ways of calibrating the tests

2 We propose a way to estimate the signal strength λ based on ĥ

3 We propose a way to interpret ĥ using active subspaces
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Overview of the approach
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Classifier-based test statistics

Test statistics based on a classifier ĥ that is trained to separate the experimental
data W from the background data X :

1 Likelihood Ratio Test Statistic:

LRT = 2
∑
i

log ψ̂(Wi ),

where ψ̂(z) = mb

n
ĥ(z)

1−ĥ(z)
is a classifier-based estimate of the density ratio

ψ = q/pb

2 Area Under the Curve (AUC) Test Statistic:

θ̂ =
1

mb n

∑
i

∑
j

I
{
ĥ(Wj) > ĥ(Xi )

}
Test H0 : θ = 0.5 versus H1 : 0.5 < θ < 1.

3 Misclassification Error (MCE) Test Statistic:

M̂CE =
1

2

[ 1

mb

∑
i

I
{
ĥ(Xi ) > π

}
+
1

n

∑
j

I
{
ĥ(Wj) < π

}]
, π = n/(n+mb)

Test H0 : MCE = 0.5 versus H1 : MCE < 0.5.
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Calibration of the tests

In order to control the Type I error, we need to obtain the distribution of
the test statistics under the null H0 : λ = 0

Notice that, under the null, both X and W are samples from pb

Three approaches:

1 Asymptotics: Can derive the asymptotic distribution for each of the
test statistics; for example, for AUC, Newcombe (2006) showed that

θ̂ − 0.5√
V0(θ̂)

⇝ N(0, 1),

for a certain V0(θ̂) under the null

2 Nonparametric bootstrap: Sample with replacement from X ∪W and
randomly label as either X ’s or W ’s

3 Permutation: Randomly permute the class labels in X ∪W
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In-sample vs. out-of-sample evaluations

In practice, we need to be careful with in-sample vs. out-of-sample
evaluation of the classifier ĥ

• For each calibration method, we use half of the data to train the
classifier and the other half to evaluate and calibrate the test
statistics (sample splitting)

• For the permutation method, we also consider a variant where the
classifier is evaluated in-sample, which requires retraining the classifier
for each permutation cycle
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Kaggle Higgs boson data

We compare these methodological choices using the Kaggle Higgs boson
challenge dataset1

• Simulated H → ττ events in ATLAS

• We select events with two jets and only consider primitive features
(transverse momenta, MET, angles,...)

• 15 variables after accounting for rotational symmetry in ϕ

• 80,806 background events; 84,221 signal events

• Generate 50 “replicates” by sampling without replacement
mb = 40,403 background events, ms = 20,403 signal events and
n = 40,403 experimental events from the original samples

• We use Random Forest as the classifier h throughout

1https://www.kaggle.com/c/higgs-boson
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Power of detecting a signal

Power of detecting a well-specified signal in the Kaggle Higgs boson data

Signal Strength (λ)

Model Method 0.15 0.1 0.07 0.05 0.03 0.01 0

Supervised LRT Asymptotic 100 100 96 62 18 18 6
Bootstrap 100 96 78 58 6 0 0

Permutation 100 98 98 86 28 6 0

Supervised Score Bootstrap 64 66 74 50 18 0 0
Permutation 94 92 100 92 80 24 12

Semi-Supervised LRT Asymptotic 100 98 74 38 16 6 2
Bootstrap 100 98 48 10 2 2 0

Permutation 100 98 72 38 16 6 2
Slow Perm 82 8 0 4 2 0 4

Semi-Supervised AUC Asymptotic 100 96 78 32 14 4 2
Bootstrap 100 98 70 32 20 6 2

Permutation 100 98 68 32 20 4 2
Slow Perm 100 100 94 56 20 8 4

Semi-Supervised MCE Asymptotic 100 92 60 28 14 2 2
Bootstrap 100 96 52 28 16 6 4

Permutation 100 96 52 30 14 6 6
Slow Perm 100 98 86 58 16 6 2
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Power of detecting a signal

Power of detecting a misspecified signal in the Kaggle Higgs boson data

Signal Strength (λ)

Model Method 0.15 0.1 0.07 0.05 0.03 0.01 0

Supervised LRT Asymptotic 2 10 2 8 8 6 4
Bootstrap 0 0 0 0 0 0 0

Permutation 0 0 0 0 0 2 0

Supervised Score Bootstrap 0 0 0 0 0 0 0
Permutation 0 0 0 0 0 2 8

Semi-Supervised LRT Asymptotic 100 100 100 82 18 4 4
Bootstrap 100 100 100 60 4 2 0

Permutation 100 100 100 82 18 4 2
Slow Perm 100 100 78 22 2 4 6

Semi-Supervised AUC Asymptotic 100 100 100 78 16 8 4
Bootstrap 100 100 100 82 20 10 0

Permutation 100 100 100 80 20 8 2
Slow Perm 100 100 100 100 34 10 4

Semi-Supervised MCE Asymptotic 100 100 100 66 24 6 4
Bootstrap 100 100 100 62 16 6 4

Permutation 100 100 100 62 14 6 4
Slow Perm 100 100 100 98 22 8 2

Signal misspecified by transforming tau pt∗ = tau pt− 0.7 (tau pt−min(tau pt))
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Power as a function of sample size

Power of the asymptotic model-independent tests for increasing
sample sizes
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Interpreting the semi-supervised classifier

We may want to be able to analyze the trained semi-supervised classifier ĥ to
learn about the properties of the potential signal

Signal strength

We estimate the signal strength
λ from the classifier ĥ using the
Neyman–Pearson quantile
transform

Variable importance

We use the active subspace of
the classifier to identify variable
combinations that help separate
the signal from the background

See the backups or Chakravarti et al. (2023) for more on these two approaches
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Incorporating background systematics

The previous approach assumes that the training background sample X
comes from the true background pb

However, in practice the simulator for X is likely to be systematically
misspecified

So the “signals” found might simply be due to background mismodeling
→ Need to find a way to relax our assumptions about pb

We can learn from techniques developed for model-dependent searches:
template morphing, nuisance parameters, two-point systematics,...

For example, it might be possible to parameterize the systematics so that
pb = pb(γ), where γ ∈ Γ is a nuisance parameter; we could then test

H0 : q ∈ {pb(γ) : γ ∈ Γ} vs. H1 : q /∈ {pb(γ) : γ ∈ Γ}

D’Agnolo et al. (2022) is an important first contribution on this, but
further work is needed to incorporate nuisance parameters into other
model-independent tests, including the test statistics discussed here
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Conclusions
• Model-independent searches may be able to increase the sensitivity of
LHC for unexpected or misspecified signals

Has received increased attention in recent years due to the absence of
major new signals in model-dependent searches

• Model-independent searches in HEP are collective anomaly detection
problems, but usually not outlier detection problems

• A whole spectrum of model-independent search techniques have been
developed that differ in the strength of assumptions made about the
signal and background distributions

• Machine learning classifiers are key for performing these searches in
high-dimensional spaces

• Here we focused on a particular variant2 of a classifier-based test and
explored the effect of the choice of the test statistic, calibration method
and in-sample vs. out-of-sample evaluation

• Current / future work: further relaxing assumptions about pb and/or ps
2P. Chakravarti, M. Kuusela, J. Lei, and L. Wasserman, Model-independent detection

of new physics signals using interpretable semi-supervised classifier tests, The Annals of
Applied Statistics, 17(4):2759–2795, 2023
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Backup
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Estimating the signal strength

Given a trained semi-supervised classifier ĥ, how can we estimate the
signal strength λ?

If we know that ps(z) = 0 for some known z , then this is simple

Since

ψ(z) =
q(z)

pb(z)
=

(
1− π

π

)(
h(z)

1− h(z)

)
,

we obtain

λ̂ = 1−
(
1− π

π

)(
ĥ(z)

1− ĥ(z)

)
,

for any z with ps(z) = 0

However, in the model-independent setting, we may not know when
ps(z) = 0 → What to do?
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Estimating the signal strength

Need to assume infz ps(z)/pb(z) = 0 for identifiability; assume also pb, q > 0
everywhere, for simplicity

Define the Neyman–Pearson Quantile Transform of z as:

ρ(z) = PX∼pb

(
q(X )

pb(X )
≥ q(z)

pb(z)

)
= PX∼pb (ψ(X ) ≥ ψ(z)) = PX∼pb (h(X ) ≥ h(z))

Let gq be the density function of ρ(Z ) when Z ∼ q

Then it can be shown that gq is monotonically decreasing and

gq(1) = 1− λ

which allows us to estimate λ using λ̂ = 1− ĝq(1)

→ We need to estimate a monotone density at its boundary
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Estimating the signal strength

In practice, we form a histogram of ρ(Wi ) and estimate gq(1) using a
Poisson regression on bins close to 1
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Estimating the signal strength

Estimated λ vs. true λ with various uncertainty estimates
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Active subspaces for interpreting the classifier

The fitted classifier surface ĥ contains information about how the
experimental data W differs from the background data X

How do we extract this information from ĥ?

Could look at ĥ as a function of each input variable

But this might not reveal information contained in variable dependencies

We propose to look at the active subspace of ĥ instead

Basic idea: perform PCA on the gradients ∇ĥ(z) to reveal those directions
in which the classifier surface changes the most

37 / 29



Active subspaces for interpreting the classifier

(a) X1 versus X2, ĥ(X1,X2) versus X1 and ĥ(X1,X2) versus X2

(b) Smoothed
Classifier Surface

(c) PCA of the

Standardized Gradients

38 / 29



Active subspaces for interpreting the classifier

In practice, we look at the gradients of

H(z) := logit(ĥ(z)) = log
(
ĥ(z)/(1− ĥ(z))

)
which are estimated by fitting a local linear regression on H(Zi ) where
Zi ∈ X ∪W

Furthermore, we standardize the gradients by their estimated standard

errors: G (z) = ∇̂H(z)√
V̂ar(∇̂H(z))

We then perform PCA on G (Zi ): the mean of G (Zi ) describes the slope of
H(z) and the principal components of G (Zi ) capture the variation of H(z)
around the slope

Uncertainty estimates using bootstrapping
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Active subspaces for interpreting the classifier

(a) Mean Gradient (b) First Eigenvector (c) Second Eigenvector
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Density Ratios and Classifiers

In general, given two densities p and q and samples

X1, . . . ,Xn ∼ p

Y1, . . . ,Yn ∼ q

Give labels:
X1 . . . Xn Y1 . . . Yn

Z 1 . . . 1 0 . . . 0

Classifier ψ:

ψ(u) = P(Z = 1|u) = p

p + q

and so
p

q
=

ψ

1− ψ
.
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p-value distributions for the supervised tests
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p-value distributions for the semi-supervised tests

Asymptotic Bootstrap Permutation Slow Permutation
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